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Combination of Different Classifiers for Cardiac
Arrhythmia Recognition

M. R. Homaeinezhad, E. Tavakkoli, M. Habibi, S. A. Atyabi, A. Ghaffari

Abstract—This paper describes a new supervised fusion (hybrid)
electrocardiogram (ECG) classification solution consisting of a new
QRS complex geometrical feature extraction as well as a new version
of the learning vector quantization (LVQ) classification algorithm
aimed for overcoming the stability-plasticity dilemma. Toward this
objective, after detection and delineation of the major events of ECG
signal via an appropriate algorithm, each QRS region and also its
corresponding discrete wavelet transform (DWT) are supposed as
virtual images and each of them is divided into eight polar sectors.
Then, the curve length of each excerpted segment is calculated
and is used as the element of the feature space. To increase the
robustness of the proposed classification algorithm versus noise,
artifacts and arrhythmic outliers, a fusion structure consisting of
five different classifiers namely as Support Vector Machine (SVM),
Modified Learning Vector Quantization (MLVQ) and three Multi
Layer Perceptron-Back Propagation (MLP–BP) neural networks with
different topologies were designed and implemented. The new pro-
posed algorithm was applied to all 48 MIT–BIH Arrhythmia Database
records (within–record analysis) and the discrimination power of the
classifier in isolation of different beat types of each record was
assessed and as the result, the average accuracy value Acc=98.51%
was obtained. Also, the proposed method was applied to 6 number
of arrhythmias (Normal, LBBB, RBBB, PVC, APB, PB) belonging
to 20 different records of the aforementioned database (between–
record analysis) and the average value of Acc=95.6% was achieved.
To evaluate performance quality of the new proposed hybrid learning
machine, the obtained results were compared with similar peer–
reviewed studies in this area.

Keywords—Feature Extraction, Curve Length Method, Support
Vector Machine, Learning Vector Quantization, Multi Layer Per-
ceptron, Fusion (Hybrid) Classification, Arrhythmia Classification,
Supervised Learning Machine.

I. INTRODUCTION

S IGNAL processing and data mining tools have been
developed to enhance the computational capabilities so

as to help clinicians in diagnosis and treatment. The ECG is a
representative signal containing information about the condi-
tion of the heart. The shape and size of the P–QRS–T cycles
and the time intervals between various peaks possess useful
information about the nature of disease afflicting the heart.
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However, the human observer cannot directly monitor these
subtle details. Besides, since biosignals are highly subjective,
the symptoms may appear at random in the timescale. The
presence of cardiac abnormalities is generally reflected in the
shape of ECG waveform and heart rate. Therefore, study of
ECG pattern and heart rate variability has to be carried out over
extended periods of time, [1]. If according to any happening,
the electro–mechanical function of a region of myocytes
fails, the corresponding abnormal effects appear in the ECG
which is an important part of the preliminary evaluation of a
patient suspected to have a heart–related problem. Generally,
each heart–beat type classification algorithm consists of four
sequential computational levels: a) pre–processing stage, b)
detection–delineation stage, c) appropriate signal segmentation
and feature selection–computation stage and d) selection and
design of an efficient recognition algorithm as well as feature
space dimension enhancement. Based on a comprehensive
literature survey among many documented works, it is seen
that several features and extraction (selection) methods have
been created and implemented by authors. For example, short
time Fourier transform (STFT) [7], fast Fourier transform
(FFT) [8–9], original ECG signal [10], preprocessed ECG
signal via appropriately defined and implemented wavelet
transform [11], statistical moments [12], nonlinear transfor-
mations such as Liapunov exponents and fractals [13–15],
higher order spectral methods [16–17], power spectral density
(PSD) [18–19], Hilbert transform (HT) [20], have been used as
appropriate sources for feature extraction. In order to extract
feature(s) from a selected source, various methodologies and
techniques have been introduced. To meet this end, the first
step is segmentation and excerption of specific parts of the
preprocessed trend (for example, in the area of the heart
arrhythmia classification, ventricular depolarization regions
are the most used segments). Afterwards, appropriate and
efficient features can be calculated from excerpted segments
via a useful method. Up to now, various techniques have
been proposed for the computation of feature(s). For example
mean, standard deviation, maximum value to minimum value
ratio, maximum–minimum slopes, summation of point to point
difference, area, duration of events, correlation coefficient with
a pre-defined waveform template, statistical moments of the
auto (cross) correlation functions with a reference waveform
[21], mutual information [22–23], bi–spectrum [24] may be
used as an instrument for calculation of features. After gen-
eration of the feature source, segmentation, feature selection
and extraction (calculation), the resulted feature vectors should
be divided into two groups “train” and “test” for tuning of
an appropriate classifier such as a neural network [25–28],
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support vector machine [29], pnn [30], knn [31], fuzzy network
[32–35] or ANFIS, [36–37].

Organization of This Study. The general block diagram
of the proposed heart arrhythmia recognition–classification
algorithm including two train and test stages is shown in
Fig. 1. According to this figure, first, the events of the ECG
signal are detected and delineated using a robust wavelet-
based algorithm [38–39]. Then, each QRS region and also its
corresponding DWT are supposed as virtual images and each
of them is divided into eight polar sectors. Next, the curve
length of each excerpted segment is calculated and is used
as the element of the feature space for the aim of increasing
the robustness of the proposed classification algorithm versus
noise, artifacts and arrhythmic outliers, a fusion structure
consisting of five different classifiers namely as SVM, MLVQ
and three MLP–BP neural networks with different topologies
were designed and implemented. The new proposed algorithm
was applied to all 48 records of the MITDB and the average
value of Acc=98.18% was obtained. Also, the proposed hybrid
classifier was applied to 6 number of arrhythmias (Normal,
left bundle branch block–LBBB, right bundle branch block–
RBBB, premature ventricular contraction–PVC, atrial prema-
ture beat–APB, paced beat–PB) belonging to 20 number of the
MITDB and the average value of Acc=95.6% was achieved.
To compare the outcomes of this study with previous peer–
reviewed studies and to show the generalization power of
the proposed classification algorithm, 500 samples have been
selected for training and 40,438 samples for testing groups.
Finally, some comparisons between existing peer–reviewed
studies and the presented work aimed for validating the
proposed Neuro–SVM–MLVQ learning machine and showing
its merit were conducted.

