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Abstract—PPG is a potential tool in clinical applications. Among 

such, the relationship between respiration and PPG signal has attracted 
attention in past decades. In this research, a bivariate AR spectral 
estimation method was utilized for the coherence analysis between 
these two signals. Ten healthy subjects participated in this research 
with signals measured at different respiratory rates. The results 
demonstrate that high coherence exists between respiration and PPG 
signal, whereas the coherence disappears in breath-holding 
experiments. These results imply that PPG signal reveals the 
respiratory information. The utilized method may provide an attractive 
alternative approach for the related researches. 
 

Keywords—Coherence analysis, photoplethysmography (PPG), 
bivariate AR spectral estimation.  

I. INTRODUCTION 
HOTOPLETHYSMOGRAPHY (PPG) signal represents the 
volumetric changes in blood vessels. Such blood volume 

change occurs mainly in the arteries and arterioles. The 
principle of PPG is that the light (mainly red, infrared or green 
light) traveling through biological tissue (e.g. the fingertip or 
earlobe) will be absorbed by different absorbing substances, 
including skin pigmentation, bone, and arterial and venous 
blood. The arteries contain more blood during systole than 
during diastole, and their diameter increases due to the 
increased blood pressure. The detected light reflected from or 
transmitted through the vessels will thus fluctuate according to 
the pulsatile blood flow during the circulation. Therefore, the 
PPG signals are composed of two components, the alternating 
part of total absorbance due to the pulsatile component of the 
arterial blood (AC component) and the absorbance due to 
venous blood, the part of the constant amount of arterial blood, 
and other non-pulsatile components such as skin pigmentation 
(DC component) [1]. The simplest PPG sensor consists of a 
light source and a photo detector packaged in a compact plastic 
housing. The advantages of PPG include its easiness to set up, 
simple use and low cost. In addition, PPG has the ability to take 
measurement without having direct contact with the skin 
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surface. For these advantages, the PPG technology has 
attracted much attention in clinical applications [2].  

Heart rate (or pulse rate) and respiratory rate are two 
important vital signs, they are of great importance when 
critically ill adults and newborn infants are monitored. Clinical 
monitoring of heart rate is generally performed by counting 
QRS complexes of the electrocardiogram (ECG) per time unit. 
The respiratory rate is usually monitored by the transthoracic 
impedance plethysmography [3] or thermal technique [4]. As 
the AC component of PPG signal is synchronous with the heart 
beat and thus can be identified as a source of heart rate 
information. When properly shielded, PPG can be used in 
electrosurgery, which usually disables the ECG measurement. 
In addition to heart-synchronous variations, the PPG signal 
contains respiratory-induced intensity variations (RIIV) 
[5]-[6]. This modulation arises from respiratory-induced 
variations in venous return to the heart, caused by the 
alterations in intrathoracic pressure. A part of the 
respiratory-related fluctuations in perfusion also originates 
from the autonomous control of the peripheral vessels and is 
also synchronous with respiration. RIIV signal can be extracted 
from PPG by a bandpass filter (0.13-0.48 Hz) [7]-[9]. High 
coherence has been shown between RIIV and changes in tidal 
volume and respiratory rate [7]-[9]. These results imply PPG is 
a potential tool to acquire heart rate and respiratory rate 
simultaneously. 

The relationship between RIIV and respiratory signal has 
been examined extensively in the past decades. However, little 
information has been published concerning the coherence 
between raw PPG signal and respiratory signal. As the RIIV 
may deviate with the varying respiratory rate, the fixed 
bandpass filter for PPG signal filtration may limit the accuracy 
of analysis in practical conditions, especially in deep (or slow) 
and fast breathing cases. The objective of the present study was 
to investigate whether such coherence exists between raw PPG 
signal and respiratory signal. The bivariate autoregressive (AR) 
spectral estimation method proposed by Morf et al. [10], which 
is termed as Vieira-Morf method in [11], was utilized for the 
coherence analysis under different breathing rates and the 
breath-holding state for 10 healthy subjects. The bivariate 
AR-based cross-spectral analysis demonstrated that raw PPG 
signal and respiration were coherent (magnitude-squared 
coherence > 0.5) at the respiratory frequency in the subjects 
studied, with changes in respiration leading to changes in PPG. 
No coherence was found in breath-holding cases for almost all 
subjects. The results of this study verify that there exists the 
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corresponding respiratory component in spectrum of raw PPG 
signal. The results may provide another attractive approach to 
acquire the respiratory information from PPG without the need 
of filtering, in which case the raw PPG signal can be processed 
for further applications. 

