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Color View Synthesis for Animated Depth
Security X-ray Imaging

O. Abusaeeda, J. P. O Evans and D. Downes

Abstract—We demonstrate the synthesis of intermediary views
within a sequence of color encoded, materials discriminating, X-ray
images that exhibit animated depth in a visua display. During the
image acquisition process, the requirement for alinear X-ray detector
array is replaced by synthetic image. Scale Invariant Feature
Transform, SIFT, in combination with material segmented morphing
is employed to produce synthetic imagery. A quantitative analysis of
the feature matching performance of the SIFT is presented aong with
a comparative study of the synthetic imagery. We show that the total
number of matches produced by SIFT reduces as the angular
separation between the generating views increases. This effect is
accompanied by anincrease in the total number of synthetic pixel
errors. The trends observed are obtained from 15 different luggage
items. This programme of research is in collaboration with the UK
Home Office and the US Dept. of Homeland Security.
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|. INTRODUCTION

IRPORT luggage checks are a recognized concern for

various reasons. The increasing sophistication of
conceadled devices is compounded by the difficult task of
distinguishing between everyday objects within a ‘typica’
suitcase. The attenuation of the screeners’ attention when
watching the display and examining repetitively the same
category of benign objects. This complex visua task is
exacerbated by the lack of cuesto depth in imagery, which has
been produced by transmitted radiation. Achieving higher
detection rates coupled with low false alarm rates during
airport luggage inspection is a prime challenge for aviation
security personnel. Past work by the University team in
collaboration with the Centre for Applied Science and
Technology (CAST), formally the UK Home Office Scientific
Development Branch (HOSDB) has produced a novel
binocular stereoscopic X-ray technique [1]-{3] which aids the
detection and identification of objects under inspection.
Imaging technology based on this early work is now
commercialy available. More recently through ongoing
collaboration with the CAST and the US Department of
Homeland Security (DHS), the University team has devel oped
multiple view techniques that produce three-dimensiona
imagery termed kinetic depth X-ray imaging or KDEX.
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The KDEX approach involves capturing a series of
perspective views from different station points. The resultant
image sequence exhibits sequentia paralax in avisua display
to enable the perception of depth through motion. Threat
objects which are imperceptible in some views may become
visible in other views. This imagery may also be viewed as
abinocular stereoscopic sequence [4] but this approach is
beyond the scope of this paper. The practical implementation
of KDEX requires multiple views of the luggage to be
acquired from an arrangement of linear (or folded linear)
X-ray detector arrays. Each array is illuminated by a thin
curtain of X-rays originating from a single X-ray source. The
views are captured during a linear translation of the object
under inspection through the interrogating X-ray beams.

The research presented in this paper explores the replacing
intermediary linear X-ray detector arrays by employing image
synthesis. This approach will enable ‘in-between’ detectors
and their associated hardware to be discarded. Earlier work
undertaken by the University team [5], [6] has developed an
image synthesis algorithm based on correlaion matching
operating on grey scale imagery. The research reported here
explores the potential of SIFT as a powerful feature extraction
algorithm applied to color encoded (materials discriminating)
X-ray images. SIFT was firstly proposed by David Lowe in
2004 [7]. In this work SIFT is additionaly bounded by
epipolar and disparity window criteria. The output from the
SIFT is employed by material based morphing agorithm to
produce color synthetic views, which conserve the encoded
material classes. Ultimately, high quality synthetic images are
combined together with the detector images to produce the
resultant KDEX sequence. Limitations of the approach are
investigated by employing ground truth imagery for
comparétive error anaysis.

II.BACKGROUND

An ealy example of the automated matching of
corresponding points of interest in images is the corner
detector proposed by Moravec [8]. This effort was later
improved by Harris and Stephens [9]. As a result the Harris
corner detector has since been widely used for numerous other
image matching tasks. A natural extension of this work is to
consider more other local features and their identification
under conditions of scale invariance [10]. In recent times,
there has been significant interest in extending loca feature
identification to be invariant to full affine changes [11], [12];
SIFT is one such approach [7], which extracts distinctive
invariant features from images and matches them across a
substantial range of features. The aim is to establish robust
performance against changes in viewpoint. SIFT may aso be
combined with principal components analysis (PCA-SIFT)
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[13] which is able to produce more compact desorpin

comparison with the standard SIFT. But, it can éase
blurring along features [14]. Another local featutescriptor
namely, speeded-up robust features (SURF) [15phsimilar
performance to SIFT although it is not invariantraation

and strong illumination changes [14]. It has beemdnstrated
recently that features identified by SIFT are hygdistinctive

and invariant to image scales and rotations, andiafig

invariant to a change in illumination [16]. Thetéataspect is
important consideration for the X-ray transmissiamagery
dealt with in this paper. Prior work by the Univigrgeam has
highlighted the potential for SIFT
correspondences in X-ray images [17]. In this pa@&FT

provides key points for a morphing algorithm, whggnerates
the resultant synthetic view.

