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Abstract—This study investigated the combined effect of cold 

rolling and heat treatment on the mechanical properties of Al-Ti 
alloy. Samples of the alloy are cast in metal mould to obtain 0.94-
2.19wt% mixes of titanium. These samples are grouped into 
untreated (as-cast) and those that are cold rolled to fifty percent 
reduction, homogenized at 5000C and soaked for one hour. The cold 
rolled and heat treated samples are normalized (RTn) and quench-
tempered (RTq-t) at 1000C. All these samples are subjected to tensile, 
micro-hardness and microstructural evaluation. Results show 
remarkable improvement in the mechanical properties of the cold 
rolled and heat treated samples compared to the as-cast. In particular, 
the RTq-t samples containing titanium in the range of 1.7-2.2% 
demonstrates improve tensile strength by 24.7%, yield strength, 28%, 
elastic modulus, 38.3% and micro-hardness, 20.5%. The Al3Ti phase 
being the most stable precipitate in the α-Al matrix appears to have 
been responsible for the significant improvement in the alloy’s 
mechanical properties. It is concluded that quench and temper heat 
treatment is an effective method of improving the strength-strain ratio 
of cold rolled Al-.0.9-2.2%Ti alloy.  

 
Keywords—Aluminum-titanium alloy, heat treatment, 

mechanical properties, precipitate. 

I. INTRODUCTION 
URE aluminum has low strength and cannot be readily use 
in applications where resistance to deformation and 

toughness are essential, hence, other relevant elements are 
usually added to enhance performance. This paper seeks to 
establish an efficient processing method for achieving 
significant improvement in the mechanical properties of 
aluminum-titanium alloy meant for structural application.  

The application of aluminum alloy as structural members at 
either high or moderate temperature requires microstructure 
containing fine, homogeneous and stable distribution of 
precipitates. The most stable intermetallic phase in Al-Ti-Ca 
system is the Al3Ti crystals with solution heat treatment time 
greater than 4 hours for effective solubility of titanium and 
calcium in the Al matrix solid solution [1]. Mechanical 
alloying and Ti content have been found to increase the 
hardness of AA7050 aluminum based alloy in both as-
extruded and heat treatment conditions [2]. Titanium in the 
alloy is found to be effective at retarding the coarsening 
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kinetics of the precipitates while the low levels of titanium 
substitution result in only modest hardness increases over the 
binary Al–0.06wt%Sc alloy [3]. This accounts for preference 
for high melting point intermetallic such as Al3Ti with a 
melting point of about 1350°C with a relatively low density, 
3.3g/cm3 [2]. Recently developed aluminum based alloys, 
especially with titanium, are becoming more useful for high 
temperature applications due to their excellent properties [4].  

The development of fine microstructure is another means of 
achieving improved mechanical characteristics of aluminum 
alloys. Reference [5] established that salt containing weight 
ratio of 22.2Ti:1B has the best refining effect on the purity of 
aluminum with the finest structure and the best mechanical 
properties. The refining effect of the salt increases with 
increasing Ti and B contents in the melt occasioned mainly by 
increase precipitation of heterogeneous nuclei of fine Al3Ti 
precipitates that are evenly dispersed in the melt. Grain 
refinement being one of the major techniques for property 
enhancement often plays important roles in determining the 
ultimate properties of aluminum alloy products. It improves 
tensile strength, plasticity, and reduces the tendency of hot 
tearing and porosity in castings [6]. Additional benefits of 
grain refinement include improve fluidity and a reduce 
tendency for shrinkage formation in casting [7]. On reduction 
of grain size, the morphology of the spaces available for pores 
is modified, resulting in an improved fatigue life for casting 
[8]. According to [9] this technique can be employed to halt 
incidents of mechanical properties impairments observed in 
plate products for structural application when a uniform as-
cast grain size is not achieved. The grain refinement of 
aluminum by titanium is due to the occurrence of a peritectic 
reaction at the aluminum-rich end of the aluminum-titanium 
phase diagram [10].  

In addition to the foregoing, several classical empirical 
studies have shown that the mechanical properties of 
aluminum alloys can be improved through the combination of 
deformation and the introduction of appropriate solute atom. 
This approach is employed in this study with a modification 
which consists in the introduction of selected forms of heat 
treatment combined with cold rolling and addition of varying 
amounts of titanium in aluminum. 

II. EXPERIMENTAL PROCEDURE 
The development of the material used for the study 

involved melting and diluting the as-received rod containing 
1XXX aluminum alloy to produce aluminum-titanium alloy 
samples having 0.94-2.2%Ti as shown in Table I.  
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consideration in structural computations. Hence, there should 
be a positive correlation between a material’s yield strength 
and its elastic modulus. 

 

 
Fig. 7 Elastic modulus of Al-0.94-2.2%Ti 

 
The as-cast samples demonstrate very low levels of stiffness 

at all titanium additions as shown in Fig. 7. Similar low elastic 
modulus values are exhibited by the normalized samples. This 
must have been occasioned by the dominance of clustered 
crystals of Al3Ti (Fig. 1 (c)) and coarsening of same in the 
normalized samples (Fig. 3 (f)). However, both the as-rolled 
and quench-tempered samples exhibit a relatively higher 
elastic modulus. This can be attributed to the presence of a 
plethora of dislocation network nodes in the cold rolled 
samples and fine crystals of Al3Ti dispersed homogeneously 
in quench-tempered samples.  

E. Micro Hardness 
Fig. 8 shows the extent of micro-hardness developed in the 

samples consequent upon the various treatments carried out on 
them. 

 

 
Fig. 8 Micro-hardness of Al-0.94-2.2%Ti 

 
Generally, hardness values are observed to increase with 

increase in Ti addition. However, both the as-rolled and 
quench-tempered samples demonstrate higher micro-hardness 
values in the range of 47-56HV compared with as-cast and 
normalized samples, 32-47HV. Specifically, the as-cast 
exhibits 34.1-46.9HV compared with 32.7-44.3HV of 
normalized sample due to subtle coalescence of crystals which 
conferred a softening effect on the samples. Work hardening 
of the material must have been responsible for relatively high 

micro-hardness values (47.5-55.4HV) exhibited by the cold 
rolled samples. In the case of quench-tempered samples, 
increase micro-hardness (50.2-56.5HV) with increase 
proportion of titanium results to more precipitation of TiB2 
precipitate which further hinders dislocations motion. TiB2 is 
particularly attractive reinforcing phase because it possesses 
many desirable properties, such as high hardness, low density, 
high melting temperature, high modulus, and high corrosion 
resistance [15]-[17]. 

IV. CONCLUSION 
From the results obtained in this study, it can be concluded 

that the combined effect of rolling, heat treatment with 
varying addition of alloying element impact significantly on 
the mechanical properties of Al-Ti alloy. Given that aluminum 
on its own is highly limited in engineering applications, 
scientifically proven alloying scheme is imperative for 
enhanced performance. In this study, the addition of titanium 
in the range of 1.7-2.2 per cent with subsequent deformation 
(rolling) and heat treatment (quenching and tempering) 
significantly enhanced the alloy mechanical properties such 
that UTS, yield, elastic strain and micro-hardness increase by 
24.7, 28, 38.3 and 20.5 per cent respectively.  

However, the normalized samples mechanical 
characteristics are impaired due to coarsening of the main 
reinforcing phase, Al3Ti coupled with a rather superfluous 
ductility which is above 47 per cent. High elongation 
characteristic in an engineering material meant for structural 
application is not desirable. 
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