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 
Abstract—Modern computing technology enters the era of 

parallel computing with the trend of sustainable and scalable 
parallelism. Single Instruction Multiple Data (SIMD) is an important 
way to go along with the trend. It is able to gather more and more 
computing ability by increasing the number of processor cores without 
the need of modifying the program. Meanwhile, in the field of 
scientific computing and engineering design, many computation 
intensive applications are facing the challenge of increasingly large 
amount of data. Data parallel computing will be an important way to 
further improve the performance of these applications. In this paper, 
we take the accurate collision detection in building information 
modeling as an example. We demonstrate a model for constructing a 
data parallel algorithm. According to the model, a complex object is 
decomposed into the sets of simple objects; collision detection among 
complex objects is converted into those among simple objects. The 
resulting algorithm is a typical SIMD algorithm, and its advantages in 
parallelism and scalability is unparalleled in respect to the traditional 
algorithms. 
 

Keywords—Data parallelism, collision detection, single 
instruction multiple data, building information modeling, continuous 
scalability. 

I. INTRODUCTION 

OMPUTING technology is moving into the era of the 
parallel computing. While it is difficult to further raise the 

frequency of processor chip, the number of processor cores can 
continue to be increased. How to make use of the computation 
ability of these processor cores more and more will be an 
obstacle for traditional programmers. SIMD technology is a 
solution for the problem. With the technology a program can 
directly utilize larger computing power by increasing the 
number of processor cores continuously without increasing the 
program complexity. Thus, it can be one of development 
directions of future computing technology. 

For some of existing algorithms, due to the complex control 
structure and data dependency, it is hard to change into an 
effective SIMD algorithm. 

In a traditional parallel program, a process is divided into 
many subprocesses delivered to multiple processors. But 
because of dependency usually exist among subprocesses, and 
the degree of parallelism is limited. What is more, the 
decomposition process is hardly sustained when we face larger 
amounts of data. 

In this paper, based on the idea of data parallelism we 
propose a new processing model. The decomposition object in 
this model is the data rather than the processing procedure. 
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Such decomposition is capable of leading to unlimited 
parallelism, and the increasing amount of data can be easily 
dealt with more processor cores. 

In this paper, we take the precise collision detection in BIM 
as an example, introduce the construction process of such an 
SIMD algorithm and analyze its performance and scalability. 

II.  RELATED WORKS 

The Building Information Modeling (BIM) is a technology 
of designing the building with the digital model. In the design 
phase, the precise collision detection can help us to find design 
error in time and provide hints for optimizing or modifying 
design. Such a technique can usually remarkably reduce design 
cost and improve design efficiency. 

Existing parallel algorithms of the collision detection are 
classified into three categories: the parallel hierarchical 
bounding box algorithm, the parallel space partition algorithm 
and the parallel image space algorithm. 

An approach for fast bounding volume hierarchy (BVH) 
construction based on tree structure on GPU is proposed in [1]. 
A method that partitions scene data, and decomposes and 
updates BVH concurrently is introduced in [2]. The 
SIMD-DOP method based on the discrete orientation polytope 
(k-DOP) and optimized by SIMD instructions is introduced in 
[3]. A new k-DOP method improved by genetic algorithms is 
proposed in [4]. Building balanced BVH tree with the divide 
and conquer strategy improves the efficiency of the parallel 
traversal of the bounding box tree in [5], [6]. A clustering 
scheme and a collision-packet traversal to perform efficient 
collision queries is presented in [7]. A method with the dynamic 
execution model and its associated experimental runtime 
system is presented in [8]. The OBB and AABBBVH tree with 
some other technologies has been used in [9]-[14]. The 
p-partition front method in [15] partitions and distributes the 
workload of BVH traversal among multiple processing cores in 
many-core platform without the need for dynamic balancing. 