II. MATERIALS AND METHODS

A. The Discrete Wavelet Transform (DWT)
Generally, it can be stated that the wavelet transform is

a quasi–convolution of the hypothetical signal x(t) and the
wavelet function (mother wavelet) ψ(t) with the dilation
parameter a and translation parameter b, as the following
integration

Wax(b) =
1√
a

∫ +∞

−∞
x(t)ψ

(
(t− b)/a

)
dt, a > 0 (1)

The parameter a can be used to adjust the wideness of the
basis function and therefore the transform can be adjusted in
several temporal resolutions. In Eq. 1, for dilation parameter
“a” and the translation parameter “b”, the values a = qk

and b = qklT can be used in which q is the discretization
parameter, l is a positive constant, k is the discrete scale power
and T is the sampling period. By substituting the new values
of the parameters “a” and “b” into the wavelet function , the
following result is obtained

ψk,l(t) = q−k/2ψ(q−kt− lT ); k, l ∈ Z+ (2)

The scale index k determines the width of wavelet function,
while the parameter l provides translation of the wavelet
function.

Fig. 1. The general block diagram of an ECG beat type recognition algorithm
supplied with the virtual image–based geometrical features

If the scale factor a and the translation parameter b are
chosen as q = 2 i.e., a = 2k and b = 2kl, the dyadic wavelet
with the following basis function will be resulted [40],

ψk,l(t) = 2−k/2ψ(2−kt− l); k, l ∈ Z+ (3)

To implement the à trous wavelet transform algorithm, filters
H(z) and G(z) should be used according to the block diagram
represented in Fig. 2–a, [40]. According to this block diagram,
each smoothing function (SMF) is obtained by sequential
low–pass filtering (convolving with G(z) filters), while after
high–pass filtering of a SMF (convolving with H(z) filters),
the corresponding DWT at appropriate scale is generated.
In order to decompose the input signal x(t) into different
frequency passbands, according to the block diagram of Fig.
2–b, sequential high–pass low– pass filtering including down–
sampling should be implemented. The filter outputs xH(t) and
xL(t) can be obtained by convolving the input signal x(t) with
corresponding high–pass and low-pass finite–duration impulse
responses (FIRs) and contributing the down–sampling as

⎧
⎪⎨

⎪⎩

xL(t) =
∑k=+∞

k=−∞ g(k) x(2t− k)

xH(t) =
∑k=+∞

k=−∞ h(k) x(2t− k)

(4)

t = 0, 1, . . . , N − 1

On the other hand, to reconstruct the transformed signal, the
obtained signals xH(t) and xL(t) should first be up–sampled
by following simple operation
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⎧
⎪⎨

⎪⎩

x∗L(2t) = xL(t), x
∗
L(2t+ 1) = 0

x∗H(t) = xH(t), x∗H(2t+ 1) = 0

(5)

t = 0, 1, . . . , N − 1

If the FIR lengths of the H(z) and G(z) filters are repre-
sented by LH and LG , respectively, then the reconstructing
high–pass and low-pass filters are obtained as

⎧
⎪⎨

⎪⎩

g∗(t) = g(LG − 1− t)

h∗(t) = H(LH − 1− t)

(6)

Then, the reconstructed signal xR(t) is obtained by su-
perposition of the up– sampled signals convolved with their
appropriately flipped FIR filters as follow

xR(t) =
k=+∞∑

k=−∞
h∗(k)x∗H(t− k) +

k=+∞∑

k=−∞
g∗(k)x∗G(t− k) (7)

For a prototype wavelet ψ(t) with the following quadratic
spline Fourier transform,

Ψ(Ω) = jΩ

(
sin(Ω/4)

Ω/4

)4

(8)

the transfer functions H(z) and G(z) can be obtained from
the following equation

⎧
⎪⎨

⎪⎩

H(ejω) = ejω/2
(
cos(ω/2)

)3

G(ejω) = 4jejω/2
(
sin(ω/2)

)
(9)

and therefore,

⎧
⎪⎨

⎪⎩

h[n] = (1/8)δ[n+ 2] + 3δ[n+ 1] + 3δ[n] + δ[n− 1]

g[n] = 2(δ[n+ 1] + δ[n])

(10)
After numerous empirical investigations, it was concluded

that for frequency contents of up to 50 Hz, à trous algorithm
can be used in different sampling frequencies. Therefore, one
of the most prominent advantages of à trous algorithm is
the approximate independency of its results from sampling
frequency. This is because of the main frequency contents of
the ECG signal concentrate on the range less than 40 Hz [38–
39]. After examination of various databases with different sam-
pling frequencies (range between 136 to 10 kHz), it has been
concluded that in low sampling frequencies (less than 1000
Hz), scales 2λ(λ = 1, 2, . . . , 5) are usable while for sampling
frequencies more than 1000 Hz, scales 2λ(λ = 1, 2, . . . , 8)
contain profitable information that can be used for the purpose
of wave detection, delineation and classification.
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Fig. 2. FIR filter–bank implementation to generate discrete wavelet dyadic
scales and smoothing functions transform based on à trous algorithm. (a)
one–step generation of detail coefficient scales and reconstruction of the input
signal, (b) four–step implementation of DWT for extraction of dyadic scales

