
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

839

Abstract—IP networks are evolving from data communication
infrastructure into many real-time applications such as video
conferencing, IP telephony and require stringent Quality of Service
(QoS) requirements. A rudimentary issue in QoS routing is to find a
path between a source-destination pair that satisfies two or more end-
to-end constraints and termed to be NP hard or complete. In this
context, we present an algorithm Multi Constraint Path Problem
Version 3 (MCPv3), where all constraints are approximated and
return a feasible path in much quicker time. We present another
algorithm namely Delay Coerced Multi Constrained Routing
(DCMCR) where coerce one constraint and approximate the
remaining constraints. Our algorithm returns a feasible path, if exists,
in polynomial time between a source-destination pair whose first
weight satisfied by the first constraint and every other weight is
bounded by remaining constraints by a predefined approximation
factor (). We present our experimental results with different
topologies and network conditions.

Keywords—Routing, Quality-of-Service (QoS), additive
constraints, shortest path, delay coercion.

I. INTRODUCTION

N Multi Constraint Quality-of-Service (QoS) routing, one
finds a path from a source to destination that satisfies many

QoS constraints such as cost, delay and probability of packet
loss [2], [13], [15]. We model a computer network by a set of
‘v’ vertices and ‘e’ edges, where vertices and edges represent
nodes and links respectively. Each edge has K weights
assigned to it, representing delay, cost, etc. The corresponding
path weight is obtained by adding the weight of edges in case
of additive metrics (e.g. delay, cost) and multiplying in case of
multiplicative metrics (e.g. packet loss), etc. Bandwidth is
considered as concave or min/max (bottleneck) metric where
the corresponding weights of the path is the smallest of the
weights of the edges on that path. [5].We concentrate on
additive metrics only as the concave metric issues would
relatively be easily solved.

Problems involving two or more QoS constraints have been
shown to be NP-Complete. [9]. Many researchers have studied
this problem in the last few years and most of the existing

Manuscript received 18 June 2009.
P. S. Prakash, is with Computer Science and Engineering (PG) Department,

Sri Ramakrishna Engineering College, Coimbatore 641 022, TamilNadu,
India. (Phone: +91 422 2312021, 99945 25625; e-mail:
prakashpsrajan@rediffmail.com).

Dr. S. Selvan is with St.Peter’s Engineering College, Chennai, India.

works concentrate on Multi Constraint Path Problem (MCP)
with two additive constraints. Delay Constrained Least Cost
path problem (DCLC) where two edge weights are cost and
delay, and one seeks a minimum cost path subject to a given
delay constraint. Chen [2] studied DCLC problem where we
want to find a path that satisfies both the delay and cost
constraints.

In [3] Ergun et al, presented a polynomial approximation
scheme for acyclic graphs. Lorenz and Raz [10] presented an
enhanced polynomial algorithm. All these algorithms find a
source-destination path whose delay is at most d (delay
constraint) and cost is not more than (1+) times the cost of
the least- cost delay constrained path, provided that there is a
source-destination path whose delay is at most d . If this
condition is not satisfied then all these algorithms will
terminate which means that the problem is infeasible.

Many researchers deal with multi constraint problem with
two constraints. Goel et al [4] presented an approximation
algorithm for the single source all destinations delay sensitive
problem. Linear combination of two weights and presented
some simple algorithms in [17].

Xiao [16] presented a primal simplex approach. Orda and
Sprintson [12] presented a pre computation scheme for QoS
routing with two additive parameters and efficient
approximation algorithms [11] for computing a pair of disjoint
QoS paths. Van Mieghem et al [14] proposed a self adaptive
multiple constraints routing problem. Korkmaz and Krunz [7]
proposed a general multi constrained randomized heuristic
with two additive constraints. Yuan [18] presented a limited
granularity algorithms and limited path heuristic.

The rest of this paper is organized as follows. In section II,
we present our MCPv3 algorithm. In section III, we discuss
about DCMCR and its pseudo code. In section IV, we present
our results and finally a concise conclusion in section V.

II. MCPV3 ALGORITHM

 MCPv1 (G,s,d,K,W,w): We represent our network for all
algorithms by a graph G=(V,E,w), where ‘V’ is the set of
vertices, ‘E’ is the set of edges and w =(w1,…,wk) is an edge
weight vectors so that wk(e) 0 is kth weight of edge ‘e’,

Ee ,1 k K. For a path ‘p’ in G, kth weight of path ‘p’
denoted by wk(p) is the sum of kth weights over the edges in p,
wk(p)=

Ee
k)e(w . Integer constant K is to denote the number

Coerced Delay and Multi Additive Constraints
QoS Routing Schemes

P.S. Prakash, S. Selvan

I

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

840

of QoS metrics. A constant W = (W1,…,Wk), where each Wk

is a positive constant for a source-destination pair s-d. In our
model, we assume all variables are assumed to be real values.
We assume wk(p) Wk is called Kth QoS constraint. We
represent this as MCPv1.

An s-d path ‘p’ satisfying all K QoS metrics is called a
feasible path of our MCPv1. We say that MCPv1 is feasible if
it has a feasible path and infeasible otherwise and the problem
of MCPv1 is found to be NP-hard.

MCPv2.1 (G,s,d,K, K,w): A Graph G=(V,E) with K edge
positive integer valued edge weights wk(e),1 k K, associated
with each edge Ee ;a positive constant K and a source-
destination pair s-d. Our objective is to find a s-d path ‘p’ such
that wk(p) K,1 k K.