Typically, morphing methods combine a geometric pvar

with an intensity blend or cross-fade [18], [19]urNerous
variations adopting these methods are documen@e{[P3].

The majority of warping methods are similar in thhey

require a set of corresponding features in a fauecspective
views while the remaining correspondences are ohéted

automatically by interpolation. Features in thegoral image
are shifted incrementally with respect to thosethie final

image by applying the mapping and vice versa. Hanethey
often differ in how they locate features and thethod of

interpolating them. In practice, it emerges tharé¢his no
extensive criterion in which the quality or praelity of the

morph can be assessed [18], [24]. For example, turaia
image transitions can arise due to the three-dirorakshape
of objects not being conserved. This situationdssurprising
given the three—dimensional coordinate positions tloé

features are not taken into account or known enrtajority

of warping procedures.

I1l.  METHODSAND MATERIALS

The main methods involve the production of the @or
encoded X-ray imagery; the algorithmic developneed, the
comparative analysis of the synthetic imagery wgtound
truth. Each of these aspects is discussed in tHewiag
sections.

A.Production of X-ray images

The color encoded X-ray images employed
investigation were produced by a multiple view X-sxanner
housed in the University's Imaging Science Labasatd@he
luggage imaged contained a mixture of ‘typical’ et
composed of different materials, thicknesses arapsHh6].
Care was taken to ensure that partially overlapging fully
overlapping objects provided the multi-layered $tanency
typical encountered in security scans of luggage.

When the X-ray photons pass
measurements are taken at two X-ray energy levidkeV
and 150keV’ to generate low (Lo) and high energi) ¢Kray
signals. The relative difference in magnitude bemvéHi) and
(Lo) is exploited to broadly discriminate an instget object
into three material classes as function of atomimber, Z.
The organic class has an atomic number &f1D, a mixture

in searching for

class 10 < Z < 20 and the metallic clasz 20 [25], [26]. The
resultant discrimination information is presentedhe human
operators by color encoding the X-ray images. Eigresents
an X-ray images of printed circuit where (a) andl g¢be the
low (L)and high (H) energy grayscale X-ray imagdslev (c)

is the color encoded X-ray image.
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Fig. 1 Production of color encoded image from L@y energy
image, (b) High energy image and (c) Color encodiedy image

The resultant color coded information provides aalr
discrimination of the objects under inspection irttree
material classes. This materials discriminatiorhtégque has
afforded an elegant segmentation solution to simplighly
cluttered images

Typically organic, mixture, and metallic materiab i
displayed as orange, green and blue color respdgtias
shown in figure 1 (c). Security X-ray screening teyss
utilizing dual-energy materials discrimination aseidely
deployed in the major airports throughout the w{2ial.

In this study 7 sequential perspective images aggiieed
and stored for each luggage item or bag under atigpe The
angular separation between each successive vidW tisken
over an angular range af3° about the 0° or normal view
position as illustrated in figure 2. A total of 1@®rspective
images from 15 different bags termed; bl, b2...b15ewe
employed in this study.

e.g., 2° angular separation between views

00 +10 420 +3°

in this l
1

X-ray source

Fig. 2 lllustration of angular separation betweerspective views

B.Image Matching

The SIFT algorithm adopts the fast nearest-neighbou
method to identify the best match for a partictiéature from

through  mattea database of features. Lowe suggested that althestin

which the distance ratio between the closest neighto that
of the second closest neighbour > 0.8 be discardedalso
noted that the application of this criterion camowe around
90% of the incorrect matches while discarding tess 5% of
the true matches [7]. To maximise the potentialliagpility
of SIFT Lowe originally did not impose a disparitgnit. In
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our work, we can employ additional bounding craeonf
a disparity window and an epipolar line constraias
illustrated in the Flowchart in figure 3. The formerises
from consideration of the inspection tunnel of tKeray
machine, defining a near and far boundary to ttspention
volume, while the latter concerns the nominallyozeertical
disparity exhibited by the KDEX imagery i.e. thapapar line
is along the image y-axis (horizontal in the digplaThe
adoption of these new criteria tighten the suppb&IFT. The

1
Apply standard SIFT on left & right perspective :
views. Employ nearest-neighbour matching |
algorithm and save the correspondences. (Features |
set ) :
I
1
1
I
I

Standard SIF

v

Load features set | (produced by standard SIFT)

Call epipolar matching criterion (along Y-axis) and
apply it on features set | (output of standard $IFT

! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
I call disparity window criterion (along X-axis) and 1
I . . . 1
|| apply it on features which passed nearest-neighbouif |
1|| and epipolar matching criteria |
1

| |
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1

Proposed matching crite

matct
Yes

I Save features (set Il) l

Fig. 3 Flowchart for the proposed matching route

Fig. 4 is a hypothetical example of X-ray image vehthe

Right view

Left view

:

(feuoziioy) uouaID
mopuim Aredsig

(reontan)
uouauolejodidg

Point of interest (left view) and its correspond{night view)

Fig. 4 Pixel search space determined by the epifinkaand
maximum disparity criteria

Matched features are categorised into two groupgative
matches, which satisfy the standard SIFT critebahviolate
either one of the new criteria, while positive niets are
grouped as features in which standard SIFT and beth
criteria are satisfied. Taking into account variqusctical
fluctuations atolerance of +1 pixel deviation imety-axis
coordinate position (vertical in the display) is gayed to
accommodate a practical epipolar line criterion[TTq further
limit the search space a disparity window criterigs
introduced. The window size in pixels is determiridthe
spatiotemporal X-ray machine design. It should b&ed that
for comparative purposes the new criteria are egplio
corresponding pairs that have already satisfied staedard
SIFT criteria.

C.Color encoded image synthesis

Image morphing is the transformation of one imag® i
another image. The morph of two X-ray imalgeand I,
requires two correspondence map4, and M; where
(My: 1, = 1) and(M;: I; - I,). In practice, M, andM; may
be derived manually by the user where critical n two
images are selected on two images side by sidetlaem
finally provides a set of common features on twages[18],
[24]. The remaining
automatically by interpolation [27], [28]. Shapdbjects are
destroyed ifM, and M, are inaccurately identified. In our
work automated morphing is an essential prerequésitdM,

and M; are established by applyingthe SIFT bounded by

epipolar and disparity constraints as previouslycdbed. As

soon as the pixels ify andl; are interpolated, the process of

generating the morph is computed by applying th@pimng
incrementally onx-axis (motion axis)direction only to shift
the features in the original image to those in fihal image
and vice versa.

As it is well known, morphing is a combination beemn
geometric warp and an intensity blend (cross-fade)vever,
blending intensities might cause generation of remlors.

feature search space bounded by applying a maximufjis procedure is applicable in visible light images there is

disparity and an epipolar line constraint. The didopof these
criteria, determined by the spatiotemporal X-raychiae
design, tighten the support of SIFT.

no color boundary conditions but this scenario camlirectly
applied onto color encoded X-ray images as it mightd to
generate new material class out of the standarceriaht
classes (organic, mixture and metallic). As a testlie
material segmented morphing is proposed. It is approach
of color encode the synthetic X-ray image accordimghe
perspective views used to generate it. For instaifice left
pixel is classified as organic (orange) and theesponding

correspondences are established
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right pixel is classified as metallic (blue), thére resultant
synthetic pixel is classified as a mixture (greemis is an
important consideration as it ensures that eacthstin pixel
belongs to one of the calibrated material clas§bis way of
color encode avoids interpolated colors, represgnfalse
material information, which could impinge upon thetection
and identification of a threat object.

D.Comparison between synthetic and ground truth views

The quality of the synthetic images was determiigd
comparison with the ground truth according to tbkofving
formula:

Error = ||{IP € Mlabs(6(P) - s(P)) > JaP}| (@

WhereM depends on the image sizg,P) is the intensity
of the ground truth image & andS(P) is the intensity of the
synthetic image at positia?. This approach [6] is designed to
accommodate ground truth imagery, which is sulijsetf to
the concatenation of noise sources within a complenay
imaging chain.

increasing angular separation between the views.

The average trend in matching performance is repted
by the central red color curve in figure 6. The epand lower
bounds of the maximum and minimum number of matches
recorded for any of the 15 bags is also illustrajestbhically
for completeness.

1
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—o—Minimum
—o— Average
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Normalised averaged matches
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Angular separation between perspective views (Degrees)

The errors recorded for each bag are normaliseth wit Fig. 6 Maximum, minimum and average number of megdior 15

respect to the minimum error recorded for that bage
minimum error occurs when the angular separatidmden
the successive views is also at a minimum, whicthig study
is 2°. This approach enables the relative erroratiehr
associated with each individual bag to be presersed
studied more easily.

IV. RESULTS AND DISCUSSION

A.Matching results

Fig. 5 graphically illustrates the number of norised
correspondence matches for 15 bags as a functiotheof
angular separation between views i.e. the angledmst the
interrogating X-ray beams employed to generate g
1
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o
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Fig. 5 Normalized matches for 15 bags at 2°, 3%%&nd 6° of
separation

It can be observed that there is a strong and stemsitrend
for the total number of correspondence matchestoedise as
the beam angle is increased. This observation wpscéed
since in general, the dissimilarity in views ingea with

bags as a function of angular separation

B.Synthetic results

Fig. 7 shows ground truth image and its syntheigavwby
the proposed algorithm at 2° where the ROI, higiéd by
red rectangle, is magnified in figure 8 for furtldéscussion.