The octree node pair is used to determine the level of 
parallelization combining with load balancing algorithm in 
[16]. An octree grid and octree subdivision improved by a 
two-stage scheme is used to reduce the number of tests in the 
broad phase in [17]. A technique for dynamic construction of 
octree is presented in [18]. A G-Octree structure dividing the 
scene space owning the advantages of both the uniform grid 
and octree is proposed in [19]. A new octree-based proxy is 
proposed which divides the scene mesh in [20]. The approach is 
proposed which divides space into a sparse grid of regular 
axis-aligned voxels then objects are sent to all voxels they 
intersect in [21]. 
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It introduces an approach based on image–space interference 
tests in [22]. It presents a novel and fast algorithm with the 
A-buffer, in which the depth values of texel are used to 
compute colliding sets in [23]. The algorithm on the basis of 
RECODE and RAPID algorithm is proposed in [24].  

There are some problems in these algorithms. First, accurate 
locations and shapes of the collision cannot be obtained. 
Second, the parallelism of the algorithm is the parallelism of the 
control flow rather than data flow, which limits the degree of 
parallelism. Third, when data amount rises, it is difficult for 
user to get more computation power by increasing the number 
of processor cores. In these existing algorithms there are severe 
dependency among data, much of the computation is spent on 
the maintenance of dependency. Such algorithms are usually 
complex in program structure and low in scalability. 

III. THE SUMMARY OF THE ALGORITHM  

The three steps of the algorithm are the following. In the first 
step, the models for collision detection are partitioned into sets 
of cubes respectively. Then in the second step, for each pair of 
cubes belonging to different models, a collision detection is 
played. Since the shapes of these cubes are simple and 
identical, such a collision detection is extremely easy. Finally, 
in the third step, the collision results of the detection process in 
the second step are merged to generate the collision results of 
models. As long as the cubes from these models are small 
enough, these collided cubes can approximate the final 
collision results. Thus it constitutes a data parallel computing 
process which includes the parallel partition of the models into 
cubes, the parallel collision detection of all pairs of cubes 
belonging into different models and the parallel reduction of the 
detection result. The process formed in three steps is the typical 
data parallel computation process which can be undertaken by 
thousands of independent parallel threads which means the 
greater computing power can be easily obtained via increasing 
the number of processor cores without changing programs; that 
is so-called continuous scalability. 

A. The Parallel Partition 

Different models are divided into their respective collections 
of cubes on the different processor cores. There are no 
correlations and also data exchanges among processor cores. 
The precision of the computation is defined as the length of 
cube’s edge. Cubes have same length but different positions. 
Cubes in the collection constitute a new component which 
approximately expresses the model. The higher the precision is, 
the more approximate the new component and the model are. 
So the partition algorithm, Partition (The Model, The 
Precision), which generates the collection of cubes, mC , is 

defined. On the assumption, uP  denotes the processor core and 

u is an unique serial. 
Algorithm 1. Partition 

 1m , 2m ,…, Nm [input] total models 

uP [input] the processor core u  

a [input] The Precision 

mC [output] the collection of cubes of m  

1: For all  1,u N  

2: m is divided into many cubes which construct mC by uniform 

grid. 
3: End 
The method of partitioning the model is uniform grid in 

Algorithm 1. If the time of generating each cube is 1t , it is 

obvious that the time of Algorithm 1 is proportional to mC , 

that is mC 1t . Due to the arbitrariness of m , mC also means 
average. So, the total time that different cores execute 

Algorithm 1 concurrently is also mC 1t . 
After the partitioning process, each pair of cubes of different 

models forms a two tuple. Assuming, we have 

 2N N  models. For model (0<= <= )m m N , its 

corresponding number of cubes is mC . For each pair of 

models, im and jm , imC and jmC can be generated. There are 

i jm mC C number of two tuples can be generated. So, there are 

total 
1 1

i j

N N

m m
i j i

C C
  
  number of two tuples. 

Now, it is time to generate total two tuples. On the PRAM, 
where there are infinite number of processor cores, the 
algorithm Pre-Generation and Generation which generating 
total two tuples are defined. 

