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Color Image Segmentation using Adaptive Spatial
Gaussian Mixture Model

M.Sujaritha and S. Annadurai

Abstract—An adaptive spatial Gaussian mixture model is proposed
for clustering based color image segmentation. A new clustering
objective function which incorporates the spatial information is
introduced in the Bayesian framework. The weighting parameter for
controlling the importance of spatial information is made adaptive
to the image content to augment the smoothness towards piecewise-
homogeneous region and diminish the edge-blurring effect and hence
the name adaptive spatial finite mixture model. The proposed ap-
proach is compared with the spatially variant finite mixture model for
pixel labeling. The experimental results with synthetic and Berkeley
dataset demonstrate that the proposed method is effective in improv-
ing the segmentation and it can be employed in different practical
image content understanding applications.

Keywords—Adaptive; Spatial; Mixture model; Segmentation ;
Color.

I. INTRODUCTION

SEGMENTATION methods are based on some pixel or
region similarity measure in relation to their local neigh-

borhood. A variety of different methods have been proposed
for image segmentation such as boundary-based segmenta-
tion, region-based segmentation and pixel labeling. Boundary–
based methods search for the most dissimilar pixels which
represent discontinuities in the image, while region based
methods on the contrary search for the most similar areas.
Pixel labeling (Clustering) algorithm is composed of the
hidden label process and the observable noisy image process.
The goal is to find an optimal labeling which maximizes the
posterior probability that is the maximum a posteriori (MAP)
estimate. Recently, Expectation-Maximization algorithm has
attracted considerable interest to compute the maximum like-
lihood estimates, when the observations are unlabeled.

Unsupervised clustering techniques [9] have high repro-
ducibility because its result are mainly based on the intensity
information of image data itself. They do not require training
data, but they do require an initial segmentation and they rely
only on the intensity distribution of the pixels and disregard
their geometric information. For example, relaxation labeling
[5], [8] methods make little or no use of the observed image,
except perhaps to initialize the label configuration for the
iterative algorithm.

Several model based clustering approaches have been pro-
posed by the researchers for the unsupervised segmentation
problem. Model based approaches uses Gibbs random fields,
Gauss-Markov random fields, Gaussian autoregressive random
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fields, and univariate and multivariate Gaussian densities to
model the image. And the posterior functions developed by
these models are optimized using some optimization tech-
niques such as simulated annealing [8], Iterated conditional
modes(ICM) [3], gradient projection [16] etc.

The application of Gaussian mixture models to labeling
is based on the assumption that the intensity (grey-scale or
color) value of each pixel in the observed image is a sample
from a Gaussian mixture distribution. . Gaussian Mixture
models constitute a well-known probabilistic neural network
model. The Expectation –Maximization framework constitutes
an efficient method for GMM training based on likelihood
maximization. Expectation-Maximization algorithms are used
for parameter estimation and maximization which consists
of two steps: the estimation of a tentative labeling of the
data followed by updating the parameter values based on the
tentatively labeled data. Upon estimating the parameters of this
distribution a suitable labeling rule is applied to assign labels
to the pixels of an image.

In work [20] T.Yamazaki considered the color image as
a mixture of multi-variant densities and the parameters are
estimated using EM algorithm. The segmentation is completed
by clustering each pixel into a component according to the
Maximum likelihood (ML) estimation. He proved that the
method is stable and useful for color image segmentation. The
drawback of that method is the number of mixture components
is assumed known as prior, so it cannot be considered as totally
unsupervised segmentation.

The major drawback of pixel labeling is, due to the noise
and intensity in-homogeneities introduced in imaging pro-
cess, dissimilar regions at different locations may have same
intensity appearance, while the similar regions at different
locations may have different intensity appearance. Hence,
the segmentation results would be totally wrong without the
spatial information.