MCPv3 (G,s,d,K,W,w): A graph G= (V,E) with K edge
weights wk(e),1 k K associated with each edge Ee ; a
positive constant W and a source-destination pair. Our
objective is to find s-d path ‘popt’ such that wk(popt) xopt.W for
all 1 k K where xopt is smallest real number and x 0 such
that there exists an s-d path ‘p’ satisfying wk(p) x.W for all
1 k K.

We define xopt is the optimal value of MCPv3 and call popt

an optimal path of MCPv3. We choose xopt 1 if and only if
MCPv1 is feasible. When xopt 1 any optimal solution of
MCPv3 is a feasible path for MCPv1. But all MCPv1 feasible
path solutions cannot be applied to MCPv3, i.e. reverse is not
true, when a feasible of path for MCPv1 is not an optimal
solution of MCPv3, we need to choose xopt<1.

The algorithm computes an auxiliary edge weight waux(e) as
the maximum of all K edge weights w1(e),…,wk(e) divided by
W. It then computes a shortest s-d path paux using this
auxiliary weight. The path paux is guaranteed to be K-
approximation of MCPv3. The auxiliary edge weights can be
computed locally at each node and shortest path can be
computed using conventional algorithms. K-approximation
algorithm can be implemented as either a centralized or
distributed algorithm and can be used by existing link state or
distance vector routing protocols [8].

Waux(paux)/K is the lower bound for xopt and Waux(paux)/2 is
an upper bound for xopt. If Waux(paux)=0 we can conclude that
paux is also a feasible solution to MCPv3. If Waux(paux)>0, then
we have a ‘testing procedure’ to have some pairs of lower-
upper bounds so that ratio of upper bound to lower bound
goes sufficiently close to 1. Then we need to solve MCPv2.1
to obtain an (1+) approximation to MCPv3. As found in [7],
we denote UB[i] is an approximate upper bound, and we
initialize lower bound of xopt to LB[i] = Waux(paux)/K and
initial upper bound of xopt to UB[i] = Waux(paux)/2, where i=0
initially.

Our algorithm finds a (1+) approximation to MCPv3. Let
LB[i] and UB[i] denote the lower and upper bound as
explained above.

 LB[i] xopt 2UB[i] (1)
is true for i=0.

We construct an auxiliary graph Gaux having an auxiliary

edge weight waux(e)=[wk(e).]+1 for every Ee . We define

.W.LB
1v and let popt is an optimal solution to MCPv3,

which means that popt is an source-destination s-d path such
that wk(popt) xopt.W for k=1,2,...,K. Since,
waux(e)= 1

WLB
1v).e(w k 1

WLB
1v)e(wk

 for all edges

Ee . We have,

)1v(
.WLB

)1v()p(w
)p(w optk

optaux (2)

We know that,
W

)p(w
x optk

opt , therefore,

)1v(
LB

)1v(x
)p(w opt

optaux

We know that, 2UB = xopt, hence,

)1v(
LB

)1v(UB2
)p(w optaux (3)

Since waux have integer values, from (3),

)1v(
LB

)1v(UB2
)p(w optaux for all 1 k K (4)

It may be seen from (4) popt is a feasible solution to
MCPv2.1. Therefore our algorithm is guaranteed to return a
feasible path, if exists. Also from (3) we learn that,

)1v(
.LB
1vx)p(wmax optoptaux

Kk1
 (5)

Let paux be the s-d path in the final stage of algorithm and
paux is feasible solution to),K,d,s,G(1.2MCPv Kaux , where

K is the smallest integer less than or equal to

)1v(
LB

)1v(UB2
 such that MCPv2.1 is feasible. Since

paux is optimal while popt is only feasible, the maximum path
weight of paux cannot exceed the maximum path weight of popt.
Hence we can say,

)p(wmax)p(wmax optaux
Kk1

auxaux
Kk1

 (6)

By combining (5) and (6), we get

)1v(
LB

1vx)p(wmax optauxaux
Kk1

 (7)

We also have,

auxaux pe

k

pe
auxauxaux

Kk1 WLB
)1v()e(w)e(w)p(wmax

 =
WLB

)1v()p(w auxk for all Kk1 (8)

Now combining (7) and (8), we get

Kk1allfor)1v(
LB

)1v(x
WLB

)1v(pw optauxk

 (9)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

841

1v
WLB

)1v(
LB

)1v(
x)p(w optauxk

)1v(
WLB

.
LB

LB)1v()1v(x opt

W)LBx(opt

WLBWxopt

)1(WLB [optxLB]

)1(Wx)p(w optauxk for all Kk1 (10)

This proves that auxp is an)1(approximation to
MCPv3. We may reduce the time complexity by carefully
choosing various parameters that decides .

If k=2, MCPv3 runs in much lesser time (i.e. O(v.e/))
comparing to any other conventional algorithms. Here we
approximate both delay and cost and there is another
methodology where one constraint may be coerced and
remaining constraints could be approximated when 2k
which will discussed in next section.