ROI 2

Fig. 7 (a) Ground truth view, (b) synthetic viewngeated at 2
separation between views

Images in figure 8 and 9 are arranged to conveygient
enable the quality comparison of the synthetic Iteswith
regard to the ground truth.

Fig. 8 (a) Ground truth ROI 1, (b) and (c) are slgpthetic views at
2% and 6 respectively
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It is notable that the synthetic algorithm is cdpabf
preserving good edges and is also capable of piager
textured structure. It can also be observed thahtib ring of
a floppy disk is blurred when the angle betweenwsigs
increased. It is interesting to note that this t@drartifact has
been highlighted in green color due to materialnsaged
morphing. It can be appreciated from figure 8 (bJl &c) that
the synthetic view deteriorates as the angle séparetween
views is increased. Fig. 9 is another region ofenest
extracted from figure 7 (b).

Fig. 9 (a) Ground truth ROI 2, (b) and (c) are skipthetic views at
2° and 6 respectively

Image of figure 9 (a) represents good example adrlap
structure where the baby toy is overlapped withlsheboe,
metal horizontal line and other mixture materiabwh in
green. On one hand, the synthetic results of thiign have
shown appreciated results in terms of shape pragenv
‘metal material embedded in the heels shoe’, vartand
horizontal lines. Synthetic views of ROI 2 haveoailsdicated
that synthetic algorithm is capable of preservibgeot shapes
in terms of curve edges. On the other hand, sobjecis
edges tend to blur when the angle separation batviegvs is
increased. This observation is highlighted in tHges of the
ring of the speaker ‘shown in black at the bottomtte
image’ as well as the face of the toy in figurep (

The absolute pixel error values recorded for 15sbag
presented as a function of the angular separatetwden
views in the graph of figure 10.

It is noticeable from figure 10 that the number pxel
errors increase as the angular separation betweevigws is
increased. This effect is expected as the ‘gemeyati
perspective images will exhibit increasing variagion shape,
overlap and pixel intensity. For this reason thesohlite
amount of errors may be highly sensitive to imagetent and
the normalization (as it is discussed in Sectid)l of results
enables trends in the data to be readily identifiétis
observation is further illustrated in figure 11 wiehe pixel
error values are normalized with respect to theesbbtained
at 2 of angle separation between views.

Absolute error values

Fi

9

Normalised error values

—e-bl
+b2
—-b3

-bs
— b6
—e—b7
b8
——b9
=-b10
—=—bl1
— —b12
-»-bl13
»>-bl4
—»>-bls

3
Angular separation between perspective views (Degrees)

10 Absolute pixel error for 15 bags at 2°,439,5° and 6° of
separation
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»-bl4
-»-b15

Angular separation between perspective views (Degrees)

Fig. 11 Normalized pixel error for 15 bags at 29,43, 5° and 6° of

separation

The upper and lower bounds of the maximum and mimm
as well as the average number of errors recordeahipof the
15 bags are also illustrated graphically in figut2 for
completeness.
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Fig. 12 Maximum, minimum and average number of radized
pixel errors for 15 bags as a function of anguégoasation
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V.CONCLUSION AND FUTURE WORK

synthesis is presented. The potential of SIFT toate
correspondences in X-ray images is establishedjaadtified
for 15 different bags. The performance of SIFTigmiicantly

enhanced by applying

two additional

a disparity window and an epipolar line constraifibe
appropriateness of these criteria is supportechbyntatching
results organised in Section (AJ. Material segmentation
morphing is proposed to generate intermediary vieWss

approach is

supported by the results reported

(9]

A novel multiple view technique incorporating imagezio

[11]

criteria  namely

[12]

[13]
in

Section (IVB). Overall, the error analysis indicates that thei4]
fidelity of the synthetic imagery is adversely atied by the
variations in shape, overlap and material classesrang in
increasingly disparate ‘generating views'. The iicgtions for
this work are significant as for example, it rersdére middle
X-ray sensor array in a group of 3 redundant. Tioeeein the
case of a 29-view system the overall requiremedgtiges to
15 X-ray detector arrays in combination with theligbto

synthesize the remaining 14 views. This approachi wi
increase the cost effectiveness of systems capalble
producing high quality KDEX imagery. Future work liwi
explore an increased sample luggage set to assigtimizing

the algorithmic approach.

In due course,

implementation of the algorithm will also be recedrto
support operation in the field.
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