III. MODIFIED LEARNING VECTOR QUANTIZATION
ALGORITHM

1) Conventional LVQ: The conventional LVQ algorithm
is a learning machine which requires no hidden layer and
possesses a m-neuron and a n-neuron input and output layers,
respectively. The number of input layer neurons is equal to
feature space dimension while the number of output layer
neurons is equal to the number of classes forming the feature
space. Each neuron of the input layer is attached to all neurons
of the output layer via a connection and a scalar weight is
associated with each connection (Fig. 3). The weight between
node i of the input layer and node j of the output layer is
indicated by wij . According to the LVQ algorithm, to fulfill
the train stage, if the k-th input feature vector xk is applied
to the network, then an appropriately defined distance of the
feature vector with the weights terminating to the j-th output
layer neuron is calculated as follows

⎧
⎪⎨

⎪⎩

D(j, k) = f(xk, wj)

wj = {wij | i = 1, 2, . . . ,m}
(11)

Where f(xi, xj) is a scalar distance function. For instance,
f(xi, xj) can be defined as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(a) f(xi, xj) = (xi − xj)
TΣ(xi − xj)

(b) f(xi, xj) =
(
Σp

k=1

(
xi(k)− xj(k)

)r)1/r

(c) f(xi, xj) =
1
p Σp

k=1abs
(
xi(k)− xj(k)

)

(12)

Where the first term of the Eq. 12 called generalized dis-
tance and for the weight matrix Σ = I the famous Euclidean
norm will be achieved. While the second term of the Eq. 12 is
called Minkovski distance of degree r and for r = 2, again the
Euclidean distance appears. The third term of Eq. 12, is called
the City Block distance and is used in many pattern recognition
cases. If DT (k) indicates an array including distances of the
feature vector xk from all output layer neurons, then, the label
of this feature vector is predicted by the following criterion

δ̂(k) = δ(min {DT (k)})

DT (k) = {D(j, k) | j = 1, 2, . . . , n}
(13)
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If the predicted label δ̂(k) is true, the minimum distance of
the array DT (k) is decreased by learning rate proportionally.
On the other hand, if δ̂(k) is false, then the minimum distance
of the array DT (k) is increased by the same learning rate as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
(
DT (k)

)
= min

(
DT (k)

) − ηmin
(
DT (k)

)

if δ̂(k) is True

min
(
DT (k)

)
= min

(
DT (k)

)
+ ηmin

(
DT (k)

)

if δ̂(k) is False

(14)

2) Modified Learning Vector Quantization (MLVQ): Sup-
pose that wij indicates an array including lj scalar weights
and the indices i , j are pointers to the i–th neuron in the input
and j–th neuron in the output layers, respectively. If each array
wij is put into a matrix, the weight matrix (Wj)p×lj will be
resulted. In order to formulate the MLVQ algorithm, first it is
noted that j = 1, 2, . . . , Nc shows the class index, Nc is the
number of classes and p is the dimension of the feature space.
If each column of the weight matrix Wj is indicated by C(j)

k

(k = 1, 2, . . . , lj) and fn is a train feature vector, then the
distance between fn and all C(j)

k arrays can be obtained as

d
(j)
kn = (C

(j)
k − fn)

T Σ(C
(j)
k − fn) (15)

Where, Σ is a weighting matrix and for Σ = I , the quadratic
form is obtained. In this case, the array D

(j)
n including all

distances between vector fn and C
(j)
k s is created. So, the

predicted label δ̂ of feature vector fn can be determined as
follow

D(j)
n =

{
d
(j)
1n , . . . , d

(j)
ljn

}
(16)

δ̂ = δ
{
min

{
(D(1)

n ),min(D(2)
n ), . . . ,min(D(NC)

n )
}}

(17)

Where δ̂(0) is the associated true label operator of the input
argument. If the predicted label is true, then the column C(δ̂)

q

is decreased by learning rate η while if the predicted label is
not true, that column is increased by the same learning rate
and can be written as

d(δ̂)qn = Argmin(d
(δ̂)
1n , . . . , d

(δ̂)

δ̂n
) (18)

⎧
⎪⎨

⎪⎩

C
(δ̂)
q = C

(δ̂)
q − η d

(δ̂)
qn if δ̂(k) is True

C
(δ̂)
q = C

(δ̂)
q + η d

(δ̂)
qn if δ̂(k) is False

(19)

As an interpretation for Eqs. 15 to 19, by inserting feature
vector fn, all pre–defined distances between this vector and all
weight vectors between input and output layers are calculated
and as the result, the fn is considered to belong to the
class including minimum distance between all weights and
all output neurons. If this classification is true, the minimum
distance is decreased by learning rate η while if the outcome
of the classification is false, the minimum distance will be

increased by η. By this learning strategy, desirable results for
the selection of the best weight vector and error increasing
rate versus epoch number will be attained. The accuracy of
the MLVQ network depends upon the following parameters:

• The Number of Train Epochs. Generally, more epoch
number results better accuracy and the epochs can be consid-
ered to have inverse proportionality with number of weights
lj , i.e., the network with larger lj will requires fewer epochs
for reaching an acceptable accuracy. Although, a trade-off
between the number of lj and epochs number can be found
for covering the stability-plasticity dilemma.

