
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:3, 2017

334


Abstract—Modern computing technology enters the era of

parallel computing with the trend of sustainable and scalable
parallelism. Single Instruction Multiple Data (SIMD) is an important
way to go along with the trend. It is able to gather more and more
computing ability by increasing the number of processor cores without
the need of modifying the program. Meanwhile, in the field of
scientific computing and engineering design, many computation
intensive applications are facing the challenge of increasingly large
amount of data. Data parallel computing will be an important way to
further improve the performance of these applications. In this paper,
we take the accurate collision detection in building information
modeling as an example. We demonstrate a model for constructing a
data parallel algorithm. According to the model, a complex object is
decomposed into the sets of simple objects; collision detection among
complex objects is converted into those among simple objects. The
resulting algorithm is a typical SIMD algorithm, and its advantages in
parallelism and scalability is unparalleled in respect to the traditional
algorithms.

Keywords—Data parallelism, collision detection, single
instruction multiple data, building information modeling, continuous
scalability.

I. INTRODUCTION

OMPUTING technology is moving into the era of the
parallel computing. While it is difficult to further raise the

frequency of processor chip, the number of processor cores can
continue to be increased. How to make use of the computation
ability of these processor cores more and more will be an
obstacle for traditional programmers. SIMD technology is a
solution for the problem. With the technology a program can
directly utilize larger computing power by increasing the
number of processor cores continuously without increasing the
program complexity. Thus, it can be one of development
directions of future computing technology.

For some of existing algorithms, due to the complex control
structure and data dependency, it is hard to change into an
effective SIMD algorithm.

In a traditional parallel program, a process is divided into
many subprocesses delivered to multiple processors. But
because of dependency usually exist among subprocesses, and
the degree of parallelism is limited. What is more, the
decomposition process is hardly sustained when we face larger
amounts of data.

In this paper, based on the idea of data parallelism we
propose a new processing model. The decomposition object in
this model is the data rather than the processing procedure.

Zhen Peng and Baifeng Wu are with the School of Computer Science,
Shanghai Key Laboratory of Data Science, Fudan University, Shanghai, China
(e-mail: pengz14@fudan.edu.cn, bfwu@fudan.edu.cn).

Such decomposition is capable of leading to unlimited
parallelism, and the increasing amount of data can be easily
dealt with more processor cores.

In this paper, we take the precise collision detection in BIM
as an example, introduce the construction process of such an
SIMD algorithm and analyze its performance and scalability.

II. RELATED WORKS

The Building Information Modeling (BIM) is a technology
of designing the building with the digital model. In the design
phase, the precise collision detection can help us to find design
error in time and provide hints for optimizing or modifying
design. Such a technique can usually remarkably reduce design
cost and improve design efficiency.

Existing parallel algorithms of the collision detection are
classified into three categories: the parallel hierarchical
bounding box algorithm, the parallel space partition algorithm
and the parallel image space algorithm.

An approach for fast bounding volume hierarchy (BVH)
construction based on tree structure on GPU is proposed in [1].
A method that partitions scene data, and decomposes and
updates BVH concurrently is introduced in [2]. The
SIMD-DOP method based on the discrete orientation polytope
(k-DOP) and optimized by SIMD instructions is introduced in
[3]. A new k-DOP method improved by genetic algorithms is
proposed in [4]. Building balanced BVH tree with the divide
and conquer strategy improves the efficiency of the parallel
traversal of the bounding box tree in [5], [6]. A clustering
scheme and a collision-packet traversal to perform efficient
collision queries is presented in [7]. A method with the dynamic
execution model and its associated experimental runtime
system is presented in [8]. The OBB and AABBBVH tree with
some other technologies has been used in [9]-[14]. The
p-partition front method in [15] partitions and distributes the
workload of BVH traversal among multiple processing cores in
many-core platform without the need for dynamic balancing.

