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Abstract—IP networks are evolving from data communication 
infrastructure into many real-time applications such as video 
conferencing, IP telephony and require stringent Quality of Service 
(QoS) requirements. A rudimentary issue in QoS routing is to find a 
path between a source-destination pair that satisfies two or more end-
to-end constraints and termed to be NP hard or complete. In this 
context, we present an algorithm Multi Constraint Path Problem 
Version 3 (MCPv3), where all constraints are approximated and 
return a feasible path in much quicker time. We present another 
algorithm namely Delay Coerced Multi Constrained Routing 
(DCMCR) where coerce one constraint and approximate the 
remaining constraints. Our algorithm returns a feasible path, if exists, 
in polynomial time between a source-destination pair whose first 
weight satisfied by the first constraint and every other weight is 
bounded by remaining constraints by a predefined approximation 
factor ( ). We present our experimental results with different 
topologies and network conditions. 

Keywords—Routing, Quality-of-Service (QoS), additive 
constraints, shortest path, delay coercion.

I. INTRODUCTION

N Multi Constraint Quality-of-Service (QoS) routing, one 
finds a path from a source to destination that satisfies many 

QoS constraints such as cost, delay and probability of packet 
loss [2], [13], [15]. We model a computer network by a set of 
‘v’ vertices and ‘e’ edges, where vertices and edges represent 
nodes and links respectively. Each edge has K weights 
assigned to it, representing delay, cost, etc. The corresponding 
path weight is obtained by adding the weight of edges in case 
of additive metrics (e.g. delay, cost) and multiplying in case of 
multiplicative metrics (e.g. packet loss), etc. Bandwidth is 
considered as concave or min/max (bottleneck) metric where 
the corresponding weights of the path is the smallest of the 
weights of the edges on that path. [5].We concentrate on 
additive metrics only as the concave metric issues would 
relatively be easily solved.  

Problems involving two or more QoS constraints have been 
shown to be NP-Complete. [9]. Many researchers have studied 
this problem in the last few years and most of the existing 
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works concentrate on Multi Constraint Path Problem (MCP) 
with two additive constraints. Delay Constrained Least Cost 
path problem (DCLC) where two edge weights are cost and 
delay, and one seeks a minimum cost path subject to a given 
delay constraint. Chen [2] studied DCLC problem where we 
want to find a path that satisfies both the delay and cost 
constraints.  

In [3] Ergun et al, presented a polynomial approximation 
scheme for acyclic graphs. Lorenz and Raz [10] presented an 
enhanced polynomial algorithm. All these algorithms find a 
source-destination path whose delay is at most d (delay
constraint) and cost is not more than (1+ ) times the cost of 
the least- cost delay constrained path, provided that there is a 
source-destination path whose delay is at most d . If this 
condition is not satisfied then all these algorithms will 
terminate which means that the problem is infeasible.     

Many researchers deal with multi constraint problem with 
two constraints. Goel et al [4] presented an approximation 
algorithm for the single source all destinations delay sensitive 
problem. Linear combination of two weights and presented 
some simple algorithms in [17]. 

Xiao [16] presented a primal simplex approach. Orda and 
Sprintson [12] presented a pre computation scheme for QoS 
routing with two additive parameters and efficient 
approximation algorithms [11] for computing a pair of disjoint 
QoS paths. Van Mieghem et al [14] proposed a self adaptive 
multiple constraints routing problem. Korkmaz and Krunz [7] 
proposed a general multi constrained randomized heuristic 
with two additive constraints. Yuan [18] presented a limited 
granularity algorithms and limited path heuristic. 

The rest of this paper is organized as follows. In section II, 
we present our MCPv3 algorithm. In section III, we discuss 
about DCMCR and its pseudo code. In section IV, we present 
our results and finally a concise conclusion in section V. 

II. MCPV3 ALGORITHM

   MCPv1 (G,s,d,K,W,w): We represent our network for all 
algorithms by a graph G=(V,E,w), where ‘V’ is the set of 
vertices, ‘E’ is the set of edges and w =(w1,…,wk) is an edge 
weight vectors so that wk(e) 0 is kth weight of edge ‘e’, 

Ee ,1 k K. For a path ‘p’ in G, kth weight of path ‘p’ 
denoted by wk(p) is the sum of kth weights over the edges in p, 
wk(p)=

Ee
k )e(w . Integer constant K is to denote the number 
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of QoS metrics. A constant W = (W1,…,Wk), where each Wk

is a positive constant for a source-destination pair s-d. In our 
model, we assume all variables are assumed to be real values. 
We assume wk(p) Wk is called Kth QoS constraint. We 
represent this as MCPv1. 

