
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:8, 2009

1953

Abstract—Scheduling of diversified service requests in

distributed computing is a critical design issue. Cloud is a type of
parallel and distributed system consisting of a collection of
interconnected and virtual computers. It is not only the clusters and
grid but also it comprises of next generation data centers. The paper
proposes an initial heuristic algorithm to apply modified ant colony
optimization approach for the diversified service allocation and
scheduling mechanism in cloud paradigm. The proposed optimization
method is aimed to minimize the scheduling throughput to service all
the diversified requests according to the different resource allocator
available under cloud computing environment.

Keywords—Ant Colony, Cloud Computing, Grid, Resource
allocator, Service Request.

I. INTRODUCTION
HE initial application of grid computing was functional
after considering the advancement of several IT enabled

distributed utility services like water, electricity, gas, and
telephony for customers. Grid’s pervasiveness, ease of use,
and reliability [1][8], motivated the use of Grid computing and
it was initially driven by large-scale, resource (computational
and data)-intensive scientific applications. Those applications
demand more resources than a single computer (PC,
workstation, supercomputer, or cluster). Today, the latest
paradigm of grid to emerge is that of Cloud computing [2]
which promises reliable services delivered through next-
generation data centers. These components are built on
compute and storage virtualization technologies. Consumers
will be able to access applications and data from a “Cloud”
anywhere in the world on demand. In other words, the Cloud
appears to be a single point of access for all the computing
needs of consumers. The consumers are assured that the Cloud
infrastructure is very robust and will always be available at
any time. Envisaging the architecture of the cloud, the present
paper proposes an idea to manage cloud computing using ant
colony optimization (ACO). The relevance of ant colony to
cloud computing architecture is emphasized in the paper, as
ant colony also works well in distributed environment like
grid. By definition, “cloud is a type of parallel and distributed
system consisting of a collection of interconnected and
virtualized computers that are dynamically provisioned and

Soumya Banerjee is with the Department of Computer Science Birla

Institute of Technology International Center, Mauritius (e-mail:
somu_bani@yahoo.com).

Indrajit Mukherjee is with the Department of Computer Science Birla
Institute of Technology Mesra, Ranchi (e-mail: imukherjee@bitmesra.ac.in).

P.K. Mahanti is with the Department of CSAS, University of New
Brunswick, New Brunswick, Canada (e-mail: pkmahanti@yahoo.co.in).

presented as one or more unified computing resources based
on service-level agreements established through multi-
negotiation between the service provider and consumers”.
Hence, there is substantial scope to employ multi-objective
optimization strategies among the cloud oriented or grid-based
services. The multi-objective optimization could be initiated
through ant colony, which is comparatively cost effective
approach and simple to implement. To measure the throughput
of heterogeneous computing system the term Makespan has
been introduced. The objective of the ant colony based cloud
computing initiative is to minimize the makespan. It is well
known that the problem of deciding on an optimal assignment
of requests to resources allocator is (Non Polynomial) NP-
hard. We develop a heuristic algorithm based on modified ant
colony optimization to solve this problem.

The rest of the paper is organized as follows: Section II
describes brief background and correlation of cloud computing
and ant colony. Section III elaborates the proposed algorithm
and steps to implement it on the cloud architecture followed
by the result and implications in section IV. Finally, section V
gives conclusion and mentions further scope of research in this
direction.

II. BACKGROUND OF CLOD COMPUTING AND RELEVANCE
WITH ANT COLONY

Cloud computing is a term used to describe both a platform
and type of application. A cloud computing platform
dynamically provisions, configures, reconfigures, and de
provisions servers as needed. Servers in the cloud can be
physical machines or virtual machines. Advanced clouds
typically include other computing resources such as storage
area networks (SANs), network equipment, firewall and other
security devices. Cloud computing also describes applications
that are extended to be accessible through the Internet. These
cloud applications use large data centers and powerful servers
that host Web applications and Web services. Anyone with a
suitable Internet connection and a standard browser can access
a cloud application. The primary components of cloud
architecture are:

Users/Brokers: Users or brokers acting on their behalf submit
service requests from anywhere in the world to the Data
Center and Cloud to be processed.