Algorithm 2. Pre-Generation 

1m , 2m ,…, Nm [input] total models 

1mC ,
2mC ,…,

NmC [input] collections of models 

uP [input] the processor core u  

Pair [output] the collection of the number of two-tuples 

1:Forall  1, ( 1) / 2u N N   

2: Obtaining models, im and jm , and also..and
jmC through u  

3: uPair =
i jm mC C  

4:End 

On the PRAM,  1 / 2N N  processor cores execute the 

Algorithm 2 concurrently and output the collection Pair , 
where the element denotes the quantity of two-tuples that can 
be produced from cubes of two models. The second and third 
step in Algorithm 2 will be done in constant time. So, the time 
of Algorithm 2 is constant. The collection _Prefix Pair where 

the element _ uPrefix Pair =
1

u

i
i

Pair

 , and total count of 

two-tuples, TotalPairCount = _ NPrefix Pair , are defined. 

The _Prefix Pair collection will be evaluated by the parallel 

prefix summation and its time is   1 / 2log N N   [25]. 

Algorithm 3. Generation 

1m , 2m ,…, Nm [input] total models 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:3, 2017

336

 

 

1mC ,
2mC ,…,

NmC [input] collections of models 

uP [input] the processor core u  

Pair [input] the collection of the number of two-tuples 

_Prefix Pair [input]the prefix summation of Pair  

D [output] the collection of two-tuples 

1: Forall  1, ( 1) / 2u N N   

2:  For j =1to uPair do 

3: t = j + 1_ uPrefix Pair   

4:    Obtaining two collections,
xmC and

ymC ,from uPair  

5:   Obtaining the jth two tuple, 1jCube and 2jCube ,of two tuples 

that
xmC and

ymC generate 

6:    tD ={ u , 1jCube , 2jCube } 

7:  End 
8: End 
At least TotalPairCount processor cores are required to 

practice the collision detection of two-tuples as fast as possible. 
Therefore, when it is generating the collection of two-tuples, 
Algorithm 3 also sets corresponding two-tuple for each 
processor core in the third and sixth step. In Algorithm 3, steps 
from 3 to 6 will be done in constant time. So, its execution time 

is proportional to the average size of set uPair , that is
2

mC . 

B. The Parallel Collision Detection 

Now, the collision between two cubes in each two-tuple in 
the collection D from the Algorithm 3 will be detected. On the 
assumption, there is the algorithm which detects the collision 
between two cubes whose time is 2t . Hence, the algorithm 

Detection detecting the collision concurrently is defined. 
Algorithm4. Detection 

uP  [input] the processor core u  

D  [input] the collection of two-tuples 
R  [output] the collection of results of the detection 

1: Forall  1,u TotalPairCount  

2:  { u , 1Cube , 2Cube }= uD  

3:  Detecting the collision between 1Cube and 2Cube ;the result=1 

if they collided, or 0 

4:  uR ={ u , 1Cube , 2Cube }∪the result 

5: End 

In PRAM, TotalPairCount number of processor cores run 
the Algorithm 4 concurrently and gain the consequence R . In 
Algorithm 4, steps from 2 to 4 can be done in constant time and 
the step 3 costs the majority of time. So, the time of Algorithm 
4 is 2t . 

C. The Parallel Reduction 

At last, it is time to reduce R  from the Algorithm 4 and 
extract all two-tuples where two cubes are collided. If positions 
of these two-tuples in the final results can be calculated in 
advance, the procedure of extraction can be done concurrently. 
In Algorithm 4, R can be considered as the collection of 1 and 0, 
where R is 1 indicates whose two cubes are collided, 