A. Pseudo Code
 UB upper bound LB lower bound
popt feasible shortest path paux auxiliary path

 approximation factor c smallest constraint

T test value v number of vertices

S set of vertices V Q minimum priority queue

s-d source-destination pair Gaux auxiliary graph

(u,v) edge K number of QoS constraints

W constraint bound K auxiliary constraint bound
(V,E) set of vertices and set of edges.

wk(popt) kth weight of feasible path popt

waux(paux) kth auxiliary weight of auxiliary path paux

 real number to construct auxiliary graph

len[][] (K-1) dimensional array to store the length of the
edge.

pred[][] (K-1) dimensional array to store the predecessor.

1. void main() {
2. int k, K, waux[], wk[], W, c, S, V, E, Q, T, K ;
3. int i=0, , , LB[], UB[], len[][],pred[][];
4. string popt, paux, e, u, v, b, s;
 /* compute auxiliary edge weight */
5. compute_auxweight() {
6. K=3;
7. for(e=1;e<=E;e++) {
8. for(k=1;k<=K,K++) {
9. waux(e)=max(wk(e)/W); } } }
 /* compute shortest path using Dijkstra’s algorithm */
10. compute_shortest path() {

/* initialize the set S of vertices and minimum priority
queue Q */

11. S=0;
12. Q=V(G);
13. while(Q!=0) {
14. Q=V-S;
15. u=Q;
16. S=S+u;
17. waux(paux)=len[S];} }
18. if(waux(paux)<= max(wk(popt)/W)) {
19. popt = paux;

20. printf(“feasible path is returned %s”,popt);
21. break (); }
22. else {
 /* initialize lower LB and upper bound UB */
23. LB[0] = waux(paux)/K;
24. UB[0] = waux(paux)/2; }

 /* update the lower bound and upper bound values
using testing procedure */

25. while(UB[i] >= 2*LB[i]) {
26. T =sqrt(LB*UB);
27. = 1;
28. if(waux(paux) < = ((v-1)/)+(v-1)) {
29. String Test(T,) = “yes”; }
30. else {Test(T,)= “no”; }
31. if(Test(T,) = = “yes”) {
32. LB[i] = T;}
33. else { UB[i] = T; }}
34. i++;
35. UB= UB[i];
36. LB = LB[i];
 /* construct an auxiliary graph Gaux which is an instance
 of graph G */
37. construct_auxgraph() {
38. = (v-1)/LB[i]* *W;
39. waux(e) = (* wk(e)+1); }
40. mcpv2.1() {
 /*initialize (K-1) dimensional array to store length and
 predecessor of edges*/
41. K=3;
42. for(k=1;k<=K;k++) {
43. len[v,ck] = ;
44. pred[v,ck] = null;
45. len[s,ck] = 0; }
 /* update array values */
46. for(k=1;k<=K;k++) {
47. for((u,v)=1;(u,v)<=E;(u,v)++) {
48. if(len[v,ck] > len[u,bk] +wk(u,v)) {
49. len[v,ck] = len[u,bk] +wk(u,v);
50. pred[v,ck] = u; }}}
 /* find the s-d path paux such that waux(paux) < = K

51. if(len[d,ck] < = K) {
52. popt = paux;

53. printf(“Feasible path is returned %s”,popt);
54. break (); }

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

842

55. else {
56. printf(“No feasible path found”);
57. break () ;}}}

Fig.1. MCPv3 Algorithm

Initially we compute an auxiliary edge weight waux for each
edge ‘e’ of graph G by considering the max (wk(e)/W) a
shortest path algorithm is applied. This operation is explained
between line 5 and 17.

Then we compare the auxiliary weight waux(paux) with
achieved shortest path ratio. Our algorithm returns the path, if
auxiliary weight of the path is less than achieved shortest path
ratio, else upper and lower bounds are to be initialized as
shown in lines from 18 to 24.

Upper and lower bounds are refined based on the
requirements of QoS metrics. Then we construct an auxiliary
graph Gaux which is same as graph G except that the edge
weighting function wk(e) is changed to waux(e), such that

)1)e(w()e(w kaux as shown between lines 25 and 39.
Then MCPv2.1 is applied to find feasible path. Initially (K-

1) dimensional array is initialized to store the length and
predecessor of each edge. Then values of these arrays are
updated based on the values returned by the algorithm as
shown in lines from 40 to 50.

Finally, we compare the auxiliary weight of the auxiliary
path with the auxiliary constraint bound. If the auxiliary
weight is less than or equal to auxiliary constraint bound, then
we returned paux is a feasible path or otherwise as in lines
between 51 and 57. We depicted MCPv3 Algorithm in figure
1.

III. DELAY COERCED MULTI CONSTRAINED ROUTING
(DCMCR)

 We define a network by an edge weighted directed graph
G= (V,E,w), where V is the set of ‘v’ vertices and E is the set
of ‘e’ edges and w =(w1,…,wk) is an edge weight vector so
that wk(e) 0 is the Kth weight of edge ‘e’, for all Ee ,
1 k K.
 For a path ‘pDMR’ in G, the Kth weight of path pDMR is
denoted by wk(pDMR), is the sum of Kth weights over the edges
on pDMR. i.e.

DMRpe
kDMRk)e(w)p(w .