SLA (Service Level Agreements) Resource Allocator: The
SLA Resource Allocator acts as the interface between the Data
Center/Cloud service provider and external users/brokers. It
requires the interaction of the defined scheduled mechanisms
to support SLA-oriented resource management.

Cloud Computing Initiative using Modified Ant
Colony Framework

Soumya Banerjee, Indrajit Mukherjee, and P.K. Mahanti

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:8, 2009

1954

Google App Engine [3] allows a user to run Web
applications written using the Python programming language.
Other than supporting the Python standard library, Google
App Engine also supports Application Programming
Interfaces (APIs) for the data store, Google Accounts, URL
fetch, image manipulation, and email services. Google App
Engine also provides a Web-based Administration Console for
the user to easily manage his running Web applications.
Currently, Google App Engine is free to use with up to
500MB of storage and about 5 million page views per month.

Microsoft Live Mesh [4] aims to provide a centralized
location for a user to store applications and data that can be
accessed across required devices (such as computers and
mobile phones) from anywhere in the world. The user is able
to access the uploaded applications and data through a Web-
based Live Desktop or his own devices with Live Mesh
software installed. Each user’s Live Mesh is password-
protected and authenticated via his Windows Live Login,
while all file transfers are protected using Secure Socket
Layers (SSL).

Both the applications of Google and Microsoft cloud
initiative can be divided into divided into three phases [5].
There are phases involved in resource recovery, scheduling,
and executing. In the second phase find the best match
between the set of jobs and available resources. The second
phase is a NP-hard Problem [6]. The computational grid is a
dynamic and unpredictable behavior. They are:

• Computational performance of each resource varies
from time to time.

• The connection between computers and mobile
phones may be unreliable.

• The resources may join or relinquish the grid at any
time

• The resource may be unavailable without a
notification.

The scheduling of cloud architecture is dynamic in nature and
moreover Grid middleware and applications are using local
scheduling and data co-scheduling. The approach of
replication has been also applied and assisted in scheduling
and optimization of replication. There are different existing
algorithms like the Genetic algorithm (GA) is used for
searching large solution space. On other hand, simulated
Annealing (SA) is an iterative technique that considers only
one possible solution for each meta-task at a time.

ACO algorithm can be interpreted as parallel replicated
Monte Carlo (MC) systems [7]. MC systems are general
stochastic simulation systems, that is, techniques performing
repeated sampling experiments on the model of the system
under consideration by making use of a stochastic component
in the state sampling and/or transition rules. Experimental
results are used to update some statistical knowledge about the
problem. In turn, this knowledge can be also iteratively used
to reduce the variance in the estimation of the described
variables and directing the simulation process toward the most
interesting state space regions. Analogously, in ACO
algorithms the ants sample the problem’s solution space by
repeatedly applying a stochastic decision policy until a

feasible solution of the considered problem is found. The
sampling is realized concurrently by a collection of differently
instantiated replicas of the same ant type. Each ant
“experiment” allows to adaptively modifying the local
statistical knowledge on the problem structure. The algorithm
is recursive in nature.

III. PROPOSED ALGORITHM
The classic ant colony algorithm can be described as

follows [7]:
Step 1. Initialize
Step 2. Loop /* An iteration */
Step 3. Each ant is positioned on a starting node.
 Loop /* A step */
Step 4. Each ant applies a state transition rule to
incrementally build a solution and a local pheromone
updating rule until all ants have built a complete solution
Step 5. Global pheromone updating rule is applied until end
condition.
Step 6. Stop further iterations

Each edge between node (r, s) has a distance or cost associate
δ (r, s) and a pheromone concentration τ (r, s). The equation
1 is the state transition rule, which is a probabilistic function
for each node u, which has not been visited by each placed ant
on node r.

 (1)

The parameterβ determine the relevance of the pheromone
concentration compared with the distance or cost, τ (r, s)
Global pheromone updating rule can be applied as:

 (2)

Where α is the pheromone evaporation factor between 0 and
1 and kτΔ (r, s) is the reverse of the distance or cost done by

ant k, if (r, s) is its path and is 0 if it is not in the path.
The steps can be modified to manage cloud architecture. The
cloud is visualized is the collection of clustered services,
hence the live services of cloud behaves like an ant, when it
find its file object, the ant died. Subsequently, considering the
prime component of cloud computing, the compute cloud and
storage cloud can be modeled as virtual services of cloud.
Every time a request is processed on a cloud cluster site, τ is
updated for all the site connections and thus the “(2)” can be
modified by associating a parameter τ& .

