
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:8, 2012

945

 

 

Abstract—Combinatorial optimization problems arise in many 
scientific and practical applications. Therefore many researchers try 
to find or improve different methods to solve these problems with 
high quality results and in less time. Genetic Algorithm (GA) and 
Simulated Annealing (SA) have been used to solve optimization 
problems. Both GA and SA search a solution space throughout a 
sequence of iterative states. However, there are also significant 
differences between them. The GA mechanism is parallel on a set of 
solutions and exchanges information using the crossover operation. 
SA works on a single solution at a time. In this work SA and GA are 
combined using new technique in order to overcome the 
disadvantages' of both algorithms. 

 
Keywords—Genetic Algorithm, Optimization problems, 

Simulated Annealing, Traveling Salesman Problem 

I. INTRODUCTION 

ENETIC ALGORITHM (GA) and Simulated Annealing 
(SA) have been used to solve optimization problems. 

Both GA and SA search a solution space throughout a 
sequence of iterative states. However, there are also 
significant differences between them. The GA mechanism is 
parallel on a set of solutions and exchanges information using 
the crossover operation. SA works on a single solution at a 
time. GA uses the same selection strategy during the run of the 
algorithm, while SA regulates the temperature parameter it 
uses to evaluate the solution. These differences lead to 
different search criteria. Both GA and SA have advantages 
and disadvantages. A disadvantage of GA is that it might trap 
at local minima, or it is time-consuming to find an optimal 
solution [1]. In case of SA only one candidate solution is used, 
thus it does not build up an overall view of the search space. 
Also, SA is slow because of  its sequential nature. In other 
words, SA can find good quality solutions in a neighborhood, 
but most likely it will get trapped in local minima and takes 
longer to escape, while GA rapidly discovers the search space, 
but has difficulty finding the exact minima [2] [3]. The 
hybridization of SA and GA tries to combine the advantages 
of GA. In this work GA and SA are combined in order to 
improve the quality of solutions and reduce execution time. 

A. Simulated Annealing 

The purpose of physical annealing is to accomplish a low 
energy state of a solid. This is achieved by melting the solid in 
a heat bath and gradually lowering the temperature in order to 
allow the particles of the solid to rearrange themselves in a 
crystalline lattice structure. This structure corresponds to a 
minimum energy state for the solid. The initial temperature of 
the annealing process is the point at which all particles of the 
solid are randomly arranged within the heat bath. At each 
temperature, the solid must reach what is known as thermal 
equilibrium before the cooling can continue [4].  

 
 

If the temperature is reduced before thermal equilibrium is 
achieved, a defect will be frozen into the lattice structure and 
the resulting crystal will not correspond to a minimum energy 
state.                

The Metropolis Monte Carlo simulation [4] can be used to 
simulate the annealing method at a fixed temperature T. The 
Metropolis method randomly generates a sequence of states 
for the solid at the given temperature. A solid’s state is 
characterized by the positions of its particles. A new state is 
generated by small movements of randomly chosen particles. 

The change in energy ∆� caused by the move is calculated 
and acceptance or rejection of the new state as the next state in 
the sequence is determined according to Metropolis 

acceptance condition [4]. If ∆� � 0 the move is acceptable 

and if ∆� � 0 the move is acceptable with probability, if  

���∆	



 � 
 .  

The move is acceptable otherwise rejected, where � is 

random number and 0 �  � �  1. Simulated annealing was 
first introduced by Metropolis et al [5], but it was Kirkpatrick 
et al [6], in 1983 who proposed SA as the basis of an 
optimization technique for combinatorial optimization 
problems. Simulated annealing is one of the most popular and 
general adaptive heuristic algorithms [7]. Simulated annealing 
algorithms have been applied to solve numerous combinatorial 
optimization problems. The name and idea of SA comes from 
annealing in metallurgy, a technique involving heating and 
controlled cooling of a material to increase the size of its 
crystals and reduce their defects. The heat frees the atoms to 
move from their initial positions (initial energy). By slowly 
cooling the atoms the material continuously rearranges, 
moving toward a lower energy level. They gradually lose 
mobility due to the cooling, and as the temperature is reduced 
the atoms tend to crystallize into a solid. In the simulated 

annealing method, each solution  in the search space is 
equivalent to a state of a physical system and the function 

f�s� to be minimized is equivalent to the internal energy of 
that state. The objective is to minimize the internal energy as 
much as possible. For successful annealing it is important to 
use a good annealing schedule, where the temperature 
reducing gradually.    