An s-d path ‘p’ satisfying all K QoS metrics is called a 
feasible path of our MCPv1. We say that MCPv1 is feasible if 
it has a feasible path and infeasible otherwise and the problem 
of MCPv1 is found to be NP-hard. 

MCPv2.1 (G,s,d,K, K,w): A Graph G=(V,E) with K edge 
positive integer valued edge weights wk(e),1 k K, associated 
with each edge Ee ;a positive constant K and a source-
destination pair s-d. Our objective is to find a s-d path ‘p’ such 
that  wk(p) K,1 k K.

MCPv3 (G,s,d,K,W,w): A graph G= (V,E) with K edge 
weights wk(e),1 k K associated with each edge Ee ; a 
positive constant W and a source-destination pair. Our 
objective is to find s-d path ‘popt’ such that wk(popt) xopt.W for 
all 1 k K where xopt is smallest real number and x 0 such 
that there exists an s-d path ‘p’ satisfying wk(p) x.W for all 
1 k K.

We define xopt is the optimal value of MCPv3 and call popt

an optimal path of MCPv3. We choose xopt 1 if and only if 
MCPv1 is feasible. When xopt 1 any optimal solution of 
MCPv3 is a feasible path for MCPv1. But all MCPv1 feasible 
path solutions cannot be applied to MCPv3, i.e. reverse is not 
true, when a feasible of path for MCPv1 is not an optimal 
solution of MCPv3, we need to choose xopt<1.

The algorithm computes an auxiliary edge weight waux(e) as 
the maximum of all K edge weights w1(e),…,wk(e) divided by 
W. It then computes a shortest s-d path paux using this 
auxiliary weight. The path paux is guaranteed to be K-
approximation of MCPv3. The auxiliary edge weights can be 
computed locally at each node and shortest path can be 
computed using conventional algorithms. K-approximation 
algorithm can be implemented as either a centralized or 
distributed algorithm and can be used by existing link state or 
distance vector routing protocols [8].

Waux(paux)/K is the lower bound for xopt and Waux(paux)/2 is 
an upper bound for xopt. If Waux(paux)=0 we can conclude that 
paux is also a feasible solution to MCPv3. If Waux(paux)>0, then 
we have a ‘testing procedure’ to have some pairs of lower-
upper bounds so that ratio of upper bound to lower bound 
goes sufficiently close to 1. Then we need to solve MCPv2.1 
to obtain an (1+ ) approximation to MCPv3. As found in [7], 
we denote UB[i] is an approximate upper bound, and we 
initialize lower bound of xopt to LB[i] = Waux(paux)/K and 
initial upper bound of xopt to UB[i] = Waux(paux)/2, where i=0 
initially. 

Our algorithm finds a (1+ ) approximation to MCPv3. Let 
LB[i] and UB[i] denote the lower and upper bound as 
explained above. 

                   LB[i]  xopt  2UB[i]                                (1) 
is true for i=0.  

We construct an auxiliary graph Gaux having an auxiliary 

edge weight waux(e)=[wk(e). ]+1 for every Ee . We define 

.W.LB
1v  and let popt is an optimal solution to MCPv3, 

which means that popt is an source-destination s-d path such 
that wk(popt)  xopt.W for k=1,2,...,K. Since,                   
waux(e)= 1

WLB
1v).e(w k 1

WLB
1v)e(wk

 for all edges 

Ee . We have, 

)1v(
.WLB

)1v()p(w
)p(w optk

optaux                             (2) 

We know that,
W

)p(w
x optk

opt , therefore,               

)1v(
LB

)1v(x
)p(w opt

optaux

We know that, 2UB = xopt, hence, 

)1v(
LB

)1v(UB2
)p(w optaux                                   (3) 

Since waux have integer values, from (3), 

)1v(
LB

)1v(UB2
)p(w optaux for all 1 k K             (4) 

It may be seen from (4) popt is a feasible solution to 
MCPv2.1. Therefore our algorithm is guaranteed to return a 
feasible path, if exists. Also from (3) we learn that, 

)1v(
.LB
1vx)p(wmax optoptaux

Kk1
                             (5) 

Let paux be the s-d path in the final stage of algorithm and 
paux is feasible solution to ),K,d,s,G(1.2MCPv Kaux , where 

K  is the smallest integer less than or equal to 

)1v(
LB

)1v(UB2
 such that MCPv2.1 is feasible. Since 

paux is optimal while popt is only feasible, the maximum path 
weight of paux cannot exceed the maximum path weight of popt.
Hence we can say, 

)p(wmax)p(wmax optaux
Kk1

auxaux
Kk1

                                 (6) 