The problem of traditional finite mixture models is lack
of spatial correlation into the labeling process. One can rein-
troduce spatial correlation into the labeling process using the
Gaussian mixture model by imposing dependence structures
in the form of Markov chains and two-dimensional (2-D)
MRF models on the complete data of the EM algorithm.
But again this is a non-optimal approach, and the resulting
algorithms have been found to be considerably complicated
and computationally intractable.

Several researchers have suggested modifications to the
Finite mixture model to address the problem related to the
lack of spatial information. Sanjay-Gopal and Herbert [16]
proposed a Bayesian framework using spatially variant mixture
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models (SVFMM) by introducing a process based on Markov
Random Fields (MRF) which is able to capture the spatial
relationship among neighboring pixels. MRF introduces a
prior distribution that takes into account the neighborhood
dependency or relationship among the neighboring pixels. His
a posteriori density function consists of likelihood term and
biasing term. The likelihood term which is exclusively based
on the intensity distribution of the data, captures the pixel
intensity information, while a priori biasing term that uses a
Markov Random Field (MRF) captures the spatial location
information. He incorporates the local correlations between
the neighboring parameters, through the application of suitable
prior density function that models the local correlation in the
parameter estimation process. Also he implemented the M-
step of the EM algorithm using gradient projection method
(GEM-MAP) to overcome the difficulty which arises due to
the introduction of the prior term in the E-step.

Blekas et al., [4] modified the M-step of SVFMM–GP and
named as spatially –constrained Mixture model. Zoltan Kato
and T.C.Pong [12] incorporates the spatial information by
adding the prior term in the posterior energy function like
Sanjay et al. But instead of gradient decent technique , sim-
ulated annealing with Gibbs sampler and Iterated conditional
modes were used to find the global minimum.

The three important issues in the above MRF based mixture
models are the initialization of mixture weights and component
parameters, the number of pixel classes and the specification
of parameter (β) encouraging neighbors to have similar char-
acteristics.

Since EM algorithms have convergence to local maxima,
initialization is very important. Yiming Wu et al., [19] circum-
vented the initialization problem of EM algorithm by using K-
means algorithm to initialize the Gaussian mixture parameters.
But the draw backs of k-means algorithm are it is sensitive to
initialization and convergence problem.

Islam et al., [10] used SNOB and cluster Ensembles for
finding the number of components in a given image. Zoltan
et al. [11] used Reversible Jump Markov Chain Monte Carlo
algorithm for the model dimension switching. Fauzi et al., [7]
used mean shift algorithm to identify the number of clusters.
Yiming Wu et al., [19] introduced MML (Minimum Message
Length ) criterion into the EM algorithm to automatically
determine the number of mixture components.

The proposed method tries to overcome the first issue by
initializing the label parameters using K-means algorithm and
density parameters using the histograms of the feature vector.
The second issue is solved by applying MML model selection
criterion [2] to estimate the number of components, due to its
efficiency and simplicity. To beat the third issue the weighting
factor for neighborhood effect is made adaptive to the image
content.

This paper elaborates on a pixel labeling (clustering) tech-
nique based on a new adaptive spatial Gaussian Mixture
Models and EM algorithm, which introduces the spatial in-
formation into the clustering process. The spatial factors are
adaptive to the image content to favor the solution of piecewise
homogeneous labeling. The idea has come up from [18] by
Wang et al., who have extended deterministic annealing clus-

tering technique to Adaptive Spatial Deterministic Annealing
(ASDA) technique.

This paper is organized as follows: Section 2 describes
the proposed Adaptive Spatial Gaussian Mixture Model (AS-
GMM) and Section 3 presents the results and Section 4
concludes the paper.

II. THE PROPOSED METHOD

The proposed method modifies the Gaussian mixture model
and EM algorithm to incorporate the spatial information into
the model. The following subsection states the essence of
GMM and EM algorithm.