The octree node pair is used to determine the level of
parallelization combining with load balancing algorithm in
[16]. An octree grid and octree subdivision improved by a
two-stage scheme is used to reduce the number of tests in the
broad phase in [17]. A technique for dynamic construction of
octree is presented in [18]. A G-Octree structure dividing the
scene space owning the advantages of both the uniform grid
and octree is proposed in [19]. A new octree-based proxy is
proposed which divides the scene mesh in [20]. The approach is
proposed which divides space into a sparse grid of regular
axis-aligned voxels then objects are sent to all voxels they
intersect in [21].

Collision Detection Algorithm Based on Data
Parallelism
Zhen Peng, Baifeng Wu

C

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:3, 2017

335

It introduces an approach based on image–space interference
tests in [22]. It presents a novel and fast algorithm with the
A-buffer, in which the depth values of texel are used to
compute colliding sets in [23]. The algorithm on the basis of
RECODE and RAPID algorithm is proposed in [24].

There are some problems in these algorithms. First, accurate
locations and shapes of the collision cannot be obtained.
Second, the parallelism of the algorithm is the parallelism of the
control flow rather than data flow, which limits the degree of
parallelism. Third, when data amount rises, it is difficult for
user to get more computation power by increasing the number
of processor cores. In these existing algorithms there are severe
dependency among data, much of the computation is spent on
the maintenance of dependency. Such algorithms are usually
complex in program structure and low in scalability.

III. THE SUMMARY OF THE ALGORITHM

The three steps of the algorithm are the following. In the first
step, the models for collision detection are partitioned into sets
of cubes respectively. Then in the second step, for each pair of
cubes belonging to different models, a collision detection is
played. Since the shapes of these cubes are simple and
identical, such a collision detection is extremely easy. Finally,
in the third step, the collision results of the detection process in
the second step are merged to generate the collision results of
models. As long as the cubes from these models are small
enough, these collided cubes can approximate the final
collision results. Thus it constitutes a data parallel computing
process which includes the parallel partition of the models into
cubes, the parallel collision detection of all pairs of cubes
belonging into different models and the parallel reduction of the
detection result. The process formed in three steps is the typical
data parallel computation process which can be undertaken by
thousands of independent parallel threads which means the
greater computing power can be easily obtained via increasing
the number of processor cores without changing programs; that
is so-called continuous scalability.

A. The Parallel Partition

Different models are divided into their respective collections
of cubes on the different processor cores. There are no
correlations and also data exchanges among processor cores.
The precision of the computation is defined as the length of
cube’s edge. Cubes have same length but different positions.
Cubes in the collection constitute a new component which
approximately expresses the model. The higher the precision is,
the more approximate the new component and the model are.
So the partition algorithm, Partition (The Model, The
Precision), which generates the collection of cubes, mC , is

defined. On the assumption, uP denotes the processor core and

u is an unique serial.
Algorithm 1. Partition

 1m , 2m ,…, Nm [input] total models

uP [input] the processor core u

a [input] The Precision

mC [output] the collection of cubes of m

1: For all  1,u N

2: m is divided into many cubes which construct mC by uniform

grid.
3: End
The method of partitioning the model is uniform grid in

Algorithm 1. If the time of generating each cube is 1t , it is

obvious that the time of Algorithm 1 is proportional to mC ,

that is mC 1t . Due to the arbitrariness of m , mC also means
average. So, the total time that different cores execute

Algorithm 1 concurrently is also mC 1t .
After the partitioning process, each pair of cubes of different

models forms a two tuple. Assuming, we have

 2N N  models. For model (0<= <=)m m N , its

corresponding number of cubes is mC . For each pair of

models, im and jm , imC and jmC can be generated. There are

i jm mC C number of two tuples can be generated. So, there are

total
1 1

i j

N N

m m
i j i

C C
  
  number of two tuples.

Now, it is time to generate total two tuples. On the PRAM,
where there are infinite number of processor cores, the
algorithm Pre-Generation and Generation which generating
total two tuples are defined.