 In our algorithm an edge-weighted directed graph G=
(V,E,D,C) where each edge Ee is associated with a delay
D(e) and a cost C(e). We assume both delay and cost are
non-negative real values. d is the delay constraint for the
source-destination pair.
 Our objective is to find a path ‘pDMR’ for a given s-d in G
such that

DMRpe
DMR)e(C)p(C is minimized subject to the

constraint d
pe

DMR
DMR

)e(D)p(D . An source

destination path ‘pDMR’ is called delay constrained path if

dDMR)p(D . Our algorithm searches for a least-cost delay

constrained path and is denoted by DMRp . We also use optx to

denote)p(C DMR and call it the optimal value of
C,D,,d,s,GDCMCR d . In this algorithm we coerce the

first constraint w1(pDMR) d in the s-d pair.
MCPv2.2)w,,,K,d,s,G(cd : An edge-weighted

directed graph G=(V,E,w) with K non negative edge weights
,Kk1),e(w k associated with each edge Ee such that

)e(kw is a positive integer for Ge and d,K,.....2k
and c are positive integer constants. Our objective is to find
a source-destination path ‘p’ such that w1(p) d and wk(p)

c, 2 k K . In MCPv2.2, the edge weights w2,…,wk are
positive integer-values.

A. Algorithm
DCMCR (G, s, d, K, d, D, C): Our algorithm, for any

given value > 0 returns a path ‘pDMR’ for a source-
destination pair s-d that is an (1+) approximation of DCMCR
(G, s, d ,K, d, D, C).

We find bottleneck edge cost ‘c’ such that an s-d path pDMR,
with D(pDMR) d and C(e) c for all e pDMR. Secondly any
s-d path ‘p’, D(p) d must contain at least one edge ‘e’
C(e) c. Here D(p) is any path in s-d, this can be accomplished
by any conventional algorithm, such as Dijkstra’s shortest
path algorithm.
 We know that c xopt c.v, where ‘v’ is the number of
vertices and ‘c’ is the smallest constraint.
LB[0] xopt UB[0] v.LB[0] (11)
 (since LB=c and UB=c.v)
Let pDMR denote optimal solution of DCMCR(G,s,d,K, d,D,C)
that is pDMR is an s-d path such that,
 D(pDMR) d, C(pDMR) xopt (12)

We construct an auxiliary graph Gaux, having an auxiliary edge

weight, Caux(e)=[C(e).]. We define
LB

)1v(.

 Here we construct an auxiliary graph Gaux which is an
instance of graph G to find the optimal value xopt of our
algorithm DCMCR. To find a xopt, we perform a testing
procedure defined in our algorithm. Hence,

DMRpe
DMRaux 1))e(C()p(C

DMRpe

)1v())e(C([pDMR has at most

(v-1) edges].

DMRpe

)e(C)1v(

)p(C)1v(DMR (13)

LB
)1v()p(C)1v(DMR

Substitute the value of C(pDMR) from (12) ,

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

843

LB
)1v(x)1v()p(C optDMRaux

Substitute the value of xopt from (11),

LB
)1v(UB)1v()p(C DMRaux (14)

 The value of Caux(pDMR) is scaled down to nearest lower
integer. From (14), the path pDMR is feasible solution of

MCPv2.2)C,D),1v(
LB

)1v(UB,,d,s,G(auxdaux

 Therefore, we find a path paux (from auxiliary graph) and
this path paux may be different from pDMR. If paux is feasible,
we are guaranteed to return a feasible path in DCMCR.
 Now, we prove that path paux found by algorithm MCPv2.2
is guaranteed to be an (1+)-approximation of DCMCR. Since
paux is computed by the algorithm, we have,

daux)p(D and)1v(
LB

)1v(UB)p(C auxaux (15)

And,)p(C)p(C DMRauxauxaux (16)
We know that,)e(C)e(Caux

)p(C)p(C auxauxaux ,

)p(C1)p(C auxauxaux

From (15), we have,

)p(C1)p(C DMRauxaux

From (13), we get,

)1v()p(C1)p(C DMRaux

[)p(C)1v()p(C DMRDMRaux]
We know that C (pDMR) xopt, therefore,

)1v(x1)p(C optaux

)1v(x opt

LB
)1v(
)1v(x opt ,]

LB
)1v([.

LBx opt

optopt xx , [LB xopt]

)1(x)p(C optaux (17)

 Equation (17) show that paux is an (1+) approximation of
DCMCR.

B. Pseudo Code
 pDMR feasible shortest path d delay constraint

C cost constraint C real value cost

 Caux auxiliary real value cost D real value

1. void main() {
2. int c, C[], D[], Caux[], V, S,E,Q, k, K,i=0;

3. int LB[], UB[], len[][], pred[][];
4. int , a, T, d , C , ;
5. string pDMR, paux, e, u, v, b, s,;
6. find_smallest_constraint() {

/* initialize the set S of vertices and minimum
priority queue Q */

7. S=0;
8. Q=V(G);
9. while(Q!=0) {
10. Q=V-S;
11. c=Q;}

/* initialize a lower bound and upper bound such that
any s-d path ‘pDMR’ with D(pDMR)<= d must
contain at least one edge ‘e’ with C(pDMR)>= c */

12. D(pDMR) =null; C(pDMR)=null;
13. for(ek=1;ek<=pDMR;ek++){
14. D(pDMR) = D(pDMR) + D(ek);
15. C(pDMR) = C(pDMR) + C(ek); }
16. if (D(pDMR)<= d && C(pDMR)>= c) {
17. LB[0]=c;
18. UB[0]=c*v; } }

/*construct an auxiliary graph Gaux which is an
instance of graph G to find the optimal value xopt of
DCMCR */