By combining (5) and (6), we get 

)1v(
LB

1vx)p(wmax optauxaux
Kk1

                            (7) 

We also have, 

auxaux pe

k

pe
auxauxaux

Kk1 WLB
)1v()e(w)e(w)p(wmax

                           =
WLB

)1v()p(w auxk for all Kk1  (8)

Now combining (7) and (8), we get 

Kk1allfor)1v(
LB

)1v(x
WLB

)1v(pw optauxk

                                                                                               (9) 
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1v
WLB

)1v(
LB

)1v(
x)p(w optauxk

)1v(
WLB

.
LB

LB)1v()1v(x opt

W)LBx( opt

WLBWxopt

)1(WLB         [ optxLB ]

)1(Wx)p(w optauxk  for all Kk1      (10)                                           

This proves that auxp  is an )1( approximation to 
MCPv3. We may reduce the time complexity by carefully 
choosing various parameters that decides .

If k=2, MCPv3 runs in much lesser time (i.e. O(v.e/ ))
comparing to any other conventional algorithms. Here we 
approximate both delay and cost and there is another 
methodology where one constraint may be coerced and 
remaining constraints could be approximated when 2k
which will discussed in next section. 

A. Pseudo Code 
 UB upper bound       LB  lower bound 
popt  feasible shortest path   paux  auxiliary path 

  approximation factor    c  smallest constraint 

T  test value            v  number of vertices 

S  set of vertices V      Q  minimum priority queue 

s-d  source-destination pair   Gaux auxiliary graph     

(u,v) edge          K  number of QoS constraints 

W constraint bound     K   auxiliary constraint bound
(V,E) set of vertices and set of edges. 

wk(popt)  kth weight of feasible path popt

waux(paux)  kth auxiliary weight of auxiliary path paux

  real number to construct  auxiliary graph 

len[ ][ ]  (K-1) dimensional array to store the length of the   
edge.

pred[ ][ ]  (K-1) dimensional array to store the predecessor. 

1. void main( ) {
2.   int k, K, waux[ ], wk[ ], W, c, S, V, E, Q, T, K ;
3.   int i=0, , , LB[ ], UB[ ], len[ ][ ],pred[][ ]; 
4.     string popt, paux, e, u, v, b, s;
               /* compute auxiliary edge weight */ 
5. compute_auxweight( ) {
6.           K=3; 
7.                for(e=1;e<=E;e++) { 
8.                      for(k=1;k<=K,K++) { 
9.                           waux(e)=max(wk(e)/W); } } } 
          /* compute shortest path using Dijkstra’s algorithm */ 
10. compute_shortest path( ) {

/* initialize the set S of vertices and minimum priority     
queue Q */ 

11. S=0;
12.               Q=V(G); 
13. while(Q!=0) {
14.                           Q=V-S; 
15.                          u=Q; 
16.                         S=S+u; 
17.  waux(paux)=len[S];} } 
18.                  if(waux(paux)<= max(wk(popt)/W)) { 
19.                         popt = paux;

20.                    printf(“feasible path is returned %s”,popt);
21.                    break ( ); } 
22.              else {
           /* initialize lower LB and upper bound UB */ 
23.                   LB[0] = waux(paux)/K;
24.                   UB[0] = waux(paux)/2; } 

   /* update the lower bound and upper bound values   
using testing procedure */ 

25.                      while(UB[i] >= 2*LB[i])  { 
26.                              T =sqrt(LB*UB);
27.  = 1; 
28.                      if(waux(paux) < = ((v-1)/ )+(v-1) ) { 
29.                               String Test(T, ) = “yes”;  } 
30.                          else  {Test(T, )= “no”; } 
31.                         if(Test(T, ) = = “yes”) {
32. LB[i] = T;} 
33.                         else { UB[i] = T; }}
34.                       i++;
35.                    UB= UB[i];
36.                LB = LB[i]; 
          /* construct an auxiliary graph Gaux which is an instance
           of  graph G */ 
37. construct_auxgraph( )  { 
38.  = (v-1)/LB[i]* *W; 
39.                      waux(e) = ( * wk(e)+1); } 
40. mcpv2.1( ) { 
          /*initialize (K-1) dimensional array to store length and    
             predecessor of edges*/ 
41.               K=3; 
42.                   for(k=1;k<=K;k++) { 
43.                              len[v,ck] = ;
44.                              pred[v,ck] = null; 
45.                              len[s,ck] = 0;  } 
          /* update array values */ 
46.                   for(k=1;k<=K;k++) { 
47.                       for((u,v)=1;(u,v)<=E;(u,v)++) { 
48.                            if(len[v,ck]  > len[u,bk] +wk(u,v) ) { 
49.                                   len[v,ck]  = len[u,bk] +wk(u,v);
50.                                          pred[v,ck] = u;  }}} 
          /* find the s-d path paux such that waux(paux) < = K

51.                         if(len[d,ck] < = K ) { 
52. popt = paux;

53.                   printf(“Feasible path is returned %s”,popt);
54.                    break ( ); } 
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55.                           else { 
56.                                 printf(“No feasible path found”); 
57.                                 break ( ) ;}}}

Fig.1. MCPv3 Algorithm 

Initially we compute an auxiliary edge weight waux for each 
edge ‘e’ of graph G by considering the max (wk(e)/W) a 
shortest path algorithm is applied. This operation is explained 
between line 5 and 17.  