otherwise R is 0. The collection _Prefix R is defined where the 

element _ uPrefix R =
1

u

i
i

R

 which denotes the position in final 

collection when uR is 1. The _Prefix R  collection can be 

evaluated by the parallel prefix summation algorithm [25] and 

its time is  log TotalPairCount . So, the algorithm Reduction 

extracting these two-tuples concurrently is defined.  
Algorithm5. Reduction 

uP  [input] the processor core u  

R  [input] the collection of results of the detection 

_Prefix R  [input] the prefix summation of R  

O [output] the collection of all collided two-tuples 

1: Forall  1,u TotalPairCount  

2:  If 1uR  Then 

3:    t = _ uPrefix R  

4:    { u , 1Cube , 2Cube }= uR  

5:  tO ={ u , 1Cube , 2Cube } 

6:  End 
7: End 
In PRAM, TotalPairCount number of processor cores run 

Algorithm 5 concurrently and gain the consequence O . O is the 
collection of all collided two-tuples. It is able to gain details of 
the collision from two-tuples in O . In Algorithm 5, steps from 2 
to 5 have be done in constant time. Hence, the time of 
Algorithm 5 is constant. 

D. The Time of the Algorithm 

Algorithms 1 – 5 and discussion of the construct of the new 
algorithm are proposed in the paper. The proposed algorithm 
and its time are discussed on PRAM with infinite number of 
processor cores. Parts and their time of the new algorithm are 
listed in Table I. So, the total time 1T of the new algorithm is the 

sum of the time of each part. 
 

TABLE I 
THE TIME OF THE ALGORITHM 

Parts Time 

Algorithm 1. Partition 1mC t  

Algorithm 2. Pre-Generation Constant 

Obtaining _Prefix Pair    log 1 / 2N N   

Algorithm 3. Generation 2
mC  

Algorithm 4. Detection 2t  

Obtaining _Prefix R   log TotalPairCount  

Algorithm 5. Reduction Constant 

 

  
 

2
1 1

2

1 / 2

Constants

m mT C t log N N C

t log TotalPairCount

    

 
                  (1) 

 

2

1
_

N

N i m
i

TotalPairCount Prefix Pair Pair N C


         (2) 
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Combining (1) and (2): 
 

    2
1 1 23 2 Constan| ts|m m mT log N log C C t C t      (3) 

IV. THE SUMMARY OF THE ALGORITHM IN REALITY 

In the discussion of algorithms, each processor core only 
handles a piece of data and the number of processor cores is 
equal to pieces of data. On the assumption there are Q  number 

of processor cores, each processor core should now handle 
multiple pieces of data. Thus, it is necessary to make 
modifications on formulas and the time of the new algorithm. 
Take the Algorithm 1 for example, it is obtained after 
modification. Algorithms 2 to 5 are modified in the same 
manner and not described in detail any further. 
Furthermore, _Prefix Pair and _Prefix R  are calculated by the 

parallel prefix summation algorithm [25]. Because of the Brent 

theorem [26], its time is  /log M M Q where M is the 

amount of data under such circumstances. The time of 
algorithms after modification is listed in Table II. So, the total 
time 2T of the new algorithm is still the sum of the time of each 

part. 
 

   
   

 
 

2 1

2
2

/ 1 / 2

1 / 2 1 / 2

1 / 2 /

( ( ))

( ( ))

( ( )) (

/

)

/

m

m

T N Q C t N N Q

log N N N N Q

N N Q C TotalPairCount Q t

log TotalPairCount TotalPairCount Q

TotalPairCount Q

   

   

  

 

  (4) 

 
Combining (2) and (4): 
 

 2
1 1 / 2mK C                            (4) 

 
2 2

2 2 1m m mK C C t C t                          (5) 

 
2

3 mK log C                                  (6) 

 

        22 2
2 1 2 3/ / 1 / 2 3T N Q K N Q K log Q Q logN K     

(7) 
 

It is obvious that (5)-(7) are constants. In (8), 2T consists of 

the parallel part which is 

        22 2
1 2/ / 1 / 2N Q K N Q K log Q Q    and the 

serial part which is 33logN K . When the number of processor 

cores, Q , approaches infinity, the parallel part can be 

accelerated linearly and finally becomes zero. The serial part is 
just the logarithm function of N . 