• The Number of Weights Assigned to Each Connection.
In the conventional LVQ method if the number of train data
is a large value, the weights lying in connections should adapt
themselves with several data types and probable outliers and
therefore, a weak performance might be expected. In other
words, if by entering a new feature vector to the network,
the training strategy pushes the incorporated weights toward
forgetting the previously learned information, the stability-
plasticity dilemma will appear. To solve this problem, more
weights can be assigned to each connection. To this end, one
way is to increase the number of the output layer neurons
and considering more than one node for each class. Although,
by this modification the overall accuracy of the network may
increase, however, a malformed topology with high computa-
tional burden will be achieved. As the second way, instead
of assigning a scalar weight to each connection, a vector
including some weights is considered between each input-
output neurons connection.

• As final comment for the MLVQ method, if the a
priori probabilities associated with the feature space classes
are not equal, in regulation of the weight vector ending to the
class with maximum probability, the corresponding neuron of
this class will win predominatingly and correspondingly the
winning Euclidean norm is permanently decreased. Thus, after
passing a large number of train data from the network, in the
test stage, inputted features will falsely being guided to this
node and consequently the cumulative accuracy is corrupted.
To solve this problem, a modified learning rate is proposed as
follow

ηm =

⎧
⎪⎨

⎪⎩

η ML

M (1− Mm

M ) if δ̂(k) is True

η Mm

M (1− ML

M ) if δ̂(k) is False
(20)

Where, M , Mm and ML are the data numbers of the train,
the largest and the smallest classes, respectively.

A. Radial Basis Function based Support Vector Machine
(RBF–SVM) Classifier

In this work, RBF–SVM is implemented as arrhythmias
classification method. According to Vapnik formulation [41],
if couple (xi, δ(xi)) (in which δ(xi)) is class function, i =
1, 2, . . . , N ) describing data elements and their corresponding
categories which are linearly separable in the feature space,
then

f(x) = wTφ(x) + b (21)
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Fig. 3. An mn MLVQ network topology for a m–dimensionality feature
space and n–type categories

where w is weight vector, b is bias term and the condition
f(xi)δ(xi) > 0 holds. On the other hand, if train data is
not linearly separable in the feature space to find a suitable
separating hyper plane, the following constrained optimization
problem should be solved

CoF (w, ζ) = 1
2 ||w||2 + C

∑N
j=1 ζi

s.t. δ(xi) (w
Tφ(xi) + b) ≥ 1− ζi , i = 1, 2, . . . , N

(22)
Where CoF is a cost function. Upon solving the above

constrained optimization problem, separating hyper plane will
be obtained. In the above equation, C is called regularization
parameter which its value generates a trade- off between hyper
plane margin and classification error. ζi is stack parameter
corresponds to xi. Introducing Lagrange multipliers as

CoF (α) =
∑N

j=1 αi − 1
2

∑N
i=1

∑N
j=1

(
αiαjδ(xi)δ(xj)

K(xi, xj)
)
s.t.

∑N
j=1 αjδ(xj) = 0, 0 ≤ αj ≤ C

(23)
Where K(xi, xj) is kernel function obtained from following

equation

K(xi, xj) = φT (xi)φ(xi) (24)

for example, K(xi, xj) = (xTi xj+1)λ is polynomial kernel
of degree λ and K(xi, xj) = exp(−γ||xi − xj ||2) is RBF
kernel. In the Eq. 23, if αi > 0 , xi s are called support vectors.
In specific cases, if αi = 0 , xi s are bounded support vectors
and if 0 ≤ αi ≤ C , xi s will be called unbounded support
vectors. To solve the constrained Eq. 23, several approaches
can be found in the literature, [41]. After solving Eq. 23, the
decision function f(x) is obtained as follows

⎧
⎪⎨

⎪⎩

f(x) =
∑

i αiδ(xi)K(xi, x) + b

w =
∑

j δ(xj)αjφ(xj)

(25)

and margin Λ is obtained as

Λ =
1

||w||
1

√
ΣiΣjδ(xi)δ(xj)αiαjK(xi, xj)

(26)
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Fig. 4. Determination of the time center of a detected QRS complex using
excerpted DWT scale 24

More details about fundamental concepts of SVM can be
found in [41].

IV. QRS GEOMETRICAL FEATURES EXTRACTION

A. ECG Events Detection and Delineation

In this step, QRS complexes are detected and delineated.
Today reliable QRS detectors based on Hilbert [42–43] and
Wavelet [38–39] transforms can be found in literature. In
this study, an ECG detection–delineation method with the
sensitivity and positive predictivity Se = 99.95% and P+ =
99.94% and the average maximum delineation error of 6.1
msec, 4.1 msec and 6.5 msec for P–wave, QRS complex and
T–wave, respectively is implemented [38]. By application of
this method, detecting the major characteristic locations of
each QRS complex i.e., fiducial, R and J locations, becomes
possible.

B. Detected QRS Complex Geometrical Features Extraction
[44]

In order to compute features from the detected QRS com-
plexes either normal or arrhythmic via the proposed method,
first a reliable time center should be obtained for each QRS
complex. To find this point, the absolute maximum and the
absolute minimum indices of the excerpted DWT dyadic scale
24 using the onset–offset locations of the corresponding QRS
complex, are determined. It should be noted that according to
comprehensive studies fulfilled in this research, the best time
center of each detected QRS complex is the mean of zero–
crossing locations of the excerpted DWT (see Fig. 4).

To make a virtual close–up from each detected QRS com-
plex, a rectangle is built on the complex with following
specifications:

• The left–side mid–span (longitudinal direction) of the
rectangle is the fiducial location of the QRS complex.

• The maximum absolute vertical distance of the complex
from the fiducial point is the half of the rectangle height.