II. METHODS AND MATERIALS 

A. Subjects and Experiments  
Ten healthy subjects (eight males and two females, 

non-smoker and with no prior history of cardiovascular disease) 
aged between 22 and 24 took part in the experiments after 
giving the informed consent. All subjects were asked to refrain 
from caffeine and alcoholic drink at least 4 hours before the 
experiments. All of the experiments were performed at the 
same university laboratory with the room temperature being 
maintained at about 25 degrees centigrade during the night time 
(from 9 to 11 pm). The subjects were required to have a resting 
period of at least 5 minutes under relaxation status before the 
experiment.  

Each experiment included three stages classified by different 
respiratory rate (20 breaths/min, 12 breaths/min and holding 
the breath in order). Each stage was maintained at least one 
minute, and the intervals between stages were 5 minutes. 
Throughout the experiment, the subjects were seated in a 
comfortable chair with their right upper arm kept at the height 
of heart level. The breathing rate is controlled by the subjects 
with a clock for their timing reference. The breathing rate is not 
easy to fix at a constant, but it is controlled to an acceptable 
precision during the whole experiment. 

B. Signal Measurement and Signal Analysis 
The Multifunctional physiological data acquisition system 

MP30® (Biopac  Inc.) was utilized for signal measurement. 
PPG signal (by module SS4LA, with 66.5-Hz lowpass filtering) 
and respiratory signal (by module SS6L, also with 66.5-Hz 
lowpass filtering) were collected simultaneously during each 
experimental stage. The PPG probe (SS4LA, with infrared 
wavelength 860 nm) was attached to the right index finger, 
whereas the respiratory signal was acquired by fast response 
thermistor (SS6L) and was put at the nostril during the 
measurement. The user friendly analysis package Biopac 
Student Lab® was used for the signal management, including 
the signal quality pre-screening, data storage and retrieval. The 
sampling frequency was 250 Hz. The signals were verified 
visually by a well-trained technician. A typical respiratory 
signal and PPG signal are shown in Fig. 1. If the signal quality 
was poor, the signal would be excluded from further analysis 
and the subject was asked to repeat the experiment once again.  

C. Signal Analysis 
The analysis was executed after the experiments were 

finished and approved. The source code for bivariate AR 
spectral estimation was developed in MATLAB® (MathWorks 
Inc.). The estimation method was originally developed by Morf 
et al. [10]. It is an expansion of single-channel Levinson recur- 

 
(a) 

 
(b) 

Fig. 1 Typical signals: (a) respiratory signal (12 breaths/min), (b) PPG 
signal 

 
sion algorithm [12], and is briefly described as below. 

Let x[n] denote the vector of samples from two-channel 
process at sample index n 

Tnxnxn ]][  ][[][ 21=x ,                      (1) 
where the superscript T represent the transpose operation. In (1), 
x1[⋅] and x2[⋅] represent the acquired respiratory signal and PPG 
signal respectively, and both of them are all real-valued in this 
research. The bivariate AR(p) process, assumed to be wide- 
sense stationary (WSS), can be represented as 
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for the backward AR process. In (2) and (3), Ap(k) and Bp(k) are 
the 2×2 AR(p) forward and backward prediction parameter 
matrices, and ][nf

pe  and ]1[ −nb
pe  are the 2×1 vector 

representing the forward and backward prediction error of the 
AR(p) driving noise process. With the property that the driving 
noise process is uncorrelated with past values of the AR 
process, the two-channel Yule-Walker normal equations of 
forward linear prediction version can be derived as  
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and 
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In the above equations, 0 is a 2×2 null matrices and I denotes a 
2×2 identity matrix. The symbol E represents the statistical 
expectation operator and the superscript H means the Hermitian 
transpose operation. The matrix f

pP  in (8) is in its essence the 
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covariance matrix of the driving noise process for the forward 
AR(p) process. 