Then we compare the auxiliary weight waux(paux) with 
achieved shortest path ratio. Our algorithm returns the path, if 
auxiliary weight of the path is less than achieved shortest path 
ratio, else upper and lower bounds are to be initialized as 
shown in lines from 18 to 24. 

Upper and lower bounds are refined based on the 
requirements of QoS metrics. Then we construct an auxiliary 
graph Gaux which is same as graph G except that the edge 
weighting function wk(e) is changed to waux(e), such that 

)1)e(w()e(w kaux  as shown between lines 25 and 39. 
Then MCPv2.1 is applied to find feasible path. Initially (K-

1) dimensional array is initialized to store the length and 
predecessor of each edge. Then values of these arrays are 
updated based on the values returned by the algorithm as 
shown in lines from 40 to 50. 

Finally, we compare the auxiliary weight of the auxiliary 
path with the auxiliary constraint bound. If the auxiliary 
weight is less than or equal to auxiliary constraint bound, then 
we returned paux is a feasible path or otherwise as in lines 
between 51 and 57. We depicted MCPv3 Algorithm in figure 
1.

III. DELAY COERCED MULTI CONSTRAINED ROUTING
(DCMCR)

 We define a network by an edge weighted directed graph 
G= (V,E,w), where V is the set of ‘v’ vertices and E is the set 
of ‘e’ edges and w =(w1,…,wk) is an edge weight vector so 
that wk(e) 0 is the Kth weight of edge ‘e’, for all Ee ,
1 k K.
 For a path ‘pDMR’ in G, the Kth weight of path pDMR is 
denoted by wk(pDMR), is the sum of Kth weights over the edges 
on pDMR. i.e. 

DMRpe
kDMRk )e(w)p(w . 

 In our algorithm an edge-weighted directed graph G= 
(V,E,D,C) where each edge Ee is associated with a delay 
D(e) and   a cost C(e). We assume both delay and cost are 
non-negative real values. d  is the delay constraint for the 
source-destination pair. 
 Our objective is to find a path ‘pDMR’ for a given s-d in G 
such that 

DMRpe
DMR )e(C)p(C is minimized subject to the 

constraint d
pe

DMR
DMR

)e(D)p(D . An source 

destination path ‘pDMR’ is called delay constrained path if 

dDMR )p(D . Our algorithm searches for a least-cost delay 

constrained path and is denoted by DMRp . We also use optx to

denote )p(C DMR and call it the optimal value of 
C,D,,d,s,GDCMCR d . In this algorithm we coerce the 

first constraint w1(pDMR)  d  in the s-d pair. 
MCPv2.2 )w,,,K,d,s,G( cd : An edge-weighted 

directed graph G=(V,E,w) with K non negative edge weights 
,Kk1),e(w k associated with each edge Ee such that 

)e(kw is a positive integer for Ge and d,K,.....2k
and c   are positive integer constants. Our objective is to find 
a source-destination path ‘p’ such that w1(p) d and wk(p)

c, 2  k  K . In MCPv2.2, the edge weights w2,…,wk are 
positive integer-values. 

A. Algorithm 
DCMCR (G, s, d, K, d, D, C ): Our algorithm, for any 

given value  > 0 returns a path ‘pDMR’ for a source-
destination pair s-d that is an (1+ ) approximation of DCMCR
(G, s, d ,K, d, D, C).

We find bottleneck edge cost ‘c’ such that an s-d path pDMR,
with D(pDMR) d  and C(e) c for all e pDMR. Secondly any 
s-d path ‘p’, D(p) d  must contain at least one edge ‘e’ 
C(e) c. Here D(p) is any path in s-d, this can be accomplished 
by any conventional algorithm, such as Dijkstra’s shortest 
path algorithm. 
 We know that c  xopt  c.v, where ‘v’ is the number of 
vertices and ‘c’ is the smallest constraint.  
LB[0]  xopt  UB[0]  v.LB[0]                                           (11) 
 ( since LB=c and UB=c.v)              
Let pDMR denote optimal solution of DCMCR(G,s,d,K, d,D,C)
that is pDMR is an s-d path such that, 
     D(pDMR) d, C(pDMR)  xopt                                        (12) 

We construct an auxiliary graph Gaux, having an auxiliary edge 

weight, Caux(e)=[C(e). ]. We define
LB

)1v( .