• The center of rectangle is the time-center of the QRS
complex.

• The right-hand abscissa of the rectangle is the distance
between QRS time center and its J–location.
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Afterwards, Each QRS region and also its corresponding
DWT are supposed as virtual images and each of them is
divided into eight polar sectors. Next, the curve length of
each excerpted segment is calculated and is used as element of
the feature space, (therefore, for each detected QRS complex,
16 features are computed). The quantity curve–length of a
hypothetical time series x(t) in a window with length WL

samples can be estimated as

MCL ≈ 1

Fs

k+WL−1∑

t=k

√

1 +
[(
x(t+ 1)− x(t)

)
Fs

]2
(27)

Where, Fs is sampling frequency of the time series x(t).
The curve length is suitable to measure the duration of the
signal x(t) events, either being strong or weak. Generally, the
MCL measure indicates the extent of flatness (smoothness
or impulsive peaks) of samples in the analysis window. This
measure allows the detection of sharp ascending/descending
regimes occurred in the excerpted segment [39]. A generic
example of a holter ECG and its corresponding 24 DWT
dyadic scale with the virtual images of the complexes provided
for feature extraction as well as two quantities obtained from
the RR–tachogram are shown in Fig. 5.

V. DESIGN OF THE HYBRID (FUSION)
NEURO-SVM-MLVQ CLASSIFICATION ALGORITHM

Several differences exists in the structure and operating
mechanisms of diverse classification algorithms such as Arti-
ficial Neural Network (ANN), MLVQ and SVM. Reasonably,
achieving exactly similar result from them for given common
train and test feature spaces, cant be expected. Assessments
confirm that in the arrhythmia classification of the MITDB
beat–types, if two classifiers belonging to different recogni-
tion families are appropriately trained, a uniform difference
between their operating characteristics versus records cannot
be found. In other words, the performance characteristics of
two different classifiers show recognition diversity opposed to
changing the record number. For instance, suppose that a SVM
and a MLP–BP are trained with record 105 of the MITDB. In
this case the SVM and the MLP–BP accuracies are calculated
as 97.02% and 94.32%, respectively. However, by using of
record 221 of the MITDB, the obtained accuracies are 97.97%
and 98.17%, respectively indicating the existence of diversity
between the SVM and the MLP classifiers. In order to increase
the total accuracy of the proposed classification algorithm,
one way is to synthesize the output of several classification
algorithms with different inherent structures to achieve the
best possible accuracy leading to higher robustness against
uncertainties and probable arrhythmia or outliers. In this study,
to build a fusion (hybrid) classification scheme, five types
of different classification methods namely as SVM, MLVQ
and three MLP-BP networks with different topologies were
properly regulated using the train dataset. The specifications
of each classification algorithm are described below.

• SVM Classifier. According to section B.3, each SVM
includes two parameters C and γ that should be tuned properly
to achieve satisfactory accuracies. In this study the best
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Fig. 5. Extraction of the geometrical features from a delineated QRS complex
via segmentation of each complex into 8 polar sectors by generating of a
virtual image from the complex. (a) original ECG, (b) DWT of the original
ECG and (c) RR–interval

choices for the parameters C and γ were concluded to be 10
and 0.000001, respectively. The predicted labels of the input
feature vector were considered as the output of this classifier
in the fusion structure.

• MLVQ Classifier. As mentioned previously in section
B.2, this classifier doesnt require any hidden layer. For this
topology, learning rate (LR), number of weights assigned to
each connection and maximum epoch number (MEN) were
chosen 0.01, 4 and 3000, respectively.

• MLP*-BP1. The first MLP–BP classifier includes one
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Fig. 6. Design of the fusion classification algorithm consisting of five particle
classifiers

hidden layer with number of hidden layer neurons (NHLN)
equal to 17, tangent sigmoid and the logarithmic sigmoid as
the activation functions of the hidden layer and output layer,
respectively. Also, for this ANN, MEN is chosen to be 200.

• MLP–BP2. This classifier possesses one hidden layer
with NHLN=15. The tangent sigmoid was chosen as the acti-
vation function for both hidden and output layers, respectively.
For this ANN, MEN = 300 was assigned.

• MLP–BP3. The third ANN-type classifier has one hidden
layer with NHLN=18 and logarithmic sigmoid for both the
hidden and the output layers. In this case MEN=1000 was
chosen.

It should be noticed that several parameters such as types
of activation functions and several values for NHLN, MEN
were examined and were altered based on trying–and–error
method and suitable ranges and types were chosen for these
parameters. From each classifier embedded into the fusion
structure, following outputs are processed

• Predicted labels for train and test feature space.
• Accuracy of the classifier The predicted labels of each par-

ticle classification algorithm are used for creation of a hybrid
classifier consisting of a MLVQ, a SVM and three MLP–BP
types ANN classifiers. To build a fusion classification, in this
study, the predicted label of each classifier for the k-th test
input is put in the vote array G(k) as follows

G(k) = {p(i, k) | i = 1, 2, . . . , 5} (28)

Where p(i, k) is the label predicted by the i- th classifier
of the fusion algorithm for the k-th test input. To estimate the
label of test input, the value with the most iteration in G(k)
is selected as a label of test input (see Fig 6).

To evaluate performance of the proposed feature extraction
method and the fusion classification algorithm, the following
steps are pursued

• Evaluation of the discrimination power of the selected
features.

• Design of the particle classifiers and their implementation
to all MITDB records.

• Design of the fusion classifier for each MITDB record and
comparing the obtained results with each particle classifier.

• Selection of some rhythms from the MITDB records and
designing of the particle and fusion classifiers.