19. construct_auxgraph() {
20. = (v-1)/LB* ;
21. Caux(e) = * C(e);}
22. a = log(v);
23. = pow(a,2);

/* perform testing procedure to refine the value of
lower bound LB and upper bound UB */

24. while (UB[i] >=2(1+)LB[i]) {
25. T=sqrt ((LB[i]*UB[i])/(1+));
26. if(D(p)<= d && Caux(p)<= (v-1)/) {
27. String Test(T,)= “yes”; }
28. else { Test(T,)= “no”; }
29. if(Test(T,) = = “yes”) {
30. UB[i+1] = T(1+);
31. LB[i+1] = LB[i]; }
32. else { UB[i+1]= UB[i];
33. LB[i+1] = T; } }
34. i++;
35. UB = UB[i];
36. LB = LB[i];
37. mcpv2.2() {

 /*initialize (K-1) dimensional array to store length
and predecessor of edges*/

38. K=3;
39. for(k=2;k<=K;k++) {
40. len[v,ck] = ;
41. pred[v,ck] = null;
42. len[s,ck] = 0; }

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

844

 /* update array values */
43. for(k=2;k<=K;k++) {
44. for((u,v)=1;(u,v)<=E;(u,v)++) {
45. if(len[v,ck] > len[u,bk] +w1(u,v)) {
46. len[v,ck] = len[u,bk] +w1(u,v);
47. pred[v,ck] = u; }}}

/* find the s-d path paux such that D(paux) < = d and
Caux(paux) <=c */

48. if(len[d,c] < = d) {
49. pDMR =paux;
50. printf(“Feasible path is returned %s”,pDMR};
51. break (); }
52. else {
53. printf(“No feasible path found”};
54. break (); }}}

Fig.2. DCMCR Algorithm

In lines 6 to 23, we are finding the smallest constraints ‘c’
i.e. cost of each edge C(e) by applying shortest path
algorithm. We compare the delay of the path D(pDMR) with
delay constraint d and cost of the path C(pDMR) with
smallest constraint ‘c’. If any of the edge cost is greater than
‘c’ then it invokes further process of our algorithm by
constructing auxiliary graph.

Both upper and lower bounds are defined and tested
whether or not UB is greater than 2(1+)LB. Then we apply
MCPv2.2 to compute the feasible path paux for auxiliary graph
Gaux. Then the (K-1) dimensional array is initialized to store
length and predecessor of each edge ‘e’ as shown in lines
between 24 and 47.

Finally, we compare the computed length of auxiliary path
with delay constraint d , if the length of the path paux is less
than or equal to delay constraint, the algorithm returns the
feasible path, or otherwise as explained in lines from 48 to 54.
We represent DCMCR Algorithm in figure 2.

IV. RESULTS

We applied few Internet topologies [1] to verify the
suitability of algorithms and arbitrarily generated topologies.
We verified our analytical model with simulation for
feasibility with 60 to 120 nodes. Edge weights are uniformly
selected between the range 1 and 10 as in [4] [18]. We
selected the same source-destination pair in all topologies for
comparison and from our analysis it can be seen that our
algorithms to perform similarly on various edge weights. We
selected a wide range of W, that is, a small value of W to large
value of W and we performed the experiments for three
constraints. We selected W such that MCPv1 is infeasible and
large value of weights so that MCPv1 is feasible.

 For each topology, we selected 8-10 test cases and for
each test case, we arbitrarily generated a source-destination
pair and used this pair for all tested algorithms. Our test case
consists of topology, approximation factor and the
corresponding source-destination pair. We used a small value

of W and a large value of W to test the algorithms for this
node pair. These values of W may change where the node pair
changes. The example topology is shown in figure 3.

s

k

c e

a i

j

h

g

f

d

b

(1,1,2)

(1,2,2) (1,2,1)
(1,2,1)

(1,2,2)

(1,1,2)

(1,2,2) (1,2,3) (1,3,1)

(1,3,2)

(5,3,2)
(5,4,5)

(1,2,3)

(6,5,3)(1,2,3)

(1,2,2)

(2,3,1)

(4,5,6)

(1,1,1)

Fig.3. Example Topology

Our algorithm MCPv3 is to find an source-destination path
popt such that Kth weight of path popt, wk(popt) xopt.W, where
xopt is an optimal value of MCPv3 and W is constraint bound.
We chose our constraint bound values W = (10, 22, 20) and K
= 3. We explain how feasible paths are chosen in our example
topology. Consider the paths p(s b f i k d) and
p(s b c a g i h j d) in figure 3.

 waux(e) =
W

)e(w
max k

Kk1

We calculate Kth weights of path p (s b f I
k d),
wk(p(s b f i k d)) =)e(w k

 wk(s,b)+wk(b,f)+wk(f,i)+wk(i,k)+wk(k,d)
 = (1,1,2)+(1,2,2)+(1,2,3)+(1,3,1)+(1,3,2)

wk(p(s b f i k d)) =(5,11,10)
From the above Kth weight of path, we compute the

auxiliary path weight waux(p),
waux(p(s b f i k d))

 =
W

)dkifbs(w
max k

Kk1

 =
3

3

2

2

1

1
Kk1 W

)sbfikd(w
,

W
)sbfikd(w

,
W

)sbfikd(w
max

waux(p(s b f i k d))
20
10,

22
11,

10
5max

Kk1
 =0.5.