Algorithm 2. Pre-Generation

1m , 2m ,…, Nm [input] total models

1mC ,
2mC ,…,

NmC [input] collections of models

uP [input] the processor core u

Pair [output] the collection of the number of two-tuples

1:Forall  1, (1) / 2u N N 

2: Obtaining models, im and jm , and also..and
jmC through u

3: uPair =
i jm mC C

4:End

On the PRAM,  1 / 2N N  processor cores execute the

Algorithm 2 concurrently and output the collection Pair ,
where the element denotes the quantity of two-tuples that can
be produced from cubes of two models. The second and third
step in Algorithm 2 will be done in constant time. So, the time
of Algorithm 2 is constant. The collection _Prefix Pair where

the element _ uPrefix Pair =
1

u

i
i

Pair

 , and total count of

two-tuples, TotalPairCount = _ NPrefix Pair , are defined.

The _Prefix Pair collection will be evaluated by the parallel

prefix summation and its time is   1 / 2log N N  [25].

Algorithm 3. Generation

1m , 2m ,…, Nm [input] total models

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:3, 2017

336

1mC ,
2mC ,…,

NmC [input] collections of models

uP [input] the processor core u

Pair [input] the collection of the number of two-tuples

_Prefix Pair [input]the prefix summation of Pair

D [output] the collection of two-tuples

1: Forall  1, (1) / 2u N N 

2: For j =1to uPair do

3: t = j + 1_ uPrefix Pair 

4: Obtaining two collections,
xmC and

ymC ,from uPair

5: Obtaining the jth two tuple, 1jCube and 2jCube ,of two tuples

that
xmC and

ymC generate

6: tD ={ u , 1jCube , 2jCube }

7: End
8: End
At least TotalPairCount processor cores are required to

practice the collision detection of two-tuples as fast as possible.
Therefore, when it is generating the collection of two-tuples,
Algorithm 3 also sets corresponding two-tuple for each
processor core in the third and sixth step. In Algorithm 3, steps
from 3 to 6 will be done in constant time. So, its execution time

is proportional to the average size of set uPair , that is
2

mC .

B. The Parallel Collision Detection

Now, the collision between two cubes in each two-tuple in
the collection D from the Algorithm 3 will be detected. On the
assumption, there is the algorithm which detects the collision
between two cubes whose time is 2t . Hence, the algorithm

Detection detecting the collision concurrently is defined.
Algorithm4. Detection

uP [input] the processor core u

D [input] the collection of two-tuples
R [output] the collection of results of the detection

1: Forall  1,u TotalPairCount

2: { u , 1Cube , 2Cube }= uD

3: Detecting the collision between 1Cube and 2Cube ;the result=1

if they collided, or 0

4: uR ={ u , 1Cube , 2Cube }∪the result

5: End

In PRAM, TotalPairCount number of processor cores run
the Algorithm 4 concurrently and gain the consequence R . In
Algorithm 4, steps from 2 to 4 can be done in constant time and
the step 3 costs the majority of time. So, the time of Algorithm
4 is 2t .

C. The Parallel Reduction

At last, it is time to reduce R from the Algorithm 4 and
extract all two-tuples where two cubes are collided. If positions
of these two-tuples in the final results can be calculated in
advance, the procedure of extraction can be done concurrently.
In Algorithm 4, R can be considered as the collection of 1 and 0,
where R is 1 indicates whose two cubes are collided,

otherwise R is 0. The collection _Prefix R is defined where the

element _ uPrefix R =
1

u

i
i

R

 which denotes the position in final

collection when uR is 1. The _Prefix R collection can be

evaluated by the parallel prefix summation algorithm [25] and

its time is  log TotalPairCount . So, the algorithm Reduction

extracting these two-tuples concurrently is defined.
Algorithm5. Reduction

uP [input] the processor core u

R [input] the collection of results of the detection

_Prefix R [input] the prefix summation of R

O [output] the collection of all collided two-tuples

1: Forall  1,u TotalPairCount

2: If 1uR  Then

3: t = _ uPrefix R

4: { u , 1Cube , 2Cube }= uR

5: tO ={ u , 1Cube , 2Cube }

6: End
7: End
In PRAM, TotalPairCount number of processor cores run

Algorithm 5 concurrently and gain the consequence O . O is the
collection of all collided two-tuples. It is able to gain details of
the collision from two-tuples in O . In Algorithm 5, steps from 2
to 5 have be done in constant time. Hence, the time of
Algorithm 5 is constant.