 Here we construct an auxiliary graph Gaux which is an 
instance of graph G to find the optimal value xopt of our 
algorithm DCMCR. To find a xopt, we perform a testing 
procedure defined in our algorithm. Hence,          

DMRpe
DMRaux 1))e(C()p(C

DMRpe

)1v())e(C(  [  pDMR has at most 

(v-1) edges]. 

DMRpe

)e(C)1v(

)p(C)1v( DMR                                    (13) 

LB
)1v()p(C)1v( DMR

Substitute the value of C(pDMR) from (12) , 
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LB
)1v(x)1v()p(C optDMRaux

Substitute the value of xopt from (11), 

LB
)1v(UB)1v()p(C DMRaux                       (14) 

 The value of Caux(pDMR) is scaled down to nearest lower 
integer. From (14), the path pDMR is feasible solution of   

MCPv2.2 )C,D),1v(
LB

)1v(UB,,d,s,G( auxdaux

 Therefore, we find a path paux (from auxiliary graph) and 
this path paux may be different from pDMR. If paux is feasible, 
we are guaranteed to return a feasible path in DCMCR.  
 Now, we prove that path paux found by algorithm MCPv2.2 
is guaranteed to be an (1+ )-approximation of DCMCR. Since 
paux is computed by the algorithm, we have, 

daux )p(D   and )1v(
LB

)1v(UB)p(C auxaux    (15) 

And, )p(C)p(C DMRauxauxaux                                     (16) 
We know that, )e(C)e(Caux

)p(C)p(C auxauxaux ,

)p(C1)p(C auxauxaux

From (15), we have, 

)p(C1)p(C DMRauxaux

From (13), we get, 

)1v()p(C1)p(C DMRaux

[ )p(C)1v()p(C DMRDMRaux ]
We know that C (pDMR)  xopt, therefore, 

)1v(x1)p(C optaux

)1v(x opt

LB
)1v(
)1v(x opt , ]

LB
)1v([ .

LBx opt    

optopt xx ,      [ LB  xopt]

)1(x)p(C optaux                                     (17) 

 Equation (17) show that paux is an (1+ ) approximation of 
DCMCR. 

B. Pseudo Code 
   pDMR   feasible shortest path   d  delay constraint 

C   cost constraint       C  real value cost 

  Caux  auxiliary real value cost   D   real value  

1. void main( ) {
2.   int c, C[], D[], Caux[], V, S,E,Q, k, K,i=0; 

3.           int LB[ ], UB[], len[][ ], pred[][]; 
4. int , a, T, d , C , ;
5. string pDMR, paux, e, u, v, b, s,; 
6.          find_smallest_constraint( ) {

/* initialize the set S of vertices and minimum 
priority queue Q */ 

7. S=0;
8.                    Q=V(G); 
9.                    while(Q!=0) {
10.                             Q=V-S; 
11.                              c=Q;} 

/* initialize a lower bound and upper bound such that 
any s-d path   ‘pDMR’ with D(pDMR)<= d must 
contain at least one edge ‘e’ with C(pDMR)>= c */ 

12.                    D(pDMR) =null; C(pDMR)=null;
13.                    for(ek=1;ek<=pDMR;ek++){
14.                           D(pDMR) = D(pDMR) + D(ek);
15.                           C(pDMR) = C(pDMR) + C(ek); } 
16.                     if (D(pDMR)<= d && C(pDMR)>= c) { 
17. LB[0]=c; 
18.                          UB[0]=c*v; } } 

/*construct an auxiliary graph Gaux which is an 
instance of graph G to find    the optimal value xopt of 
DCMCR */ 

19.          construct_auxgraph( ) {
20.  = (v-1)/LB* ;
21.                       Caux(e) = * C(e);} 
22.                           a = log(v);
23.  = pow(a,2); 

/* perform testing procedure to refine the value of  
lower bound LB and upper bound UB */ 

24. while (UB[i] >=2(1+ )LB[i])  { 
25.                      T=sqrt ((LB[i]*UB[i])/(1+ ));
26. if(D(p)<= d && Caux(p)<= (v-1)/ ) { 
27. String Test(T, )= “yes”; } 
28. else { Test(T, )= “no”; } 
29.                      if(Test(T, ) = = “yes”) { 
30. UB[i+1] = T( 1+ );
31.                              LB[i+1] = LB[i]; } 
32.  else { UB[i+1]= UB[i]; 
33.                                 LB[i+1]  = T; } }
34.                  i++; 
35. UB = UB[i]; 
36.                       LB  = LB[i]; 
37. mcpv2.2( ) {