A. Gaussian Mixture Models and EM algorithm

Color image is represented by a vector in a color space.
Several color spaces have been proposed for different contexts
of image processing. RGB, HSI, YIQ and CIE spaces etc.
[6], [13], [15], [17] . Although lots of discussions have been
made so far, the selection of the best color space is still a
difficult problem for the color image segmentation. The RGB
space is quite commonly used because of its simplicity in
implementation. A better color space than the RGB space in
representing the colors of human perception is the HSI space,
in which the color information is represented by hue and sat-
uration values while brightness is represented by an intensity
value [13]. The YIQ is obtained by a linear transformation on
the RGB space, where the Y component is a measurement of
the luminance and is argued to be a likely candidate for edge
detection while the I and Q components jointly describe the
hue and the saturation of the image. The CIE spaces provide
an approximately uniform chromaticity scale, which allows the
use of Euclidean distance in expressing the color difference
of human perception , and thus is especially efficient in the
measurement of small color difference [17].
Gaussian Mixture Model:
Despite the difference among those color spaces, the input
color image is expressed in general by an expression z =
{z1, z2, . . . , zN} ⊂ �d , where N is the number of input data
patterns, d is the dimension of input color space. To define a
Gaussian mixture model with K > 1 components in �d for
d ≥ 1, let zi denote the observation at the ith pixel of an
image. The density function p(z|θ) at any observation zi is
given by:

p(zi | θ) =
K∑

k=1

ρkf(zi | θk) (1)

where ρ1, . . . , ρK are the mixing weights, f(.) is a Gaussian
distribution with the parameters θk = (μk,Σk), each θk defin-
ing the kth component and Θ = {ρ1, . . . , ρK , θ1, . . . , θK} is
the complete set of parameters needed to specify the mixture.
Let the mixture weights satisfy the following conditions

ρk ≥ 0, k = 1, . . . , K,
K∑

k=1

ρk = 1 (2)



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:4, No:1, 2010

139

For the Gaussian mixtures, each component density f(zi |
θk) is a Gaussian probability distribution with μk and covari-
ance Σk:

f(zi | θk) =
exp{− (zi−μk)T (zi−μk)

2Σk

}

(2π)
d

2 det(Σk)
1
2

(3)

EM Algorithm:
Expectation-Maximization algorithm is used to determine the
parameters Θ of a Gaussian mixture model from a given
image. The EM algorithm is general iterative technique for
computing maximum-likelihood when the observed data can
be regarded as incomplete. To define this complete data let
mi, i = 1, 2, . . . , N denote K × 1 random indicator vectors,
each of which takes a value from the set of vectors Λ defined
by

Λ = {νj ; νj
l=j = 1, νj

l �=j = 0, 1 ≤ l, j ≤ K} (4)

Also mi
j is a discrete random variable with probability func-

tion defined by Pr ob(mi = νj) = ρi
j , ∀i, j. The complete data

yT = (zT ,m1T

, . . . ,mNT

) with superscript T denoting vector
transpose. Here, z and {mi} are defined to be statistically
independent So that

p(y | Θ) =
N∏

i=1

K∏
k=1

[ρi
kf(zi | θk)]m

i

k (5)

The usual EM algorithm consists of an E-step and an M-step.
Let Θ(t) denote the estimation of Θ obtained after the tth
iteration of the algorithm. For the case of Gaussian component
densities f(.), the E-step computes the following expected log-
likelihood function at the (t + 1)th iteration.

Q(Θ,Θ(t)) =
N∑

i=1

K∑
k=1

{ln ρkf(zi | θk)}E{mi
k | zi,Θ(t)}

(6)
where E{mi

k | zi,Θ(t)} is a posterior probability and is
computed as

E{mi
k | zi,Θ(t)} =

ρ
(t)
k f(zi | θ

(t)
k )

K∑
l=1

ρ
(t)
l f(zi | θ

(t)
l )

(7)

The M-step finds the (t + 1)th estimation Θ(t+1) of Θ by
maximizing Q(Θ,Θ(t)).