D. The Time of the Algorithm

Algorithms 1 – 5 and discussion of the construct of the new
algorithm are proposed in the paper. The proposed algorithm
and its time are discussed on PRAM with infinite number of
processor cores. Parts and their time of the new algorithm are
listed in Table I. So, the total time 1T of the new algorithm is the

sum of the time of each part.

TABLE I
THE TIME OF THE ALGORITHM

Parts Time

Algorithm 1. Partition 1mC t

Algorithm 2. Pre-Generation Constant

Obtaining _Prefix Pair   log 1 / 2N N 

Algorithm 3. Generation 2
mC

Algorithm 4. Detection 2t

Obtaining _Prefix R  log TotalPairCount

Algorithm 5. Reduction Constant

  
 

2
1 1

2

1 / 2

Constants

m mT C t log N N C

t log TotalPairCount

    

 
 (1)

2

1
_

N

N i m
i

TotalPairCount Prefix Pair Pair N C


   (2)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:3, 2017

337

Combining (1) and (2):

    2
1 1 23 2 Constan| ts|m m mT log N log C C t C t      (3)

IV. THE SUMMARY OF THE ALGORITHM IN REALITY

In the discussion of algorithms, each processor core only
handles a piece of data and the number of processor cores is
equal to pieces of data. On the assumption there are Q number

of processor cores, each processor core should now handle
multiple pieces of data. Thus, it is necessary to make
modifications on formulas and the time of the new algorithm.
Take the Algorithm 1 for example, it is obtained after
modification. Algorithms 2 to 5 are modified in the same
manner and not described in detail any further.
Furthermore, _Prefix Pair and _Prefix R are calculated by the

parallel prefix summation algorithm [25]. Because of the Brent

theorem [26], its time is  /log M M Q where M is the

amount of data under such circumstances. The time of
algorithms after modification is listed in Table II. So, the total
time 2T of the new algorithm is still the sum of the time of each

part.

   
   

 
 

2 1

2
2

/ 1 / 2

1 / 2 1 / 2

1 / 2 /

(())

(())

(()) (

/

)

/

m

m

T N Q C t N N Q

log N N N N Q

N N Q C TotalPairCount Q t

log TotalPairCount TotalPairCount Q

TotalPairCount Q

   

   

  

 

 (4)

Combining (2) and (4):

 2
1 1 / 2mK C  (4)

2 2

2 2 1m m mK C C t C t   (5)

2

3 mK log C (6)

        22 2
2 1 2 3/ / 1 / 2 3T N Q K N Q K log Q Q logN K     

(7)

It is obvious that (5)-(7) are constants. In (8), 2T consists of

the parallel part which is

        22 2
1 2/ / 1 / 2N Q K N Q K log Q Q   and the

serial part which is 33logN K . When the number of processor

cores, Q , approaches infinity, the parallel part can be

accelerated linearly and finally becomes zero. The serial part is
just the logarithm function of N .

Algorithm 1’. Partition

1m , 2m ,…, Nm [input] total models

uP [input] the processor core u

a [input] The Precision

mC [output] the collection of cubes of m

1: For all  1,v Q

2: For j=0 to  / 1N Q  do

3: If *()u j Q v N   Then,

4: m is divided into many cubes which construct mC by uniform

grid method.
5: End
6: End
7: End

V. DESIGN AND ANALYSIS OF THE EXPERIMENT

A. The Target and Design of the Experiment

In what follows, we use N , Q andT to respectively denote

the amount of data, the number of processor cores and the
execution time.

The target of the experiment is to verify the relationship that
is the increase of N can be handled by the increase of Q with

the execution time T unchanging. N can be adjusted flexibly.