 /*initialize (K-1) dimensional array to store length   
and predecessor of edges*/ 

38.                      K=3; 
39. for(k=2;k<=K;k++) { 
40.                               len[v,ck] = ;
41.                               pred[v,ck] = null; 
42.                               len[s,ck] = 0;  } 
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             /* update array values */ 
43.                  for(k=2;k<=K;k++) { 
44. for( (u,v)=1;(u,v)<=E;(u,v)++) { 
45.                              if(len[v,ck]  > len[u,bk] +w1(u,v) ) { 
46.                                 len[v,ck]  = len[u,bk] +w1(u,v);
47.                                 pred[v,ck] = u;  }}} 

/* find the s-d path paux such that D(paux) < = d and
Caux(paux) <=c */

48. if(len[d,c] < = d ) { 
49.               pDMR =paux;
50.               printf(“Feasible path is returned %s”,pDMR};
51.               break ( ); } 
52. else { 
53.                printf(“No feasible path found”}; 
54.                break ( ); }}} 

Fig.2. DCMCR Algorithm 

In lines 6 to 23, we are finding the smallest constraints ‘c’ 
i.e. cost of each edge C(e) by applying shortest path 
algorithm. We compare the delay of the path D(pDMR) with
delay constraint d and cost of the path C(pDMR) with 
smallest constraint ‘c’. If any of the edge cost is greater than 
‘c’ then it invokes further process of our algorithm by 
constructing auxiliary graph. 

Both upper and lower bounds are defined and tested 
whether or not UB is greater than 2(1+ )LB. Then we apply 
MCPv2.2 to compute the feasible path paux for auxiliary graph 
Gaux. Then the (K-1) dimensional array is initialized to store 
length and predecessor of each edge ‘e’ as shown in lines 
between 24 and 47. 

Finally, we compare the computed length of auxiliary path 
with delay constraint d , if the length of the path paux is less 
than or equal to delay constraint, the algorithm returns the 
feasible path, or otherwise as explained in lines from 48 to 54. 
We represent DCMCR Algorithm in figure 2.      

IV. RESULTS

We applied few Internet topologies [1] to verify the 
suitability of algorithms and arbitrarily generated topologies. 
We verified our analytical model with simulation for 
feasibility with 60 to 120 nodes. Edge weights are uniformly 
selected between the range 1 and 10 as in [4] [18]. We 
selected the same source-destination pair in all topologies for 
comparison and from our analysis it can be seen that our 
algorithms to perform similarly on various edge weights. We 
selected a wide range of W, that is, a small value of W to large 
value of W and we performed the experiments for three 
constraints. We selected W such that MCPv1 is infeasible and 
large value of weights so that MCPv1 is feasible. 

 For each topology, we selected 8-10 test cases and for 
each test case, we arbitrarily generated a source-destination 
pair and used this pair for all tested algorithms. Our test case 
consists of topology, approximation factor and the 
corresponding source-destination pair. We used a small value 

of W and a large value of W to test the algorithms for this 
node pair. These values of W may change where the node pair 
changes. The example topology is shown in figure 3. 
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Fig.3. Example Topology 

Our algorithm MCPv3 is to find an source-destination path 
popt such that Kth weight of path popt, wk(popt) xopt.W, where 
xopt is an optimal value of MCPv3 and W is constraint bound. 
We chose our constraint bound values W = (10, 22, 20) and K 
= 3. We explain how feasible paths are chosen in our example 
topology. Consider the paths p(s b f i k d) and 
p(s b c a g i h j d) in figure 3. 

                          waux(e) = 
W

)e(w
max k

Kk1

We calculate Kth weights of path p ( s  b  f  I 
k d),
wk(p(s b f i k d)) = )e(w k

 wk(s,b)+wk(b,f)+wk(f,i)+wk(i,k)+wk(k,d)
                         = (1,1,2)+(1,2,2)+(1,2,3)+(1,3,1)+(1,3,2) 

wk(p(s b f i k d)) =(5,11,10) 
From the above Kth weight of path, we compute the 

auxiliary path weight waux(p),
waux(p(s b f i k d))

                 = 
W

)dkifbs(w
max k

Kk1

             = 
3

3

2

2

1

1
Kk1 W

)sbfikd(w
,

W
)sbfikd(w

,
W

)sbfikd(w
max

waux(p(s b f i k d))
20
10,

22
11,

10
5max

Kk1
 =0.5. 