B. Annealing schedule  

The annealing schedule is a major step of SA because it 
controls the uphill movement of the algorithm. In order to use 
simulated annealing, the annealing schedule must be at a 
proper setting. The initial temperature is set at a high value 
and then it is decided how to decrease the temperature 
gradually as a function of time. If T�0� is the initial 

temperature, a simple schedule is T�k �  1�  �  βT �k�, 

for some fixed β, such that   0 �  � �  1. A cooling 
schedule depends on the problem to be solved.  

Younis R. Elhaddad 

Combined Simulated Annealing and Genetic 
Algorithm to Solve Optimization Problems 

G

@yahoo.com
Younis Elhaddad  is with  University of Benghazi, Libya e-mail:yrh2010



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:8, 2012

946

 

 

Choosing an annealing schedule for a given problem is still 
a problem for most researchers. Therefore the annealing 
schedule can be determined by experiments or using heuristics 
methods to find the optimal annealing parameters.  

C. Description of SA  

As shown in figure (1) SA starts from a random 

solution �� , selects a neighboring solution ��  and computes 

the difference in the objective function values,  ∆� �
���� � � ����  . If the objective function is better (∆� �
0), then the present solution �� is replaced by the new 

one �� .  
Otherwise the solution that decreases the value of the 

objective function with a probability !" � 1/�1 � ��∆	

  � 

is accepted, where !" is decreased as the algorithm 

progresses, and where ($) is the temperature or control 
parameter. This acceptance is achieved by generating a 
random number ("%� where �0 & "% & 1� and comparing 

it against the threshold. If   !" � "% then the current solution 
is replaced by the new one. The procedure is repeated until a 
termination condition is satisfied. 
 

 

                       
II. GENETIC ALGORITHM 

Genetic algorithms (GAs) are a specific type of 
Evolutionary Algorithm (EA). GAs will be the center of 
attention appearing to be the best suited evolutionary 
algorithms for combinatorial optimization problems. The 
power of GAs comes from their reliable, robust optimization 
method and applicability to a variety of complex problems [8]. 

A. The basic principles of GA 

The basic principles of Genetic Algorithms (GAs) were 
introduced by Holland (1975). [9]. GAs are an optimization 
and search technique which emerged from the study of 
biological evolution [8].  

In general GAs can be described as follows: 

Genetic algorithms start with generating random 
populations of possible solutions. Each individual of the 
population is represented (coded) by a DNA string, called a 
chromosome, and the chromosome contains a string of 
problem parameters. Individuals from the population are 
selected based on their fitness values. The selected parents are 
recombined to form a new generation. This process is repeated 
until some termination condition is met.  Figure (2) shows the 
Abstract Genetic Algorithm (AGA).  
 

 
 

In this work two SA algorithms are used to generate new 
two individuals which are transferred to a genetic algorithm, 
using multi crossover technique and swapped inverted 
crossover [10] to produce offspring consist of 94 children, 
from these offspring the best two individuals are selected 
according to their fitness values, once again these two 
individuals are used as inputs to both of the SA algorithms in 
order to  improve these solutions, If solutions are no longer 
improved within consecutive iterations, then the best 
memorized solutions from the SA algorithms will be moved to 
the GA to repeat the above process.  

The role of the SA is to improve or change the population 
which caused the GA to become trapped at local minima. The 
algorithm presented in this work can be effective to solve TSP 
with different sizes and tend to produce better quality results 
in lesser time. 

BEGIN GA 
     Create initial population randomly 
               While NOT stop DO 
                            BEGIN 
                                 Select parents from the population. 
                                 Produce children from the selected parents. 
                                  Mutate the individuals. 
                                   New  population = children  
                                END 
           Output the best individual found. 
END GA 

Create initial solution ��  
Calculate ����   
Set  $ 
Set  0 �  � �  1. 
Loop 
         Select a neighboring solution ��  
          Calculate ��� �� 
          Compute ∆� � ���� � � ����  . 
           If ( ∆� � 0�  
                             Then   ��  = ��  
                                   Else  

                                           If 
'

'()�
�∆*


  
� "+%,-. �0,1� 

  
                                                       Then   ��  = ��  
                                                              Else  
                                                                 $�0 �  1�  �  �$ �0�,                                  
Until termination condition is satisfied. 