Then, we find the auxiliary path weight for path
p(s b c a g i h j d) using the same
method,

 waux(p(sbcagihjd))=
W

)ihjdcagsb(wmax k
Kk1

wk(p(sbcagihjd)) = wk (s,b) + wk(b,c) + wk(c,a) + wk(a,g) +
wk(g,i) + wk(i,h) + wk(h,j) + wk(j,d)

 =(1,1,2) + (2,3,1)+ (4,5,6)+ (1,2,2)+ (1,2,3)
+ (5,4,5)+ (1,2,1)+ (1,2,2) = (16,21,22)

 waux(p(sbcagihjd))
20
22,

22
21,

10
16max

Kk1
 =1.6

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

845

We apply shortest path algorithm to compute the shortest
path after calculating the auxiliary path weight.The path
p(s b f i k d) is found to be shortest, because its
path weight is 0.5 which is less than the another one path
p(s b c a g i h j d). Then we compare
auxiliary path weight whether waux (p (s b f i k

d))= 0 or not. In our example waux(p (s b f i
k d)) = 0.5, so we initialize the lower and upper bounds

according to our MCPv3 algorithm.
LB=waux(p(s b f i k d))/K and UB=waux(

p(s b f i k d))/2.
LB=0.5/3 =0.17

 UB=0.5/2=0.25
We know that the optimal value xopt of MCPv3 should be

between LB and twice that of upper bound.
 LB xopt 2UB
 0.17 xopt 0.5

Ratio of path weight versus Constraints

W
ei

gh
t r

at
io

(
)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

MCP V1 K-Approx MCP V3

Fig.4. Ratio of path weight versus Constraints
for Arbitrary Topology

We chose in our example xopt =0.5. We know that in
MCPv3 algorithm a s-d path popt should satisfy the condition
wk(popt) xopt.W.

wk(popt) 0.5(10,22,20)
 wk(popt) (5,11,10)
Edge weights of path p(s b f i k d) and

wk(p(s b f i k d))=(5,11,10) found to be feasible,
since wk(popt) (5,11,10). Similarly, wk(sbcagihjd) = (16, 21,
22) and is not satisfying the above condition and found
infeasible.

MCPv3 algorithm returns 3 feasible paths out of 16 paths
from source ‘s’ to destination ‘d’ in our example topology.
For example paths p(s b f h j d = 5, 9, 8), p (s

 b f i k d = 5, 10, 9) and
p(s a g i k d = 5, 11, 10) are satisfying our
constraint bound (5, 11, 10) in figure 3. Our algorithm returns
the shortest feasible path p (s b f h j d = 5, 9,
8) among the three feasible paths and remaining paths are not
selected since they have not satisfied the constraint bound. For
example, path p(s a g f h j d = 11, 14, 11) and

p(s b c a g i k d = 11, 19, 17). Our results
are shown in figure 4 to figure 6 for different topologies.

Ratio of path weight versus Constraints

W
ei

gh
t R

at
io

(
)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

MCP v1 K-Approx MCP v3

Fig.5. Ratio of path weight versus Constraints
 for ARPANET Topology

Ratio of path weight versus Constraints

W
ei

gh
t R

at
io

(
)

0.0

0.2

0.4

0.6

0.8

1.0

MCP v1 K-Approx MCP v3
Fig.6. Ratio of path weight versus Constraints

for ANSNET Topology
DCMCR algorithm is applied to the same arbitrary

topology to find the shortest feasible path, pDMR such
that

DMRpe
DMR)e(C)p(C is minimized subject to (K-1)

constraints and the delay of the path D(pDMR) d , where

d = W1 is end-to-end delay constraint. We chose d =10,
W= (10, 22, 20) and K = 3. DCMCR identifies 5 paths are
feasible with the following weights {(5,9,8), (5,10,9),
(10,13,15), (5,11,10), (10,13,15)}.

To find a feasible path we need to calculate the delay D(e)
and cost C(e) for each edge along the paths.

D(e)=w1(e) and C(e)=
W

)e(wmax k
Kk2

.

For a path p(sbfhjd), delay of path p(sbfhjd) is calculated by
adding the delay of each edges along the path.

 D(p(sbfhjd)) = D(s,b)+D(b,f)+D(f,h)+D(h,j)+D(j,d)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

846

 = w1(s,b)+ w1(b,f)+ w1(f,h)+ w1(h,j)+ w1(j,d)
 = 1+1+1+1+1
 D(p(sbfhjd)) = 5.
Also the cost of the path p(sbfhjd) is calculated by adding

the cost of each edges along the path.
C(p(sbfhjd)) = C(s,b)+C(b,f)+C(f,h)+C(h,j)+C(j,d)

 C(s,b)=
3

3

2

2
Kk2 W

)b,s(w
,

W
)b,s(w

max

 =
20
2,

22
1max

Kk2
= 0.1

 C(b,f)=
3

3

2

2
Kk2 W

)f,b(w
,

W
)f,b(w

max

 =
20
2,

22
2max

Kk2
 = 0.1

 C(f,h)=
3

3

2

2
Kk2 W

)h,f(w
,

W
)h,f(w

max

 =
20
1,

22
2max

Kk2
 = 0.09

C(h,j)=
3

3

2

2
Kk2 W

)j,h(w
,

W
)j,h(w

max =
20
1,

22
2max

Kk2
 = 0.09

C(j,d)=
3

3

2

2
Kk2 W

)d,j(w
,

W
)d,j(w

max =
20
2,

22
2max

Kk2
 = 0.1

 C(p(sbfhjd)) = 0.1+0.1+0.09+0.09+0.1 = 0.48.
For a path p(sbfihjd) , delay of path is,