)s,r(tcsk)s,r()tcs1()s,r(+τΔ∑+τα−=τ& (3)

The dot operator represents time for each cloud scheduling
service. Therefore, the tcsα is introduced which expresses

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:8, 2009

1955

the evaporation factor under time slot of cloud service. The
heuristic can be divided into two categories for cloud-based
services e.g. on-line mode service and the batch mode service.
In online mode, whenever a request arrive, it immediately
allocate to the first free resource allocator. The arrival order of
the request in cloud is important in this method. Here, each
service request is considered only once for matching and
scheduling. In batch mode, the requests are collected; the
scheduler considers the approximate execution time for each
task and use heuristic approach to possibly make better
decision.

The function free [j] – return time, when the resource
allocators Mj will be free. We consider,

free [j] = IΔ+ ETij, (4)

where, IΔ is the initial time slot of request of service made on
the cloud architecture and ETij is the execution time matrix of
request ri on resource allocator m.

The scheduling of resource allocator on the cloud service
proposes the probability of servicing the request:

)ijET
1(ijijph

)ijET
1(ijijph

ijp
η−∑

η

= (5)

Where,
- ijη is the attractiveness of the move as computed by

heuristic information indicating a prior desirability of that
move.
- ijph is the pheromone trail level of the move, indicating the

fast and accuracy of the cloud service in the past (with
lower tcsα) to make that particular move (it represents

therefore a posterior service accomplishment indication of the
desirability of that request)
- ijET - Execution Matrix of service and resource allocator.

In this proposed model, we select the highest probability’s
‘i’ and ‘j’ are the next request of service ri executed on the
resource allocator j.

IV. RESULT AND IMPLEMENTATION
We have developed simulated cloud examples (formulated

in python code version 2.5.2. under P-IV machine) with
derived from Google App Engine and Microsoft Live Mesh to
evaluate the proposed modified ACO algorithm for scheduling
request and its respective services on cloud architecture.
Practically, in this model, we incorporate 5 diversified
resource allocators like Application Programming Interfaces
(APIs) for the data store, Google Accounts, URL fetch, image
manipulation, and email services. Google App Engine also
provides a Web-based Administration Console for the user
with 25 different service requests on these utilities. The initial
parameters are set as follows: τ0 = 0.01 and ρ = 0.5 and we use
unit ant per services.

Cloud Servies Under ACO

 Service Grid Using Unit Ant

Se
rv

ic
e

R
es

po
ns

e
Ti

m
e

0

URL Fetch
Polynomial curve of best fit
Fitted equation: y = ax^b
Fitted parameters:
a: 3.21154183 (8 d.p.)
b: 0.48371676 (8 d.p.)
Exponential curve of best fit
Fitted equation: y = ae^bx
Fitted parameters:
a: 2.06369841 (8 d.p.)
b: 0.23794312 (8 d.p.)

Fig. 1 Cloud Services Under ACO

The Fig. 1 shows the unconditional algorithm performances

on the URL fetch process (marked by the arrow) along with
other service requests. These requests have been forwarded on
cloud grid and the τ& operator is updated according “(3)”. The
probability (ijp) of convergence of the request URL fetch

resource allocator from Google cloud service becomes high
through modified ant colony algorithm. The other primary
resource allocators are Google Accounts, image manipulation,
and email services and Application Programming Interfaces
(APIs) for the data store. The proposed ACO improve
performances on the half of the simulation series, considering
all these resource allocators are active at the same time. Other
services are plotted in Fig. 1 in different characteristics curves
like logarithmic curve and exponentiation curve for other
resource allocator’s services shown in Table I.

TABLE I
MAKESPAN FOR THE EXECUTION ON FIRST FREE MACHINE AND ACO

ALGORITHM
Resource Allocator Classic ACO Modified ACO

URL Fetch

Image

Manipulation

E mail Service

Google Acc.

Google API

240

101

241

141

133

 199 140

 73 70

 171 114

101 91

 99 77

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:8, 2009

1956

The Table I compare result achieved with existing ACO
algorithm for similar service requests [5] and result derived
from the proposed modified ACO. The results are measured in
minutes. The Service response Time is from 0.5 units to 200
units and service grid is the equal to the value of factorial of 5
defined resource allocators (shown in Table I).