TABLE II
THE TIME OF THE ALGORITHM AFTER MODIFICATION

Parts Time

Algorithm 1’. Partition   1/ mN Q C t

Algorithm 2’. Pre-Generation     1 / 2N N Q

The calculation of

_Prefix Pair       1 / 2 1 / 2log N N N N Q  

Algorithm 3’. Generation      2
1 / 2 mN N Q C

Algorithm 4’. Detection   2/TotalPairCount Q t

The calculation of

_Prefix R

(log TotalPairCount 

)/TotalPairCount Q

Algorithm 5’. Reduction /TotalPairCount Q

TABLE III

GPU

Name Q GPU clock frequency (MHz)

Tesla C2075 448 1147

Tesla K20m 2496 706

KeplerGK20A 192 852

We choose three GPUs with a different number of processor

cores. Three key parameters of the GPU are shown in Table III.
The algorithm is implemented on the CUDA platform. The

implementation of the algorithm on different GPUs is identical,
including the partition granularity.

B. Results and Analysis

On different GPUs, with the addition of N , the
corresponding algorithm execution timeT is shown as Tables
IV-VI. In Tables IV-VI, the execution time has been divided by
the respective GPU clock frequency. After multiple polynomial

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:3, 2017

338

fittings between N and T , we find the quadratic fitting can lead
to good fitting results. So the experimental equations on
different GPUs between T and N are determined by the
quadratic fitting and shown in Table VII.

TABLE IV

THE EXECUTION TIME ON TESLA C2075

N T (MS) N T (ms)

448 2.115142 3136 47.203162

896 5.737569 3584 59.519289

1344 11.052878 4032 74.368611

1792 17.526462 4480 90.558515

2240 26.039730 4928 107.930014

2688 35.292662 5376 127.180430

TABLE V

THE EXECUTION TIME ON TESLA K20M

N T (MS) N T (ms)

312 1.163411 3432 45.284932

624 2.846401 3744 52.853101

936 5.174316 4056 61.248362

1248 8.110800 4368 70.055490

1560 11.691257 4680 79.540202

1872 15.882692 4992 89.618648

2184 20.590834 5304 100.404845

2496 25.807761 5616 111.825580

2808 31.716484 5928 123.614233

3120 38.157489

TABLE VI

THE EXECUTION TIME ON KEPLER GK20A

N T (MS) N T (ms)

192 2.675388 1920 109.851498

384 6.337382 2112 158.259225

576 12.864418 2304 215.330858

768 23.818332 2496 183.237438

960 36.066012 2688 211.913586

1152 41.133188 2880 242.920610

1344 56.061404 3072 275.532809

1536 72.166813 3264 312.487933

1728 89.868976 3456 377.754658

Now, we keep T unchanged and consider the relationship

between Q and N . The corresponding N in Table VIII, IX, X

can be got from the same T in (9), (10) and (11) by gradually
increasing T .

Based on Tables VIII, IX, X, on the same T , we get the
relationship between Q and N , as in Fig. 1.

TABLE VII

THE EXPERIMENTAL EQUATIONS ON GPUS

Name The calculation equation for the time T

Tesla C2075 2(3.887136 06) 0.002715 0.2 1 3+ + 1 3 5NE N (8)

Tesla K20m 2(3.06991 06) 0.002634 0.070202E N N   (9)

KeplerGK20A 2(2.71559 05) 0.010828 2.138942E N N   (10)

TABLE VIII

THE CORRESPONDING T FOR THE N ON TESLA C2075

T (ms) N T (MS) N

10 1276 110 4977

20 1934 120 5213

30 2441 130 5440

40 2869 140 5658

50 3247 150 5868

60 3588 160 6072

70 3902 170 6269

80 4195 180 6461

90 4470 190 6647

100 4729 200 6828

TABLE IX

THE CORRESPONDING T FOR THE N ON TESLA K20M

T (ms) N T (MS) N

10 1420 110 5570

20 2155 120 5836

30 2723 130 6091

40 3203 140 6336

50 3627 150 6573

60 4010 160 6802

70 4363 170 7023

80 4692 180 7239

90 5000 190 7448

100 5293 200 7652

TABLE X

THE CORRESPONDING T FOR THE N ON KEPLER GK20A

T (ms) N T (MS) N

10 498 110 1842

20 725 120 1931

30 907 130 2016

40 1062 140 2097

50 1201 150 2176

60 1326 160 2252

70 1443 170 2326

80 1551 180 2398

90 1653 190 2468

100 1750 200 2536

In Fig. 1, the vertical axis is Q and the horizontal axis is N .