Then, we find the auxiliary path weight for path 
p(s b c a g i h j d) using the same 
method, 

 waux(p(sbcagihjd))=
W

)ihjdcagsb(wmax k
Kk1

wk(p(sbcagihjd)) = wk (s,b) + wk(b,c) + wk(c,a) + wk(a,g) + 
wk(g,i) + wk(i,h) + wk(h,j) + wk(j,d)

                          =(1,1,2) + (2,3,1)+ (4,5,6)+ (1,2,2)+ (1,2,3) 
+  (5,4,5)+ (1,2,1)+ (1,2,2) = (16,21,22) 

    waux(p(sbcagihjd))
20
22,

22
21,

10
16max

Kk1
 =1.6 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

845

We apply shortest path algorithm to compute the shortest 
path after calculating the auxiliary path weight.The path 
p(s b f i k d) is found to be shortest, because its 
path weight is 0.5 which is less than the another one path 
p(s b c a g i h j d). Then we compare 
auxiliary path weight whether waux (p (s  b f i k

d))= 0 or not. In our example waux( p (s  b  f  i 
k d)) = 0.5, so we initialize the lower and upper bounds 

according to our MCPv3 algorithm. 
LB=waux( p(s b f i k d))/K and UB=waux(

p(s b f i k d))/2.
LB=0.5/3 =0.17 

                            UB=0.5/2=0.25 
We know that the optimal value xopt of MCPv3 should be 

between LB and twice that of upper bound. 
                            LB xopt 2UB 
                            0.17 xopt 0.5

Ratio of path weight versus Constraints
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Fig.4. Ratio of path weight versus Constraints
for Arbitrary Topology 

We chose in our example xopt =0.5. We know that in 
MCPv3 algorithm a s-d path popt should satisfy the condition 
wk(popt)  xopt.W.

wk(popt)  0.5(10,22,20)
                           wk(popt)  (5,11,10) 
Edge weights of path p(s b f i k d) and 

wk(p(s b f i k d))=(5,11,10) found to be feasible, 
since wk(popt)  (5,11,10). Similarly, wk(sbcagihjd) = (16, 21, 
22) and is not satisfying the above condition and found 
infeasible.

MCPv3 algorithm returns 3 feasible paths out of 16 paths 
from source ‘s’ to destination ‘d’ in our example topology. 
For example paths p(s b f h j d = 5, 9, 8), p (s 

 b f i k d = 5, 10, 9) and 
p(s a g i k d = 5, 11, 10) are satisfying our 
constraint bound (5, 11, 10) in figure 3. Our algorithm returns 
the shortest feasible path p ( s b f h j d = 5, 9, 
8) among the three feasible paths and remaining paths are not 
selected since they have not satisfied the constraint bound. For 
example, path p(s a g f h j d = 11, 14, 11) and 

p(s b c a g i k d = 11, 19, 17). Our results 
are shown in figure 4 to figure 6 for different topologies. 
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for ANSNET Topology 
DCMCR algorithm is applied to the same arbitrary 

topology to find the shortest feasible path, pDMR such 
that

DMRpe
DMR )e(C)p(C is minimized subject to (K-1) 

constraints and the delay of the path D(pDMR) d , where 

d = W1 is end-to-end delay constraint. We chose d =10,
W= (10, 22, 20) and K = 3. DCMCR identifies 5 paths are 
feasible with the following weights {(5,9,8), (5,10,9), 
(10,13,15), (5,11,10), (10,13,15)}.

To find a feasible path we need to calculate the delay D(e) 
and cost C(e) for each edge along the paths.                  

D(e)=w1(e) and C(e)=
W

)e(wmax k
Kk2

.

For a path p(sbfhjd), delay of path p(sbfhjd) is calculated by 
adding the delay of each edges along the path. 

  D(p(sbfhjd)) = D(s,b)+D(b,f)+D(f,h)+D(h,j)+D(j,d) 
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                       = w1(s,b)+ w1(b,f)+ w1(f,h)+ w1(h,j)+ w1(j,d)
                       = 1+1+1+1+1 
  D(p(sbfhjd)) = 5.
Also the cost of the path p(sbfhjd) is calculated by adding 

the cost of each edges along the path. 
C(p(sbfhjd)) = C(s,b)+C(b,f)+C(f,h)+C(h,j)+C(j,d) 

               C(s,b)=
3

3

2

2
Kk2 W

)b,s(w
,

W
)b,s(w

max

                        = 
20
2,

22
1max

Kk2
= 0.1 

              C(b,f)=
3

3

2

2
Kk2 W

)f,b(w
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W
)f,b(w

max
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20
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22
2max