ρ
i(t+1)
k =

E{mi
k | zi,Θ(t)}

K∑
k=1

E{mi
k | zi,Θ(t)}

(8)

μ
(t+1)
k =

N∑
i=1

ziE{mi
k | zi,Θ(t)}

N∑
i=1

E{mi
k | zi,Θ(t)}

(9)

Σ2(t+1)
k =

N∑
i=1

E{mi
k | zi,Θ(t)}(zi − μ

(t+1)
k )(zi − μ

(t+1)
k )T

N∑
i=1

E{mi
k | zi,Θ(t)}

(10)

EM algorithm is highly dependent on initialization. Here, K-
means algorithm is used for initializing ρ and histograms are
used for initializing μ and Σ. Initially the histograms of K
levels over the range of feature values are computed and then
the mean and covariance at each level are considered as the
initial values for μk and Σk.

B. Adaptive Spatial Gaussian Mixture Model

In the finite mixture model, the labeling of a pixelzi, with
the kth component only depends on the density function
p(zi | θ). If a noisy image in which intensity values of some
data points have been changed is considered the finite mixture
model does has a solution to overcome this problem. The
solution is to employ the neighborhood relationships among
the neighboring pixels.

We have incorporated the spatial relationship in calculating
the density function in (11), so that the pixel zi will be greatly
influenced by its neighbors.

fs(zi | θk) =
1

(2π)
d

2 det(Σk)
1
2

×
[
exp{−[

ηk
i (zi − μk)T (zi − μk)

2Σk

+
ηk

i

8

∑
Zl∈Vzi

(zl − μk)T (zl − μk)
2Σk

]}
]

(11)

where ηi is the parameter that controls the neighbor’s influence
and Vzi

is the subset of neighborhood pixels of zi in a 3x3
window. ηi is calculated using the following formula:

ηk
i = dfk

std(i)/zstd(i) (12)

where

dfk
std(i) = (

1
9
[
∑

zl∈Vzi

{(dfk
zl
− μ)2} + (dfk

zi
− μ)2])

1
2 (13)

(a) (b) (c)

(d) (e) (f)

Fig. 1. Segmentation of synthetic image–1 using proposed method. (a)
Original image (b) CIE-Luv color image (c)Chromatic v-feature (d) Chromatic
u-feature (e) Ground truth image (f) segmented image.
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μ is the mean value of df in the 3 × 3 window

dfk
zi

=
(zi − μk)T (zi − μk)

2Σk

(14)

In order to eliminate the unbalanced effect on the weighting
functions between smooth and sharp edges , the df is divided
by the standard deviation of all the pixels in the 3×3 window

zstd(i) = {(
1
9

∑
zl∈Vzi

(zl − ẑ)2 + (zi − ẑ)2)}
1
2 (15)

ẑ is the mean of the pixels in the 3x 3 window. Note that ηi

is positive and ηi < 1.
Now the posterior probability (7) is modified as

Es{m
i
k | zi,Θ(t)} =

ρ
(t)
k fs(zi | θ

(t)
k )

K∑
l=1

ρ
(t)
l fs(zi | θ

(t)
l )

(16)

and the M-step is modified as

ρ
i(t+1)
k =

Es{m
i
k | zi,Θ(t)}

K∑
k=1

Es{mi
k | zi,Θ(t)}

(17)

μ
(t+1)
k =

N∑
i=1

ziEs{m
i
k | zi,Θ(t)}

∑N

i=1 Es{mi
k | zi,Θ(t)}

(18)

Σ2(t+1)
k =

N∑
i=1

Es{m
i
k|zi,Θ(t)}(zi − μ

(t+1)
k )(zi−μ

(t+1)
k )T

N∑
i=1

Es{mi
k | zi,Θ(t)}

(19)

III. EXPERIMENTAL RESULTS AND DISCUSSIONS

The proposed algorithm has been tested on a variety of
color images including synthetic images (Figures 1 and 2),
Berkeley dataset images [1] (Figure 3). MIT’s Vistex database
has been used to compose the synthetic color images. It has
been proved [11] that the performance of segmentation is
improved when the color and texture features are combined.
Therefore, the perceptually uniform CIE-LUV color values
are used as color features and a 3 level, wavelet pyramidal
decomposition is performed to extract the texture features.
Totally 12 (10 (approx & detail) +2 chromatic) features are
extracted for every pixel and the proposed ASGMM method
is used for modeling the components and labeling the pixels.