The corresponding two-channel Yule-Walker equations for 
backward prediction can also be derived in a similar way as 

]    [ b
ppp P00Rb = ,                     (9) 

in which      
   ] )1( )([ IBBb ppp p=                (10) 
and 
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The matrix b
pP  in (11) is the covariance matrix of the driving 

noise process for the backward AR(p) process.  
The correlation matrix Rp in (6) has a Hermitian and a 

block-Toeplitz structure. By the definition, the correlation 
matrix at order p+1, Rp+1, has the same structure, too. Rp+1 can 
be partitioned in two ways 
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in which  
   [ ]]1[][]1[1 −−−−=+ xxxxxxp rprprs ,     (14) 
and  
   [ ]]1[]2[]1[1 +=+ prrr xxxxxxpr ,       (15) 
with the definition 
   ])*}[(][{][ knxnxEkrxx −⋅≡ .          (16) 
The partitions in (12) and (13) may then be utilized to construct 
the following relationships 
   [ ] [ ]11          ++ Δ= p

f
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and 
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in which the 2×2 matrices Δp+1 and ∇p+1 are defined as  
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   H
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Based on (17) and (18), and with the expansion of (4) and (9) to 
the order p+1, the following relationships can thus be derived 
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On the element-by-element checks in (21) and (22) and with 
the relationships (17)-(20), it can be appreciated that 

  )1(1 += + pp
f AK ,              (23) 

  )1(1 += + pp
b BK ,              (24) 

and  
   )1()1()()( 11 kppkk pppp −+++= ++ BAAA ,      (25) 

  )1()1()()( 11 kppkk pppp −+++= ++ ABBB ,   (26) 

for k=1 to p. Besides, the following relationships can also be 
acquired 

   1
11 )()1( −

++ Δ−=+ b
ppp p PA ,           (27) 

   1
11 )()1( −

++ −∇=+ f
ppp p PB ,           (28) 

and  
   f

ppp
f

p pp PBAIP )]1()1([ 111 ++−= +++ ,      (29) 

   b
ppp

b
p pp PABIP )]1()1([ 111 ++−= +++ ,      (30) 

for which Ap+1(p+1) and Bp+1(p+1) are the forward and 
backward reflection coefficients in the two-channel case. 

Let fb
pP  be denoted as the cross correlation between the 

forward and backward prediction residuals at one unit of lag, 
that is 
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From the relationships (2)-(3) and (19)-(20), it can be proved 
that 
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Substitute (32) into (27) and (28), the forward and backward 
reflection coefficients can be calculated by 
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In addition, the following two relationships can be obtained 
from (21)-(24) 
   ] )[1(] [ 11 pppp p b0A0aa ++= ++ ,         (36) 
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The relationships of the driving noise process between AR(p) 
and AP(p+1) can be obtained by postmultiplying both (36) and 
(37) by xp+1[n] to yield 
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It is assumed that there are N samples in both sequences. The 
Vieira-Morf method is an order update recursion algorithm and 
is initialized by  
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The whole procedure of Vieira-Morf method is summarized in 
TABLE I. 

For bivariate AR(P) power spectrum density (PSD), define 
the complex exponential vector EP(f) of P+1 block elements as 
   ])2exp(   )2exp(  [)( IIIE fPTjfTjfP ππ= ,   (42) 
in which T is the sampling interval (sec) of the signals x[⋅]. 
After the computation of the related coefficients, the PSD can 
be calculated by 
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where aP is defined in (5). 
The magnitude squared coherence (MSC)  
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versus frequency f are utilized for the coherence analysis 
between respiration and PPG signal in this research. In addition, 
the corresponding PSD of respiration and PPG signal can be 
derived from P11(f) and P22(f) versus frequency f. 

III. RESULTS AND DISCUSSION 
The coherence between the measured PPG and respiratory 

signals at different breathing rates from ten subjects was 
analyzed to evaluate their relationships in frequency domain. 
Fig.2 shows the coherence analysis results for one subject in the 
condition of 12-breaths/min rate. As seen in Fig. 2(a), there 
exists MSC greater than 0.5 near 0.2 Hz (the respiratory 
frequency, see Fig.2(c)). Also, the coherence phase is smaller 
than zero (see Fig.2(b)), which imply that the respiration- 
induced changes in PPG signal lags the respiratory signal. It 
also can be appreciated that there is a corresponding component 
near the respiratory frequency in the PSD of PPG signal, as 
depicted in Fig.2(d). 