Algorithm 1’. Partition 

1m , 2m ,…, Nm [input] total models 

uP [input] the processor core u  

a  [input] The Precision 

mC [output] the collection of cubes of m  

1: For all  1,v Q  

2:  For j=0 to  / 1N Q  do 

3:   If *( )u j Q v N   Then, 

4:    m is divided into many cubes which construct mC by uniform 

grid method. 
5:  End 
6:  End 
7:  End 

V. DESIGN AND ANALYSIS OF THE EXPERIMENT 

A. The Target and Design of the Experiment 

In what follows, we use N , Q andT to respectively denote 

the amount of data, the number of processor cores and the 
execution time. 

The target of the experiment is to verify the relationship that 
is the increase of N can be handled by the increase of Q with 

the execution time T unchanging. N can be adjusted flexibly.  
 

TABLE II 
THE TIME OF THE ALGORITHM AFTER MODIFICATION 

Parts Time 

Algorithm 1’. Partition   1/ mN Q C t  

Algorithm 2’. Pre-Generation     1 / 2N N Q  

The calculation of 

_Prefix Pair        1 / 2 1 / 2log N N N N Q  

Algorithm 3’. Generation      2
1 / 2 mN N Q C  

Algorithm 4’. Detection   2/TotalPairCount Q t  

The calculation of 

_Prefix R  

(log TotalPairCount   

)/TotalPairCount Q  

Algorithm 5’. Reduction /TotalPairCount Q  

 
TABLE III 

GPU 

Name Q  GPU clock frequency (MHz)

Tesla C2075 448 1147 

Tesla K20m 2496 706 

KeplerGK20A 192 852 

 
We choose three GPUs with a different number of processor 

cores. Three key parameters of the GPU are shown in Table III. 
The algorithm is implemented on the CUDA platform. The 

implementation of the algorithm on different GPUs is identical, 
including the partition granularity. 

B. Results and Analysis 

On different GPUs, with the addition of N , the 
corresponding algorithm execution timeT  is shown as Tables 
IV-VI. In Tables IV-VI, the execution time has been divided by 
the respective GPU clock frequency. After multiple polynomial 
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fittings between N and T , we find the quadratic fitting can lead 
to good fitting results. So the experimental equations on 
different GPUs between T and N  are determined by the 
quadratic fitting and shown in Table VII. 

 
TABLE IV 

THE EXECUTION TIME ON TESLA C2075 

N  T (MS) N  T (ms) 

448 2.115142 3136 47.203162 

896 5.737569 3584 59.519289 

1344 11.052878 4032 74.368611 

1792 17.526462 4480 90.558515 

2240 26.039730 4928 107.930014 

2688 35.292662 5376 127.180430 

 
TABLE V 

THE EXECUTION TIME ON TESLA K20M 

N  T (MS) N  T (ms) 

312 1.163411 3432 45.284932 

624 2.846401 3744 52.853101 

936 5.174316 4056 61.248362 

1248 8.110800 4368 70.055490 

1560 11.691257 4680 79.540202 

1872 15.882692 4992 89.618648 

2184 20.590834 5304 100.404845 

2496 25.807761 5616 111.825580 

2808 31.716484 5928 123.614233 

3120 38.157489   

 
TABLE VI 

THE EXECUTION TIME ON KEPLER GK20A 

N  T (MS) N  T (ms) 

192 2.675388 1920 109.851498 

384 6.337382 2112 158.259225 

576 12.864418 2304 215.330858 

768 23.818332 2496 183.237438 

960 36.066012 2688 211.913586 

1152 41.133188 2880 242.920610 

1344 56.061404 3072 275.532809 

1536 72.166813 3264 312.487933 

1728 89.868976 3456 377.754658 

 
Now, we keep T unchanged and consider the relationship 

between Q  and N . The corresponding N in Table VIII, IX, X 

can be got from the same T  in (9), (10) and (11) by gradually 
increasing T . 

Based on Tables VIII, IX, X, on the same T , we get the 
relationship between Q  and N , as in Fig. 1. 