Figures 1 and 2 shows the segmentation of synthetic texture
images which consists of bark, fabric, metal, water, misc and
Leaves. The number of classes in both the images is five. The
figures show the original image, its CIE-Luv color image,
chromatic features, ground truth image and the segmented
image using the proposed ASGMM method.

Initially, Gaussian smoothing is performed on those color
texture images. The parameters of Gaussian smoothing are
1.5 and 5. The classification error rate of the synthetic color
texture images shown in Figures 1 and 2 are 0.1123 and 0.1411
respectively.

(a) (b) (c)

(d) (e) (f)

Fig. 2. Segmentation of synthetic image–2 using proposed method. (a)
Original image (b) CIE-Luv color image (c)Chromatic u-feature (d) Chromatic
v-feature (e) Ground truth image (f) segmented image.

TABLE I
PERFORMANCE MEASURES FOR THE CLUSTERING RESULTS OBTAINED BY

SVFMM AND THE PROPOSED METHOD ON THE TWO SYNTHETIC IMAGES

PRESENTED IN FIGURES 1 AND 2.

Images Segmentation Performance Measures
Techniques PRI VOI GCE BDE

Synthetic SVFMM 0.8132 2.2967 0.1536 8.9969
image Proposed 0.8877 1.9621 0.1423 6.3612
(Figure1) ASGMM
Synthetic SVFMM 0.8010 2.6964 0.1897 9.3143
image Proposed 0.8589 1.9808 0.1903 7.1635
(Figure2) ASGMM

The proposed method is compared with (SVFMM ) Spa-
tially Variant Finite Mixture model [16] with β = 10
and number of iterations 45. The comparison is based on
four performance measures namely, Probabilistic Rand Index
(PRI), the Variation of Information (VOI), Global Consistency
measure (GCE) and the boundary displacement error,(BDE)
following Max Mignotte [14]. PRI calculates the consistency
between the computed segmentation and the ground truth. The
VOI measures the amount of randomness in one segmentation
which cannot be explained by other. The GCE measures the
extent to which one segmentation map can be viewed as a
refinement of another segmentation. BDE measures the aver-
age displacement error of one boundary pixel and the closest
boundary pixels in the other segmentation. Table I shows the
performance measures for the obtained segmentation results
by SVFMM and the proposed method on the two synthetic
images presented in Figures 1 and 2. Higher is better for PRI
and lower is better for VOI, GCE and BDE.

Figure 3 shows the comparison result for the same number
of iterations. In Figure 3, first column shows the images
from Berkeley dataset, second column shows the segmen-
tation result of SVFMM and the third column shows the
segmentation result of the proposed ASGMM. The superior
performance of our ASGMM algorithm is noticeable. The
adaptive weighting functions are able to put more spatial
constraint on the homogeneous regions as compared to those
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 3. Comparison of Segmentation Results.
First column (a, d, g, j)—original images.
Second column (b, e, h, k)—SVFMM method,
Third column (c, f, i, l)—Proposed method.

with fixed neighborhood effect. Furthermore, the adaptive
weighting functions are obtained automatically from the image
content, no user interference is required. This mechanism is
very useful for developing fully unsupervised system.

IV. CONCLUSION

The problem of color image segmentation using color
and texture is addressed. CIE lab color spaces and wavelet
transformations are applied to extract color and texture features
respectively. A novel Adaptive Spatial Gaussian mixture model
which incorporates the spatial information into a mixture
model, with a weighting factor which is adaptive to image
information is proposed. The number of components is au-
tomatically identified using MML algorithm. Very good seg-
mentation results are obtained for both synthetic and Berkeley
dataset using the proposed method.
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