It is shown that only the modified τ& and time slot
distribution under different cloud services provides a better
performance. For conventional online-mode the arriving order
of request is very important, whereas for both modified and
classis ant colony most important is the execution time of the
separate request and free time of resource allocator to service
the request

V. CONCLUSION
In this paper, a heuristic algorithm based on modified ant

colony optimization has been proposed to initiate the service
load distribution under cloud computing architecture. The
pheromone update mechanism of ACO and coefficient τ is
modified to τ& . This modification supports to minimize the
makespan of the cloud computing based services and
probability of servicing the request also has been converged
using the modified scheduling (Refer Equation “5”). The
simulation doesn’t consider the fault tolerance issues. Due to
absence of any restore time in service and resource allocator
distribution, it is expected that continuous ant colony with
other modified parameters could demonstrate better results
compared to other optimization models, even in faulty service
request and disrupted resource allocator.

REFERENCES
[1] Chu, K. Nadiminti, C. Jin, S. Venugopal, and R. Buyya. Aneka: “Next-

Generation Enterprise Grid Platform for e-Science and e-Business
Applications”, in Proceedings of the 3th IEEE International Conference
on e-Science and Grid Computing (e-Science 2007), Bangalore, India,
Dec. 2007.

[2] A. Weiss, “Computing in the Clouds”, netWorker, Volume 11, No.4,
pp.16-25, December, 2007.

[3] Google App Engine, http://appengine.google.com [accessed in March
2009]

[4] Microsoft Live Mesh, http://www.mesh.com [accessed in March 2009]
[5] Stefka Fidanova and Mariya Durchova,” Ant Algorithm for Grid

Scheduling Problem”, Large Scale Computing, Lecture Notes in
Computer Science No. 3743, Springer, , pp 405-412, 2006.

[6] Yaohang Li, “A bio-inspired adaptive Job Scheduling Mechnism on a
Computational Grid”, International Journal of Computer Science and
Network Security, Vol.6.No.3.B, March 2006.

[7] Dorigo, M., Maniezzo, V., Colorni, A.: The ant system: “Optimization
by a colony of cooperating agents”, IEEE Transactions on Systems”,
Man, and Cybernetics, part B, 26(1) pp. 1–13, 1996.

[8] S. Venugopal, X. Chu, and R. Buyya, “A Negotiation Mechanism for
Advance Resource Reservation using the Alternate Offers Protocol.” in
Proceedings of the 16th International Workshop on Quality of Service
(IWQoS 2008), Twente, The Netherlands, June 2008.

Soumya Banerjee obtained his bachelor in engineering (B.E.(Hons)) degree
in Computer Science from Govt. Engineering College, Maharastra, India in
1995. He has submitted his Ph.D. thesis on Bio-inspired Algorithm and hybrid
intelligence in 2008. He is currently a reader with the Department of
Computer Science, Birla Institute of Technology, International Center,
Mauritius. His research interests include Bio-Inspired algorithm, Soft
Computing, and Hybrid intelligent System.

Indrajit Mukherjee received M.Sc.(Electronics) degree from the University
of Ranchi, India in 1995, MCA degree from BIT Mesra, Ranchi, India in
2001and M.Phil(Computer Science) from Annamali University in 2008.
Currently, he is an Associate Professor in the Department of Computer
Science and Engineering, BIT Mesra, Ranchi, India. His research interests
include Web-Based learning, Data Mining, Parallel Computing, Mobile
Computing, and Web Service Applications, and Soft Computing.

Prabhat K. Mahanti is Professor, Department of Computer Science and
Applied Statistics (CSAS), University of New Brunswick Canada. He
obtained his M.Sc.(IIT-Kharagpur) India, Ph.D(IIT-Bombay) India. His
research interests include Software engineering, software metrics, reliability
modeling, modeling and simulation, numerical algorithms, finite elements,
mobile and soft computing, verification of embedded software, neural
computing, data mining, and multi-agent systems. He has more than 200
research papers, technical reports to his credit. Dr. Mahanti is also involved
with several consultancy projects in and around North America.