 D(p(sbfihjd)) = D(s,b)+D(b,f)+D(f,i)+D(i,h)+D(h,j)+D(j,d)
 = 1+1+1+5+5 =10

And cost of path p(sbfihjd) is,
 C(p(sbfihjd)) = C(s,b)+C(b,f)+C(f,i)+C(I,h)+C(h,j)+C(j,d)
 = 0.1+0.1+0.15+0.25+0.09+0.1 = 0.79

For a path p(sbcagfikd) , delay of path is, D(p(sbcagfikd)) =
17 and cost of path p(sbfihjd) is C(p(sbfihjd)) = 1.3 .

Among these paths { p(sbfhjd), p(sbfihjd) ,p(sbcagfikd) },
the delay and cost of these paths are {5,10,17} and
{0.48,0.79,1.3} respectively. Our DCMCR algorithm returns
the path p(sbcagfikd) as infeasible path, because the delay of
this path (=17) is greater than the given delay bound d (=10).
DCMCR algorithm returns the other two paths p(sbfhjd) and
p(sbfihjd) as feasible paths, because delay of these paths are
satisfy the delay bound d. Finally DCMCR algorithm returns
the path p(sbfhjd) as shortest feasible path, since the cost of
this path p(sbfhjd) is (=0.48) minimum when compared to the
cost of other feasible path p(sbfihjd) (=0.79). We represented
these five feasible paths on a 3D plane. The weights w1, w2,
w3 lying on the ‘plane’ denotes feasible path region for a
given source-destination pair as illustrated in figure 7.

We found five paths which satisfies this condition namely,
p(s b f h j d), p(s b f i k d), p (s

b f i h j d), p(s a g i k d) and
p (s a g i h j d) whose delay and cost are
(5,5,10,5,10) and (0.48,0.63,0.79,0.63,0.79) respectively.
Among these 5 feasible paths DCMCR returns path

p(s b f h j d) as shortest feasible path since it
satisfies both delay and cost constraint. Other path such as p (
s a g f h j d) = 11 not returned as d (=11)
was away from the bound. Our results are presented in fig 8.

8

10

12

14

16

9

10

11

12
13

5
6

7
8

9
w

3

w 2

w
1

Optimal Weights for DCMCR

(10,13,15)

(5,9,8)

(5,10,9)

(5,11,10)

Fig.7 optimal weights on 3D plane

We present our simulation results conducted in a discrete
event self written C++ simulator [6] on execution time of our
algorithm and influences of W in figure 9 and figure 10.
MCPv3 is faster than DCMCR for a particular approximation
factor and W. It is observed that the running time and
approximation factor () are negatively correlated. We noticed
that MCPv3 is almost independent of W. Execution time is
increasing with size of the network in all the algorithms as
shown in figure 9. We applied number of constraints are 3 and

 = 0.5. We applied the range of constraint bounds between
10 and 22.

Ratio of path versus constraints

W
ei

gh
t r

at
io

(
)

0.0

0.2

0.4

0.6

0.8

1.0

delay

cost

ARBITRARY ARPANET ANSNET

Fig.8. Ratio of path weight versus Constraints for DCMCR
Algorithm

Most algorithms are fast in terms of execution time, but do
not guarantee quality of solution. Among all algorithms

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

847

MCPv1 is fastest as it requires no bound conditions and
followed by K-approximation, where it needs only one
shortest path computation. Running time of MCPv1 is
O(v(H/)2) time, where H (i.e. hop count) is small. MCPv3
and DCMCR take more time as the value of chosen becomes
smaller, which implies better accuracy of results.

Execution time versus Approximation factor ()

Approximation factor ()
0.0 0.2 0.4 0.6 0.8 1.0

Ex
ec

ut
io

n
tim

e
(s

ec
)

0

5

10

15

20

25

30
1.MCPv3
2.MCPv3
3.DCMCR
4.DCMCR

 4.W = 22

3.W=10

1.W = 10

2.W = 22

Fig.9. Execution time versus Approximation factor ()

Execution time versus Number of nodes (v)

Number of nodes (v)

20 40 60 80 100 120 140

Ex
ec

ut
io

n
tim

e
(s

ec
)

0

20

40

60

80

100
MCPv1
MCPv3
DCMCR

Fig.10. Execution time versus Number of nodes (v)

V. CONCLUSION

Optimal path selection subject to multiple constraints can
only be addressed through heuristics and approximation
algorithm. In this paper we have presented Multi Additive
Constraint path problem with two or more constraints. We
presented an approximation algorithm which uses all
constraints are unified to form a single auxiliary edge weight
to compute the feasible shortest path. This algorithm is
implemented in current network scenario where we have
dynamic network topology and requirement of QoS
constraints are getting changed for variety of applications. Our
simulation results have shown that the MCPv3 is competent
with other algorithm in bringing the feasible path in

polynomial time.
DCMCR is other algorithm where we coerce one of the

QoS constraints and remaining constraints are approximated.
If there exists a feasible shortest source-destination path
whose first weight is bounded by the first constraint and every
other path weight is bounded by (1-) times the corresponding
weight, our algorithm returns a feasible path. We executed on
well known directed network graphs and found that our
algorithms were competent and return a solution in linear
time, if exists.