Each polyline represents the relationship between N and Q on

the different time T . The polyline from the left to the right
indicates the time gradually increases with the same interval.

The conclusion from Fig. 1:
1. For the specific timeT , the increase of N can be dealt with

in the increase of Q , which maintains the execution time

unchanged. For example, in the polyline (T =30ms in Fig.
1), when N =2500, it gets Q =1000; when N =2750, it

gets Q =2000. The time T stays the same when this

happens. Thus, the target of the experiment can be verified.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:3, 2017

339

Fig. 1 The relationship between Q and N on the same time T

2. The average slopes of polylines decrease gradually from

left to right. On the leftmost polyline, when N increases
by 1000, Q increases by 2300 to keep T unchanged. But,

on the rightmost polyline, when N increases by 5000,
Q also increases by 2300 to keep T unchanged. Thus,

from the left to the right in Fig. 1, it indicates that when N
increases, the same increase of Q can cope with the larger

increase of N . The continuous scalability of the algorithm
is verified.

3. From left to right, polylines become more and more dense.
It shows that the growth of N can lead to the larger growth
rate of T . Theoretically, the growth rate of T is the first
order partial derivative of N in (8). The one or two order
partial derivative of N in (8) can be obtained.

2 22 1
31T K K

N
N Q N Q


  


 (11)

2

2
2

2 1
31T K

Q NN


 


 (12)

when N > 11.5 /Q K is established, the value of (13) becomes

greater than zero, and the value of (12) is increasing. So, a 'N
can be found, when 'N N is established, the growth rate of
T becomes larger. Thus, the experiment results verify the
point.

VI. CONCLUSION

In BIM and other fields, the increasing amount of data
gradually becomes the obstacle of computing technique. How
to solve this problem by increasing processor core is a concern.

In this paper, we take the precise collision detection in BIM as
an example, and change a traditional serial execution based
algorithm to a parallel algorithm with an unlimited extension in
parallelism.

In the era of the multi-core and many-core techniques, the
combination of data parallelism and the SIMD technique can
show prominent advantages in controlling the program
complexity and getting sustainable scalability, and will be one
of the development trends for these applications.

REFERENCES
[1] X. Yang, T. M. Wang and D. Q. Xu, "Fast BVH construction on GPU,"

Journal of Zhejiang University, vol. 46, pp. 84-89, 2012.
[2] D. Peng, T. Min and A. T. Ruofeng, "Parallel Collision Detection on

Multi-core Platform," Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal
of Computer-Aided Design and Computer Graphics, vol. 23, pp. 833-838,
2011.

[3] M. Tang, M. Dinesh, R. F. Tong, "Parallel Collision Detection Between
Deformable Objects Using SIMD Instructions," Chinese Journal of
Computers, vol. 32, pp. 2042-2051, 2009.

[4] W. Zhao and L. Li, "A New K-DOPs Collision Detection Algorithms
Improved by GA," in International Conference on Wireless
Communications and Applications, 2011, pp. 58-68.

[5] W. Zhao, C. Chen and L. Li, "The Collision Detection Algorithm Based
on the MapReduce of Cloud Computing," System simulation technology
and its application Changchun, 2010, pp. 96-100.

[6] W. Zhao, C. Chen and L. Li, "Parallel Collision Detection Algorithm
Based on OBB Tree and MapReduce," in Entertainment for Education.
Digital Techniques and Systems: 5th International Conference on
E-learning and Games, Edutainment 2010, Changchun, China, August
16-18, 2010. Proceedings, X. Zhang, S. Zhong, Z. Pan, K. Wong, and R.
Yun, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp.
610-620.

[7] J. Pan and D. Manocha, "GPU-Based Parallel Collision Detection for
Real-Time Motion Planning," Springer Tracts in Advanced Robotics, vol.
68, pp. 211-228, 2010.

[8] M. Anderson, M. Brodowicz, L. Dalessandro, J. DeBuhr, and T. Sterling,
"A Dynamic Execution Model Applied to Distributed Collision
Detection," in Supercomputing: 29th International Conference, ISC 2014,
Leipzig, Germany, June 22-26, 2014. Proceedings, J. M. Kunkel, T.
Ludwig and H. W. Meuer, Eds. Cham: Springer International Publishing,
2014, pp. 470-477.