• Comparison of the final obtained results with the previous
similar peer-reviewed studies.

TABLE I
THE DIFFERENT RHYTHM TYPES AND THE CORRESPONDING EQUIVALENT

ASCII CODE INTEGER NUMBERS

Numeric Numeric
Code Rhythm Code Rhythm

33 Ventricular Flutter 83 Supraventricular
wave Premature Ectopic Beat

34 Comment Annotation 86 Premature Ventricular
Contraction

43 Rhythm Change 91 Start of Ventricular
Flutter/Fibrillation

47 Paced Beat 93 End of Ventricular
Flutter/Fibrillation

65 Atrial Premature 97 Aberrated Atrial
Beat Premature Beat

69 Ventricular Escape 101 Atrial Escape Beat
Beat

70 Fusion of Ventricular 102 Fusion of Paced
and Normal Beat and Normal Beat

74 Nodal (junctional) 106 Nodal (junctional)
premature Beat Escape Beat

76 Left Bundle Branch 120 Non-Conducted
Block Beat P-wave (Blocked APC)

78 Normal Beat 124 Isolated QRS-Like
Artifact

81 Unclassifiable 126 Change in Signal
Beat Quality

82 Right Bundle Branch
Block Beat

VI. VALIDATION OF HYBRID NEURO-SVM-MLVQ
CLASSIFICATION ALGORITHM

In table 1, the numeric codes of the 23 MITDB rhythms
(beat–types) and their corresponding annotations are illus-
trated. After implementation of the MLVQ, SVM and three
MLP–BP neural network classifiers and the corresponding
fusion classifier to all 48 MITDB records and calculation of the
accuracy, the obtained results are shown in table 2. According
to this table, the fusion classifier yielded the average accuracy
of Acc=98.51% given all data and all rhythms of the MITDB
records (within–record analysis). As it can be seen in this table,
the overall performance quality associated with the fusion
classification algorithm is superior rather than the structural
classifiers embedded in the body of the hybrid algorithm. It
should be noted that although in some records of the MITDB,
one or more particle classifiers might have better performance
rather that the fusion classifier, but this behavior doesnt
continue uniformly for all records and hence the superiority
of the fusion scheme is justified.

In order to be able for comparing the obtained results of
this study with Melgani–Bazi [29] utilizing exactly the same
train and test databases is mandatory. To this end, records
100, 102, 104, 105, 106, 107, 118, 119, 200, 201, 202, 203,
205, 208, 209, 212, 213, 214, 215 and 217 are selected from
the MITDB records and the rhythms Normal, LBBB, RBBB,
PVC, APB and PB are extracted according to the MITDB
annotation files. In table 3, the name of the MITDB records
as well as the selected beat–types and their corresponding beat
numbers are presented.

A. Error-Rate Analysis

It should be noted that if some diversely designed classi-
fication algorithms show error rate diversity relative to each
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TABLE II
PERFORMANCE ILLUSTRATION OF THE PARTICLE CLASSIFIERS SVM, MLVQ, AND THREE MLP-BP NETWORKS AS WELL AS THE CORRESPONDING

PERFORMANCE OF THE FUSION CLASSIFICATION ALGORITHM

MIT # of # of SVM MLVQ MLP–BP1 MLP–BP2 MLP–BP3 Final Vote
Records Beats classes

100 2274 2 100 99.89 99.22 98.67 99.89 100
101 1874 3 99.86 100 99.73 99.73 99.86 99.86
102 2192 5 98.51 99.54 94.62 96.22 98.85 99.54
103 2091 2 99.76 100 99.88 100 99.76 100
104 2311 6 91.63 91.41 95.32 95 92.17 95.65
105 2691 5 97.01 97.86 94.31 94.03 97.85 97.67
106 2098 4 96.29 95.94 96.14 98.44 96.65 98.74
107 2140 2 100 100 100 99.88 100 100
108 1824 6 98.20 98.89 95.30 97.37 98.34 98.93
109 2535 2 100 100 99.30 98.51 100 100
111 2133 2 99.64 100 99.76 100 99.88 100
112 2550 2 99.60 100 99.60 99.60 99.90 99.90
113 1796 2 100 100 99.86 100 100 100
114 1890 5 99.06 99.73 99.20 99.33 99.33 99.45
115 1962 2 99.61 100 99.74 99.48 99.87 99.74
116 2421 3 99.48 99.86 99.48 99.48 99.38 99.48
117 1539 1 100 100 100 100 100 100
118 2301 5 98.25 98.36 96.72 92.14 98.36 98.87
119 2094 4 97.96 99.28 99.88 100 98.08 99.88
121 1876 2 100 100 99.46 99.46 100 99.46
122 2479 1 100 100 100 100 100 100
123 1519 1 100 100 100 100 100 100
124 1634 6 95.21 95.67 96.91 96.45 95.91 97.11
200 2792 5 93.44 93.44 95.32 95.59 93.80 95.95
201 2039 8 92.45 91.71 90.11 96.04 92.71 97.52
202 2146 5 97.65 98.36 95.66 95.68 97.89 98.43
203 3107 6 95.23 96.36 90.46 92.02 95.72 97.55
205 2672 4 98.96 99.25 99.15 98.96 98.96 99.25
207 2385 10 95.66 94.58 92.07 96.51 95.88 96.88
208 3040 6 96.94 93.54 93.64 97.44 96.04 97.02
209 3052 5 97.53 97.7 87.83 93.5 98.11 98.73
210 2685 6 97.19 97.29 95.13 96.08 97.85 98.66
212 2763 3 98.36 98.91 94.37 96.07 98.73 98.91
213 3294 5 92.46 94.97 96.11 94.79 92.38 95.58
214 2297 5 98.57 99.45 95.73 99.01 99.23 99.23
215 3400 4 99.18 99.48 93.57 92.25 99.34 99.77
217 2280 6 85.57 86.66 95.81 96.76 85.35 97.13
219 2312 6 97.39 97.71 98.69 98.91 97.28 98.11
220 2069 4 99.75 98.54 98.30 96.36 100 99.27
221 2462 4 97.96 98.78 98.16 83.51 98.07 99.08
222 2634 5 86.47 85.33 87.04 86.85 85.9 87.04
223 2643 7 95.05 92.49 98.09 97.71 95.63 97.85
228 2141 5 96.47 95.53 76.49 97.64 97.18 96.59
230 2466 2 100 99.8 99.89 100 100 100
231 2011 4 97.75 99. 34 99.34 99.12 98.12 99.25
232 1816 3 96.27 94.89 97.23 96.82 96.96 97.37
233 3152 5 97.29 98.57 85.12 98.96 98.73 99.36
234 2764 3 99.72 99.82 99.27 99.63 99.55 99.91