REFERENCES

[1] R. Anderson, F. Chung, A. Sen and G. Xue, “On disjoint path pairs with
wavelength Continuity in WDM networks”, in Proc. 23rd Annual Joint
Conference of the IEEE Computer and Communication Societies, IEEE
INFOCOM’04, vol. 1, Hong Kong, PR China, March 2004, pp. 524 –
535.

[2] S. Chen and K. Nahrstedt, “On finding multi-constrained paths,” in Proc.
of IEEE International Conference on Communication. IEEE ICC’98,
Atlanta, Georgia, USA, vol. 2, Atlanta, Georgia, USA, June 1998, pp.
874–879.

[3] F. Ergun, R. Sinha, and L. Zhang, “An improved FPTAS for restricted
shortest path,” Information Process Letters, vol. 83, no. 5, September
2002, pp. 287–291.

[4] A. Goel, K. G. Ramakrishnan, D. Kataria, and D. Logothetis, “Efficient
computation of delay-sensitive routes from one source to all
destinations,” In Proc. 20th Annual Joint Conference of the IEEE
Computer and Communication Societies, IEEE INFOCOM’01, vol. 1,
Anchorage, Alaska, USA, no. x, April 2001, pp. 854–858.

[5] R. Guerin and A. Orda, “QoS routing in networks with inaccurate
information: Theory and algorithms,” IEEE/ACM Transaction on
Networks, vol. 7, no. 3, June 1999, pp. 350–364.

[6] Kevin Fall, Kannan Varathan, “The ns Manuals, The Vint Project”,
University of California, Berkeley, USA, March 2007, pp. 28-130.

[7] T. Korkmaz and M. Krunz, “A randomized algorithm for finding a path
subject to multiple QoS requirements,” International Journal of
Computer and Telecommunications Networking, vol. 36, no. 2/3, July,
2005, pp. 251-268.

[8] Larry L. Peterson, Bruce S. Davie Book, “Computer Networks: A
System Approach, 4/e” Morgan Kaufmann Publications, San Francisco,
CA, USA, 2007.

[9] W. Liu, W. Lou and Y.Fang, “An efficient quality of service routing
algorithm for delay-sensitive application”, Computer Networks, vol. 47,
no. 1, January 2005, pp, 87-104.

[10] D. H. Lorenz and D. Raz, “A simple efficient approximation scheme for
the restricted shortest path problem,” Operation Research Letters, vol.
28, no. 5, June 2001, pp. 213–219.

[11] A. Orda and A. Sprintson, “Efficient algorithms for computing disjoint
QoS paths,” in Proc. 23rd Annual Joint Conference of the IEEE
Computer and Communication Societies, IEEE INFOCOM’04, vol.1,
no.x, Hong Kong, PR China, March 2004, pp. 727–738.

[12] A. Orda and A. Sprintson, “Pre computation schemes for QoS routing,”
IEEE/ACM Transaction on Networks, vol. 11, no. 4, August 2003, pp.
578–591.

[13] A. Orda, “Routing with end-to-end QoS guarantees in broadband
networks,” IEEE/ACM Transactions on Networks, vol. 7, no. 3, June
1999, pp. 365–374.

[14] P. Van Mieghem and F. A. Kuipers, “Concepts of exact QoS routing
algorithms,” IEEE/ACM Transaction on Networks, vol. 12, no. 5,
October 2004, pp. 851–864.

[15] Z. Wang and J. Crowcroft, “Quality-of-service routing for supporting
multimedia applications,” IEEE Journal on Selected Areas in
Communication, vol. 14, no. 7, Sep 1996, pp. 1228–1234.

[16] Y. Xiao “QoS routing in communication networks: Approximation
algorithms based on the primal simplex method of linear programming,”
IEEE Transaction on Computers, vol. 55, no. 7, July 2006, pp. 815–829.

[17] G. Xue, “Minimum cost QoS multicast and unicast routing in
communication networks,” IEEE Transactions on Communications, vol.
51, no. 5, May 2003, pp. 817–824.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

848

[18] X. Yuan, “Heuristic algorithms for multi constrained quality-of-service
routing,” IEEE/ACM Transaction on Networks, vol. 10, no. 2, April
2002, pp. 244–256.

P.S.Prakash received B.E (EEE) and M.E (Electrical Machines) degrees from
P.S.G College of Technology, Coimbatore, India and also received M.E
degree in Computer Science and Engineering from Bharathiar University,
India. His research interests include QoS Scheduling, Routing, Network
Security and Management. At present, serving as Associate .Professor at Sri
Ramakrishna Engg. College, Coimbatore, India.

S.Selvan received the B.E. degree in electronics and communication
engineering and the M.E. degree in communication systems from the
University of Madras, Chennai, India, in 1977 and 1979, respectively, and the
Ph.D. degree in computer science and engineering from the Madurai Kamaraj
University, Madurai, India, in 2001. He has 30 years of teaching and research
experience. He is currently working as Principal and Professor of computer
science and engineering at St. Peter’s engineering college, Chennai, India. He
is a senior member of IEEE and fellow of IE(I) and IETE. He has published
more than 140 papers in international and national journals and conference
proceedings. His areas of research include computer networks, data mining,
soft computing, signal processing, image processing and network security.