[9] P. Cai, C. Indhumathi, Y. Cai, J. Zheng, Y. Gong, S. L. Teng, and W.
Peng, "Collision Detection Using Axis Aligned Bounding Boxes"
Springer Singapore, 2014, pp. 1-14.

[10] R. Erbes, A. Mantel, E. Schömer, and N. Wolpert, "Parallel Collision
Queries on the GPU," Lecture Notes in Computer Science, vol. 7686, pp.
84-95, 2013.

[11] Y. J., P. J. and B. M., "GPU-based collision detection for sampling-based
motion planning," in Ubiquitous Robots and Ambient Intelligence
(URAI), 2013 10th International Conference on, 2013, pp. 215-218.

[12] Y. Zou, X. Zhou, G. Ding, Y. He, M. Jia, "A GPGPU-Based Collision
Detection Algorithm," in Image and Graphics, 2009. ICIG '09. Fifth
International Conference on, 2009, pp. 938-942.

[13] X. Zhang, YJ. Kim, "Interactive Collision Detection for Deformable
Models Using Streaming AABBs," IEEE Transactions on Visualization
and Computer Graphics, vol. 13, pp. 318-329, 2007-01-01 2007.

[14] HA. Aly, QAE. Elawady, "A new narrow phase collision detection
algorithm using height projection," in Education and Research
Conference (EDERC), 2010 4th European, 2010, pp. 111-115.

[15] X. Zhang, YJ. Kim, "Scalable Collision Detection Using p-Partition
Fronts on Many-Core Processors," IEEE Transactions on Visualization
and Computer Graphics, vol. 20, pp. 447-456, 2014-01-01 2014.

[16] X. Liu and L. Cao, "Parallel Octree Collision Detection Based on MPI,"
Journal of Computer-Aided Design & Computer Graphics, pp.
184-187+192, 2007-02-28 2007.

[17] T. H. Wong, G. Leach and F. Zambetta, "An adaptive octree grid for
GPU-based collision detection of deformable objects," The Visual
Computer, vol. 30, pp. 729-738, 2014-01-01 2014.

[18] F. Tsuda, R. Nakamura, "A Technique for Collision Detection and 3D
Interaction Based on Parallel GPU and CPU Processing," in Games and

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:3, 2017

340

Digital Entertainment (SBGAMES), 2011 Brazilian Symposium on, 2011,
pp. 36-42.

[19] R. Xu, L. Kang, H. Tian., "A G-Octree Based Fast Collision Detection for
Large-Scale Particle Systems," in Computer Science and Electronics
Engineering (ICCSEE), 2012 International Conference on, 2012, pp.
269-273.

[20] W. Fan, B. Wang, J. Paul, and J. Sun, "An octree-based proxy for
collision detection in large-scale particle systems," Science China
Information Sciences, vol. 56, pp. 1-10, 2013-01-01 2013.

[21] O. S. Lawlor and L. V. Kalée, "A voxel-based parallel collision detection
algorithm,", 2002, pp. 285-293.

[22] G. Baciu, WSK. Wong, "Image-based techniques in a hybrid collision
detector," IEEE Transactions on Visualization and Computer Graphics,
vol. 9, pp. 254-271, 2003-01-01 2003.

[23] H. Jang and J. Han, "Fast collision detection using the A-buffer," The
Visual Computer, vol. 24, pp. 659-667, 2008-01-01 2008.

[24] L. Wang, Y Shi, R. Li, "An image-based collision detection optimization
algorithm," in Signal and Information Processing (ChinaSIP), 2015 IEEE
China Summit and International Conference on, 2015, pp. 220-224.

[25] R. E. Ladner and M. J. Fischer, "Parallel Prefix Computation," Journal of
the ACM, vol. 27, pp. 831-838, 1980-01-01 1980.

[26] R. P. Brent, "The Parallel Evaluation of General Arithmetic Expressions,"
Journal of the ACM, vol. 21, pp. 201-206, 1974-01-01 1974.