Total # of Records 48 Total # of Beats 112646 Average Accuracy (%) 98.51

other for a given common database, then the utilization of
them in a vote-based fusion classification structure is justified.
In Fig. 7, the error rate diversities of structural classifiers
including SVM, MLVQ, and three MLP–BP networks and also
the proposed hybrid classifier for each class are demonstrated.
In table 4 and table 5, result of Melgani–Bazi [29] and
result of this study are presented, respectively. In table 6, the
performance of the fusion classification algorithm has been
described by the obtained confusion matrix. For instance, the
third row of this table shows that 37, 1, 6, 1 and 2 beat numbers
were falsely classified into the N, RBBB, PVC, APB and
PB categories, respectively. In this way the number of fusion
classifier false negative (FN) detections for the Normal class

equals to 47. On the other hand, for instance, the third column
of this table illustrates that 21, 0, 5, 0 and 2 beat numbers from
the Normal, RBBB, PVC, APB and PB categories were falsely
classified as LBBB class, i.e., the number of fusion classifier
false positive (FP) detections for the LBBB class equals to 28.

VII. ARRHYTHMIA CLASSIFICATION PERFORMANCE
COMPARISON WITH OTHER WORKS

In the final step, in addition to comparison the result of this
study with Melgani–Bazi [29] (previous section), the method
is assessed relative to other high–performance recent works
in order to show the marginal performance improvement of
the proposed arrhythmia hybrid classification algorithm. The
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TABLE III
THE NAME OF SELECTED MITDB RECORDS WITH THEIR RHYTHM TYPES CONTENTS FOR THE AIM OF PERFORMANCE EVALUATION AND COMPARISON

WITH OTHER STUDIES

Normal LBBB RBBB PVC APB PB
record train test train test train test train test train test train test

100 11 1833 0 0 0 0 0 0 5 12 0 0
102 0 0 0 0 0 0 0 0 0 0 14 1954
104 0 0 0 0 0 0 0 0 0 0 10 1329
105 13 2069 0 0 0 0 1 35 0 0 0 0
106 6 1233 0 0 0 0 12 467 0 0 0 0
107 0 0 0 0 0 0 1 51 0 0 15 2003
118 0 0 0 0 27 2029 0 0 15 36 0 0
119 8 1263 0 0 0 0 10 398 0 0 0 0
200 9 1427 0 0 0 0 19 747 5 11 0 0
201 8 1330 0 0 0 0 4 175 5 11 0 0
202 11 1688 0 0 0 0 0 0 5 13 0 0
203 14 2071 0 0 0 0 10 398 0 0 0 0
205 14 2106 0 0 0 0 2 62 0 0 0 0
208 8 1298 0 0 0 0 22 896 0 0 0 0
209 14 2147 0 0 0 0 0 0 61 146 0 0
212 5 755 0 0 23 1710 0 0 0 0 0 0
213 13 2163 0 0 0 0 5 195 4 9 0 0
214 0 0 50 1751 0 0 6 227 0 0 0 0
215 16 2617 0 0 0 0 4 145 0 0 0 0
217 0 0 0 0 0 0 4 143 0 0 11 1485

Total 150 24000 50 1751 50 3739 100 3939 100 238 50 6771

TABLE IV
RESULT OF THE STUDY CONDUCTED BY MELGANI–BAZI [29]

Accuracy for each class (%)
Classifier Normal LBBB RBBB PVC APB PB Total Accuracy (%)

SVM-linear 81.42 72.58 82.53 74.84 80.25 81.79 80.55
SVM-poly 85.74 89.94 92.03 84.48 83.19 79.11 85.25
SVM-rbf 88.69 87.49 95.98 81.48 87.39 83.47 87.76

RBF 85.17 81.95 75.66 88.16 86.55 74.95 82.74
KNN 81.18 94.8 95.29 76.38 62.18 74.36 81.36

PCA-SVM 86.78 92.63 93.31 83.62 89.07 88.11 87.57
PCA-RBF 84.79 79.15 78.95 92.2 85.29 77.68 83.54
PCA-KNN 86.71 94.63 92.35 81.13 73.1 69.08 84
PSO-SVM 89.12 94.8 95.31 89.97 92.85 91.98 90.52

TABLE V
RESULTS OBTAINED FROM SEVERAL CLASSIFICATION ALGORITHMS IMPLEMENTED IN THIS STUDY INCLUDING SVM–RBF, MLP–BP, MLVQ AND THE

NEURO–SVM–MLVQ CLASSIFIERS.
Accuracy for each class (%)