 
TABLE VII 

THE EXPERIMENTAL EQUATIONS ON GPUS 

Name The calculation equation for the time T  

Tesla C2075 2(3.887136 06) 0.002715 0.2 1 3+ + 1 3 5NE N (8) 

Tesla K20m 2(3.06991 06) 0.002634 0.070202E N N   (9) 

KeplerGK20A 2(2.71559 05) 0.010828 2.138942E N N   (10) 

 
 
 

TABLE VIII 

THE CORRESPONDING T FOR THE N ON TESLA C2075 

T (ms) N  T (MS) N  

10 1276 110 4977 

20 1934 120 5213 

30 2441 130 5440 

40 2869 140 5658 

50 3247 150 5868 

60 3588 160 6072 

70 3902 170 6269 

80 4195 180 6461 

90 4470 190 6647 

100 4729 200 6828 

 
TABLE IX 

THE CORRESPONDING T FOR THE N ON TESLA K20M 

T (ms) N  T (MS) N  

10 1420 110 5570 

20 2155 120 5836 

30 2723 130 6091 

40 3203 140 6336 

50 3627 150 6573 

60 4010 160 6802 

70 4363 170 7023 

80 4692 180 7239 

90 5000 190 7448 

100 5293 200 7652 

 
TABLE X 

THE CORRESPONDING T FOR THE N ON KEPLER GK20A 

T (ms) N  T (MS) N  

10 498 110 1842 

20 725 120 1931 

30 907 130 2016 

40 1062 140 2097 

50 1201 150 2176 

60 1326 160 2252 

70 1443 170 2326 

80 1551 180 2398 

90 1653 190 2468 

100 1750 200 2536 

 
In Fig. 1, the vertical axis is Q  and the horizontal axis is N . 

Each polyline represents the relationship between N and Q on 

the different time T . The polyline from the left to the right 
indicates the time gradually increases with the same interval. 

The conclusion from Fig. 1: 
1. For the specific timeT , the increase of N can be dealt with 

in the increase of Q , which maintains the execution time 

unchanged. For example, in the polyline (T =30ms in Fig. 
1), when N =2500, it gets Q =1000; when N =2750, it 

gets Q =2000. The time T  stays the same when this 

happens. Thus, the target of the experiment can be verified. 
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Fig. 1 The relationship between Q  and N  on the same time T  

 
2. The average slopes of polylines decrease gradually from 

left to right. On the leftmost polyline, when N  increases 
by 1000, Q  increases by 2300 to keep T  unchanged. But, 

on the rightmost polyline, when N  increases by 5000, 
Q also increases by 2300 to keep T  unchanged. Thus, 

from the left to the right in Fig. 1, it indicates that when N  
increases, the same increase of Q  can cope with the larger 

increase of N . The continuous scalability of the algorithm 
is verified.  

3. From left to right, polylines become more and more dense. 
It shows that the growth of N can lead to the larger growth 
rate of T . Theoretically, the growth rate of T  is the first 
order partial derivative of N in (8). The one or two order 
partial derivative of N in (8) can be obtained. 
 

2 22 1
31T K K

N
N Q N Q


  


            (11) 

 
2

2
2

2 1
31T K

Q NN


 


            (12) 

 

when N > 11.5 /Q K is established, the value of (13) becomes 

greater than zero, and the value of (12) is increasing. So, a 'N  
can be found, when 'N N  is established, the growth rate of 
T  becomes larger. Thus, the experiment results verify the 
point. 

VI. CONCLUSION 

In BIM and other fields, the increasing amount of data 
gradually becomes the obstacle of computing technique. How 
to solve this problem by increasing processor core is a concern. 

In this paper, we take the precise collision detection in BIM as 
an example, and change a traditional serial execution based 
algorithm to a parallel algorithm with an unlimited extension in 
parallelism. 

In the era of the multi-core and many-core techniques, the 
combination of data parallelism and the SIMD technique can 
show prominent advantages in controlling the program 
complexity and getting sustainable scalability, and will be one 
of the development trends for these applications. 
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