Fig.  2 Abstract Genetic 

Fig. 1 Simulated Annealing 

RINCIPLE OF SAGA  III. P



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:8, 2012

947

 

 

 

                    

IV. EXPERIMENTAL RESULTS OF SAGA 

The proposed algorithm was tested using symmetric 
Traveling Salesman Problem (TSP) instances from known 
TSPLIB [11] and the results show that the algorithm is able to 
find an optimal solution or near optimal solution for varying 
sizes of these instances. Table I shows some results produced 
by proposed algorithm 

 

 

V. CONCLUSION  

This work proposed a new approach to combined simulated 
annealing and a genetic algorithm (SAGA) in order to reap the 
benefits of SA and reduce the time that GA spends stuck at 
local minima. The proposed algorithms tend to produce better 
quality results in smallest amount of time. 

REFERENCES   
[1] An Introduction to Genetic Algorithms for Electromagnetics. Haupt, 

R.L. 2, s.l. : IEEE, April 1995, Vol. 37, pp. 7-15. 
[2] Parallel simulated annealing and genetic algorithms: A space of hybrid 

methods. H Chen, N S Flann. s.l: International Conference on 

Evolutionary Computation the Third Conference Parallel Problem 
Solving, 1994. 866. 

[3] Genetic algorithms and very fast simulated reannealing: A comparison. 
Rosen, L. Ingber and B. 11, s.l. : Mathematical Computer Modeling, 
1992, Vol. 16. 87-100. 

[4] Metropolis, N, et al. Equation of State Calculations by Fast Computing 
Machines. Florida State University. [Online] 1953. [Cited: 2 17, 2008.] 
www.csit.fsu.edu/~beerli/mcmc/metropolis-et-al-1953.pdf. 

[5] W. Thomas. Global Optimization Algorithms Theory and Application. 
Thomas Weise. [Online] 2008. [Cited: 11 7, 2008.] http://www.it-
weise.de/projects/book.pdf. 

[6] S. Kirkpatrick, C. D. Gelatt, Jr., M. P. Vecchi. Optimization by 
Simulated Annealing. Computer Engineering Research Group. [Online] 
May 13, 1983. [Cited: 8 13, 2007.] 
http://www.eecg.utoronto.ca/~janders/ece1387/readings/sim_anneal.pdf. 

[7] Bradley, J and Lambert, C. Simulated Annealing Applications. 
University of Victoria . [Online] November 18, 1999. [Cited: 4 12, 
2008.] http://www.me.uvic.ca/~zdong/courses/mech620/SA_App.PDF. 

[8] Beasley, D, Bull, D R and Martin, R. An Overview of Genetic 
Algorithms :. Part 1, Fundamentals. Norwegian University of Science 
and Technology. [Online] 93. [Cited: 3 24, 2008.] 
http://www.idi.ntnu.no/emner/it3704/lectures/papers/Beasley93GA.pdf. 

[9] Adaptation in Natural and Artificial Systems: An Introductory Analysis 
with Applications to Biology, Control, and Artificial Intelligence. 
Holland, J. s.l. : The University of Michigan Press, 1975. 

[10] An Improved Genetic Algorithm to Solve the Traveling Salesman 
Problem. Sallabi, Omar M and Elhaddad, Younis R. Rome : World 
Academy of Science, Engineering and Technology, 2009. pp. 471-474. 
Issue 52. 

[11] http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/. 
Heidelberg University. [Online] [Cited: 1 22, 2007.] 

TABLE I 
RESULTS OF SAGA 

problem Optimal Best result 
eil101 629 629 

kroA200 29368 29368 

Pcb1173 56892 57142 
 

Fig. 3 SAGA algorithm 

1 � 0 

   2 3 0 

Initiate two random individuals (a1,a2) 

Start SAGA 
4567� $�".6%+$6-% 8-%,6$6-% %-$ .�$  
  1 � 0 
  4567� 1 & 10 
             +3 3 :;1�+1�  
             +4 3 :;2�+2� 
              Memorize best result  a3,a4 
   End (while j) 

     >1 3 �+3, +4� 

  4567� 2 & 10 
       2 3 2 � 1 
       ?1 3 ��!1� 
      >2 3 @; �!1�  
      ?2 3 ��!2� 
               A�  ?�2�  � ?�1�              
                             2 3 0 
                          >1 3 !2 
                           >3 3 !2 
                        end 
                               Else 
                                    2 3 2 � 1 
                                    >3 3 !1 
                                 End 
   End (while C) 
      �+1, +2� 3 >1 
 End (HGSAA) 

 