Kk2
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3
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2
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W
)h,f(w
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                       = 
20
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22
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Kk2
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3
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2
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Kk2 W
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,

W
)j,h(w

max =
20
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22
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Kk2
 = 0.09
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3

3

2

2
Kk2 W

)d,j(w
,

W
)d,j(w

max =
20
2,

22
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 = 0.1 

 C(p(sbfhjd)) = 0.1+0.1+0.09+0.09+0.1 = 0.48.  
For a path p(sbfihjd) , delay of path is, 

 D(p(sbfihjd)) = D(s,b)+D(b,f)+D(f,i)+D(i,h)+D(h,j)+D(j,d)
                       = 1+1+1+5+5 =10 

And cost of path p(sbfihjd) is, 
 C(p(sbfihjd)) = C(s,b)+C(b,f)+C(f,i)+C(I,h)+C(h,j)+C(j,d) 
                            = 0.1+0.1+0.15+0.25+0.09+0.1 = 0.79 

For a path p(sbcagfikd)  , delay of path is, D(p(sbcagfikd))  = 
17 and cost of path p(sbfihjd) is C(p(sbfihjd)) =  1.3 . 

Among these paths { p(sbfhjd), p(sbfihjd) ,p(sbcagfikd) }, 
the delay and cost of these paths are  {5,10,17} and 
{0.48,0.79,1.3} respectively. Our DCMCR algorithm returns 
the path p(sbcagfikd) as infeasible path, because the delay of 
this path (=17) is greater than the given delay bound  d (=10). 
DCMCR algorithm returns the other two paths p(sbfhjd) and  
p(sbfihjd) as feasible paths, because delay of these paths are 
satisfy the delay bound  d. Finally DCMCR algorithm returns 
the path p(sbfhjd) as shortest feasible path, since the cost of 
this path p(sbfhjd) is (=0.48) minimum when compared to the 
cost of other feasible path p(sbfihjd) (=0.79). We represented 
these five feasible paths on a 3D plane. The weights w1, w2,
w3 lying on the ‘plane’ denotes feasible path region for a 
given source-destination pair as illustrated in figure 7. 

We found five paths which satisfies this condition namely,                                     
p(s b f h j d), p(s b f i k d), p ( s 

b f i h j d), p(s a g i k d) and   
p (s a g i h j d) whose delay and cost are 
(5,5,10,5,10) and (0.48,0.63,0.79,0.63,0.79) respectively. 
Among these 5 feasible paths DCMCR returns path 

p(s b f h j d) as shortest feasible path since it 
satisfies both delay and cost constraint. Other path such as p ( 
s a g f h j d) = 11 not returned as d (=11)
was away from the bound. Our results are presented in fig 8. 
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We present our simulation results conducted in a discrete 
event self written C++ simulator [6] on execution time of our 
algorithm and influences of W in figure 9 and figure 10. 
MCPv3 is faster than DCMCR for a particular approximation 
factor and W. It is observed that the running time and 
approximation factor ( ) are negatively correlated. We noticed 
that MCPv3 is almost independent of W. Execution time is 
increasing with size of the network in all the algorithms as 
shown in figure 9. We applied number of constraints are 3 and 

 = 0.5. We applied the range of constraint bounds between 
10 and 22. 
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Algorithm

Most algorithms are fast in terms of execution time, but do 
not guarantee quality of solution. Among all algorithms 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

847

MCPv1 is fastest as it requires no bound conditions and 
followed by K-approximation, where it needs only one 
shortest path computation. Running time of MCPv1 is 
O(v(H/ )2) time, where H (i.e. hop count) is small. MCPv3 
and DCMCR take more time as the value of  chosen becomes 
smaller, which implies better accuracy of results. 
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V. CONCLUSION

Optimal path selection subject to multiple constraints can 
only be addressed through heuristics and approximation 
algorithm. In this paper we have presented Multi Additive 
Constraint path problem with two or more constraints. We 
presented an approximation algorithm which uses all 
constraints are unified to form a single auxiliary edge weight 
to compute the feasible shortest path. This algorithm is 
implemented in current network scenario where we have 
dynamic network topology and requirement of QoS 
constraints are getting changed for variety of applications. Our 
simulation results have shown that the MCPv3 is competent 
with other algorithm in bringing the feasible path in 

polynomial time. 
DCMCR is other algorithm where we coerce one of the 

QoS constraints and remaining constraints are approximated. 
If there exists a feasible shortest source-destination path 
whose first weight is bounded by the first constraint and every 
other path weight is bounded by (1- ) times the corresponding 
weight, our algorithm returns a feasible path. We executed on 
well known directed network graphs and found that our 
algorithms were competent and return a solution in linear 
time, if exists.  
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