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Abstract—It is crucial to quantitatively evaluate the treatment of 

epilepsy patients. This study was undertaken to test the hypothesis that 
compared to the healthy control subjects, the epilepsy patients have 
abnormal resting-state connectivity. In this study, we used the 
imaginary part of coherency to measure the resting-state connectivity. 
The analysis results shown that compared to the healthy control 
subjects, epilepsy patients tend to have abnormal rhythm brain 
connectivity over their epileptic focus. 
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I. INTRODUCTION 
UNCTIONAL maps created with active state depend on 
subject’s cooperation and on study paradigms that are 

capable of reliably activating the brain area of interest.  
Instead of mapping brain area using activation methods, 

functional maps can also be created by measuring the 
functional connectivity under resting-state. The underlying 
rationale is that disconnected tissue does not participate in the 
brain interactions occurring between brain areas and would 
show abnormal functional connectivity. Temporal connectivity 
under resting-state are presumed to reflect intrinsic functional 
connectivity and have been demonstrated across several 
distinct networks serving critical functions like vision, hearing, 
language, and salience detection [1]-[3]. One such network that 
has been studied extensively is the default mode network 
(DMN), a set of brain regions that typically deactivate during 
performance of cognitive tasks [4]. Detection of temporal 
connectivity in resting-state network would provide more 
compelling evidence for the existence of a default mode 
network, and enhance the understanding of neural activity in 
baseline states, thereby refining interpretations of ‘‘activation’’ 
and ‘‘deactivation’’ in functional imaging studies [5]. Some 
studies demonstrated that the strength of resting-state 
functional connectivity reflects the strength of structural 
connectivity [6][7].  

Some pioneering electroencephalographic (EEG) and 
magnetoencephalography (MEG) studies assessing functional 
connectivity in patients with brain lesions using coherence 
found highly significant decrease in coherence in lesion 
patients during the resting state [8][9]. However, since the 
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traditional coherence method is sensitive to volume conduction 
artifact [10], functional connectivity is easily overestimated. 
Recently, Nolte et al. [11] introduced imaginary part of 
coherence to overcome such problem.  

In this study, we tried to use imaginary part of coherence to 
compare the functional connectivity in epilepsy patients and 
healthy control subjects. 

II. SUBJECTS AND METHODS 

A.Patients and Healthy Control Subjects 
10 epilepsy patients and 10 healthy control subjects 

underwent MEG and fMRI scan at the Nanjing Brian Hospital 
(NBH), Nanjing Medical University. All participants gave their 
written informed consent to participate in the experiments; all 
procedures were approved by NBH Committee on Human 
Research.  

B.Magnetoencephalographic Recordings 
The participants were laying awake and with their eyes 

closed in a magnetically shielded room while their continuous 
resting state MEG was recorded with a 275-channel 
whole-head MEG system (VSM MedTech,  Canada), using a 
sampling rate of 300 Hz. An artifact-free epoch of 2-minute 
duration was recorded for subsequent analysis in each patient 
and subject.  

C.Imaginary Coherence 
The coherence, measures the linear time-invariant 

relationship between two time series x(t) and y(t) at frequency 
λ, is defined as 
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Where Rxy(λ) is the complex valued coherency of x and y, 
fxy(λ) is the cross-power spectral density (CPSD) of x and y, 
and fxx(λ) is the power spectral density (PSD) of x . Coherence 
is a positive function, and bounded by 0 and 1, where 0 
indicates that x and y have no linear relationship, and 1 
indicates that x and y have perfect linear relationship. 

A 60 s duration raw MEG data was selected for subsequent 
analysis in each patient and subject. The raw MEG data were 
high-pass filtered with a cut-off frequency of 4 Hz and notch 
filtered at 50 Hz. CPSD of x and y was computed by using 
Welch’s method [13]. The Fourier-transformed X(λ) and Y(λ) 
are used to compute the CPSD, fxy (λ) = X(λ) Y* (λ), where Y* 
denotes the complex conjugate of Y. X and Y were 
Hanning-windowed, each segment k was 2 s long and 
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overlapped adjacent segments by 1 s. Finally, fxy is averaged 
over the whole successive segments.         

After calculating the complex valued coherence, then took 
the square value of the imaginary part of complex valued 
coherence as the imaginary coherence (IC): 

2
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All of the data analyses were performed using custom 
programs written in Matlab R2010a (Mathworks Inc., Natick, 
MA, USA). 

III. RESULTS 
Fig.1 shows the typical results for 2 patients and healthy 

control subjects:  
 

 
 
Fig.1 Patterns of imaginary coherence connectivity increased in the 
β band for patients than healthy control subjects (values below low 
threshold=0.1 will not be shown in the figure, while values beyond 

high threshold=0.3 will be shown as red line) 
 
The MEG analysis for patients LB and GS shown MEG 

epileptic dipoles at right occipital lobe and left frontal lobe, 
respectively. According to the patterns of imaginary coherence 
connectivity shown in Fig.1, there is increased connectivity 
around 18 Hz over epileptic dipole locations for these two 
patients. However, there is no obvious connectivity for two 
healthy control subjects ZQ and ZY. 

IV. DISCUSSION 
Unlike previous coherence studies [8][9], which shown 

decreased connectivity over lesion locations, this study shown 
increased connectivity over epileptic focus. One reasonable 
explanation is that the previous studies investigated brain 
lesions (space-occupying brain lesions for [8], and brain tumors 
for [9]), the presence of lesions disrupting cortex and adjacent 
white matter the coherence between those areas and the 
remaining cortical areas are lower than normal due to 

impairment of the fibers that connect the damaged areas with 
the rest of the brain. Although, the definite cause for epilepsy is 
not clear yet, unlike the space-occupying or necrosis tissues, 
some epilepsy cases have normal tissue structure [14] but 
characteristically abnormal rhythm which produced by 
excessive electrical discharges in the nerve cells. Our analysis 
results, in some extent, reflect this phenomenon, i.e., compared 
to the healthy control subjects, epilepsy patients tend to have 
abnormal rhythm brain connectivity over their epileptic focus. 
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