The results in the 20-breaths/min condition for the same 
subject are demonstrated in Fig.3 with the same order arranged 
in Fig.2. The MSC depicts that high coherence exists between 
respiration and PPG signal (see Fig. 3(a)). Also, the respiration- 
induced change in PPG has a time delay compared with the res- 

 

 
(a)                                          (c) 

 
(b)                                          (d) 

Fig. 2 Coherence analysis results in 12-breaths/min rate for one 
subject: (a) MSC, (b) coherence phase, (c) PSD of respiratory signal, 

and (d) PSD of PPG signal 

  

 
(a)                                          (c) 

 
(b)                                          (d) 

Fig. 3 Coherence analysis results in 20-breaths/min rate: (a) MSC, (b) 
coherence phase, (c) PSD of respiratory signal, and (d) PSD of PPG 

signal 
 

 
(a)                                          (c) 

 
(b)                                          (d) 

Fig. 4 Coherence analysis results in breath-holding condition: (a) MSC, 
(b) coherence phase, (c) PSD of respiratory signal, and (d) PSD of 

PPG signal 
 

 
Fig. 5 The low-frequency fluctuated pattern in breath-holding 

condition for another subject 
 
piratory signal, as shown in Fig.3(b).  

Fig.4 shows the results in holding-breath condition for the 
same subject. As all of the MSC values are less than 0.5 (see 
Fig.4(a)), it is appreciated that no coherence is found in such 
case. 

Though only the results from one subject are depicted in this 
paper, similar results are derived for almost all subjects. The 
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only exception is the coherent result was found in the 
breath-holding condition for one subject. After checking the 
original respiratory signal, very low-frequency fluctuation was 
found and is demonstrated in Fig. 5. The reason may be due to 
the breath of the subject is not indeed in the holding status such 
that little airstream flows through the nostril during the 
experiment.  For the cases without coherence in breath-holding 
condition, such fluctuation as that shown in Fig.5 is not evident.  

From Fig.2(d) and Fig.3(d), there exists corresponding 
respiratory peak in the PSD of PPG signal. These components 
are usually much smaller compared with the dominant peaks 
which relate directly to the heart beats. If the Fourier-based 
techniques were applied in the research, the respiration-related 
component will not be as obvious as depicted in this research. 

IV. CONCLUSION 
This study utilized bivariate AR spectral estimation method 

to investigate the coherence between the respiratory signal and 
PPG signal under different respiratory rates.  The Vieira-Morf 
method was used for the computation of bivariate AR 
parameters. The algorithm is summarized in TABLE I. The 
coherence analysis results are demonstrated in Fig.2-Fig.4. The 
results show that they are coherent (MSC greater than 0.5) at 
the respiratory frequency. In addition, the response delay in 
PPG induced by respiration is also implied in the negative 
coherence phase (see Fig.2(b) and Fig.3(b)). The respiration 
induced component is usually evident in the PSD of PPG signal, 
as shown in Fig.2(d) and Fig. 3(d). The coherence analysis is 
also specific to respiration. As the breath is in holding status, no 
coherent peak was found in almost all coherence analysis 
results (see Fig.4).  

The existence of coherent peak can be determined by 
checking whether the corresponding pole inside the unit circle 
is prominent or not. It has been shown that the coherence 
spectrum is sensitive and specific to the respiration in this 
research. It may be possible to acquire the respiratory 
information from PPG signal by single-channel AR method 
with the consideration of poles around the respiratory 
frequency. Besides, the bivariate AR method introduced in 
section II can be easily expanded to more than three channels. 
Such multi-channel AR method may be an alternative attractive 
tool for the coherent analysis among respiration, central venous 
pressure (CVP), arterial blood pressure (ABP) and PPG signal 
in the related research, e.g. for the cases in intensive care unit 
(ICU) or during surgical operation. 
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