Classifier Normal LBBB RBBB PVC APB PB Total Accuracy (%)
SVM-RBF 95.63 93.6 94.57 85.94 56.3 87.74 92.95
MLP-BP1 90.52 96.63 92.67 83.78 74.79 89.84 90.12
MLP-BP2 92.2 96.8 87.3 82.94 74.37 89.87 90.55
MLP-BP3 90.73 96.74 89.89 81.24 80.67 93.8 90.44

MLVQ 93.06 92.23 95.03 69.38 67.65 87.7 89.85
Fusion (Neuro-SVM-MLVQ) 96.97 97.32 95.45 88.6 83.19 94.83 95.6

TABLE VI
PERFORMANCE EVALUATION OF THE HYBRID NEURO-SVM-MLVQ

CLASSIFICATION ALGORITHM FOR THE SELECTED MITDB RECORDS THE
CONFUSION MATRIX

Normal LBBB RBBB PVC APB PB
Normal 23273 21 62 299 205 140
LBBB 37 1704 1 6 1 2
RBBB 59 0 3569 28 24 59
PVC 101 5 39 3490 288 16
APB 19 0 1 20 198 0
PB 53 2 38 242 15 6421

result of comparison of the proposed method and other works
is shown in table 7.

VIII. CONCLUSION

In this study, a new supervised heart arrhythmia hybrid
(fusion) classification algorithm based on a new QRS complex
geometrical features extraction technique as well as an appro-
priate choice from each beat RR–tachogram was described.
In the proposed method, first, the events of the ECG signal
were detected and delineated using a robust wavelet–based
algorithm. Then, each QRS region and also its corresponding
DWT were supposed as virtual images and each of them was
divided into eight polar sectors. Next, the curve length of
each excerpted segment was calculated and is used as the
element of the feature space. To increase the robustness of
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TABLE VII
APPROXIMATE PERFORMANCE EVALUATION OF THE PRESENTED NEURO–SVM–MLVQ FUSION CLASSIFICATION ALGORITHM WITH A PREVIOUS

STUDIES AIMED FOR VALIDATING THE OBTAINED RESULTS AND SHOWING MERIT OF THE METHOD.

Authors Method Arrhythmia types Dataset Accuracy
1700 dataset from MIT–BIH;

Gholam Hosseini, 850 training-850 testing;
Luo and Reynolds NET–BST 6 Classes [Normal: 800, PVC: 260, 93.0

[27] APB:260, RBBB: 260, F:260]
Feature extraction;

Mrs. B.Anuradha Spectral entropy, Poincare plot geometry, Largest 233 beats from MIT–BIH;
and V.C.Veera Lyapunov exponent and and Detrended 8 Classes used for testing 93.13

Reddy [45] fluctuation analysis
Classification; fuzzy
Feature extraction:

N.Kannathal Largest Lyapunov exponent, Spectral entropy, 600 dataset from MIT–BIH;
and Poincare geometry 10 Classes 320 training–280testing; 94.0

C.M. Lim [36] Classification: anfis
109880 beats from MIT–BIH;

Tsipouras et al [32] Knowledge- based system 10 Classes [N, P, f, P, L, R, Q: 102793, 94.26
V: 6183, [,!,]: 484, BII: 420]

Feature extraction:
Omer T.Inan et al Wavelet transform and timing interval features 3 Classes NSR,PVC,others 95.16

[46] Classification: neural networks
Feature extraction: Geometrical properties 40938 beats from MIT–BIH;

obtained from segmentation of each detected– 500 training – 40438 testing
This study delineated QRS complex virtual image as well as 6 Classes [Normal: 24150, LBBB: 1801, 95.6

RR–tachogram RBBB: 3789, PVC:4039,
Classification: Fusion (Neuro–SVM–MLVQ) APB:338, PB:6821]
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Fig. 7. Error–rate diversity analysis for justification of the fusion of SVM,
MLVQ and three MLP–BP classifiers

the proposed classification algorithm versus noise, artifacts
and arrhythmic outliers, a fusion structure consisting of five
different classifiers namely as a SVM, a MLVQ and three
MLP–BP neural networks with different topologies were de-
signed. To show the merit of the new proposed algorithm, it
was applied to all 48 MITDB records and the discrimination
power of the classifier in isolation of different beat types
of each record was assessed (within–record analysis). As the
result, the average accuracy value Acc=98.51% was obtained.
Also, the method was applied to 6 number of arrhythmias
namely as Normal, LBBB, RBBB, PVC, APB, PB belonging
to 20 number of the MITDB (between–record analysis) and the
average value of Acc=95. 6% was achieved showing marginal
improvement in the area of the heart arrhythmia classification.
To evaluate performance quality of the new proposed hybrid
learning machine, the obtained results were compared with
several similar peer–reviewed studies.

APPENDIX A
ABBREVIATIONS

LVQ: learning vector quantization
MLVQ: modified LVQ
KNN: K nearest neighbors
PNN: probabilistic neural networks
SVM: support vector machine
ECG: electrocardiogram
DWT: discrete wavelet transforms
SNR: signal to noise ratio
ANN: artificial neural network
MEN: maximum epochs number
NHLN: number of hidden layer neurons
RBF: radial basis function
MLP-BP: multi-layer perceptron back propagation
LR: learning rate
FP: false positive
FN: false negative
TP: true positive
P+: positive predictivity
Se: sensitivity
MITDB: MIT-BIH arrhythmia database
SMF: smoothing function
FIR: finite-duration impulse response
LBBB: left bundle branch block
RBBB: right bundle branch block
PVC: premature ventricular contraction
APB: atrial premature beat
PB: paced beat
N: normal (rhythm)
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