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 
Abstract—Currently, extensive signal analysis is performed in 

order to evaluate structural health of turbomachinery blades. This 
approach is affected by constraints of time and the availability of 
qualified personnel. Thus, new approaches to blade dynamics 
identification that provide faster and more accurate results are sought 
after. Generally, modal analysis is employed in acquiring dynamic 
properties of a vibrating turbomachinery blade and is widely adopted 
in condition monitoring of blades. The analysis provides useful 
information on the different modes of vibration and natural 
frequencies by exploring different shapes that can be taken up during 
vibration since all mode shapes have their corresponding natural 
frequencies. Experimental modal testing and finite element analysis 
are the traditional methods used to evaluate mode shapes with limited 
application to real live scenario to facilitate a robust condition 
monitoring scheme. For a real time mode shape evaluation, rapid 
evaluation and low computational cost is required and traditional 
techniques are unsuitable. In this study, artificial neural network is 
developed to evaluate the mode shape of a lab scale rotating blade 
assembly by using result from finite element modal analysis as 
training data. The network performance evaluation shows that 
artificial neural network (ANN) is capable of mapping the correlation 
between natural frequencies and mode shapes. This is achieved 
without the need of extensive signal analysis. The approach offers 
advantage from the perspective that the network is able to classify 
mode shapes and can be employed in real time including simplicity in 
implementation and accuracy of the prediction. The work paves the 
way for further development of robust condition monitoring system 
that incorporates real time mode shape evaluation. 
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I. INTRODUCTION 

ODAL analysis is generally employed in acquiring 
dynamic response of a vibrating component and are 

widely used in condition monitoring of turbomachinery blades 
[1]. The analysis provides useful information by exploring 
various mode shapes that a vibrating blade can take up during 
operation since mode shapes have their corresponding natural 
frequencies.  

Currently, in modal analysis of turbo machinery blades, 
extensive data analysis is performed to acquire mode shapes in 
real time. This approach is affected by constraints of time and 
the availability of qualified personnel. As such, new 
approaches for mode shapes identification that provide faster 
and accurate results which can describe to a non-technical 
expert how a blade is behaving in real time graphical form are 
pursued. In turbomachines, a variety of machine learning 
algorithms have been employed for prognostic and diagnostic 
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analysis of various components. Basically the machine 
learning method is related to making class of the pattern from 
raw data and generates expert systems for some tasks [2]. 
Also, an autonomous orbit pattern recognition using deep 
learning method on shaft orbit shape images is put forward in 
[3]. 

Considering that each natural frequency produces a unique 
mode shape, a pattern recognition algorithm is devised in this 
study to provide information on the mode shape of an 
operating blade and therefore help facilitate blade condition 
monitoring tasks. There are therefore two key objectives for 
the work reported in this study. The first objective is to carry 
out a finite element analysis simulation study to obtain natural 
frequencies and mode shapes of a small scale laboratory blade. 
The second objective is to develop a nomenclature for mode 
shape classification and further train a neural network to 
recognise these mode shapes based on frequencies supplied to 
the network.  

A. Computational Modal Analysis 

The sketch of blade assembly used in this study is presented 
in Fig. 1. Each of the blades and the hub assembly are made of 
structural steel. Considering that only the parameters of a 
single blade are usually measured instantaneously in turbo 
blades signal analysis and that the blades are identical and 
symmetrical, using a single blade from the whole assembly 
would suffice for the simulation. However, the analysis is 
carried out using two different software packages – 
Solidworks and Nastran. There are two reasons to this. Firstly, 
the results obtained from each software will be used to 
validate the other. Secondly, this will make provision for more 
data to be used in training the network since accuracy of the 
network is dependent on the amount of data used to train the 
network. 

B. Simulation Results 

For the simulation, the material properties used are: 
 Young’s modulus: 210 GPa 
 Poisson’s ratio: 0.28 
 Density: 7700 kgm-3  

The material properties were assigned to the blade and 
constrained as it is on the assembly of Fig. 1 and the 
simulation study was carried out similar to that reported in [4]. 
The first five modes were extracted and the results are 
presented in Fig. 2. 

A second simulation was run on Nastran Software in the 
same manner as the one described above. The mode shapes 
extracted are similar to those obtained in Solidworks. Table I 
provides a summary of the modes and frequencies obtained 
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from the two software. 
 

 

Fig. 1 Blade assembly profile 
 

 

Fig. 2 First five modes obtained from finite element modal analysis 
The results presented in Table I show that the values 

extracted from the two different software are in good 
agreement. 

II. MODE SHAPE NOMENCLATURE FOR PATTERN RECOGNITION 

When inputs are to be classified into N different classes, the 
target vectors have N elements. For each target vector, one 

element is 1 and the others are 0 [5]. The mode shape obtained 
from the modal analysis simulation is the first five modes. 
Hence there are five different classes that the network aims to 
recognise. Table II summarises frequencies and their 
corresponding mode shapes in conjunction with the 
nomenclature adopted for training ANN pattern recognition 
model. 

 
TABLE I 

SINGLE BLADE MODAL ANALYSIS DATA OBTAINED FROM SOLIDWORKS AND 

NASTRAN 

Mode Frequency - Hz (Solidworks) Frequency - Hz (Nastran) 

1 40.9 40.5 

2 61.5 61.4 

3 175.64 165.3 

4 682.6 677.3 

5 703.4 700.1 

 
TABLE II 

ACER SINGLE BLADE DATA 

Mode 
Frequency - 

Hz 
(Solidworks) 

Frequency – 
Hz 

(Nastran) 
Mode shape nomenclature 

1 40.9 40.5 1 0 0 0 0 

2 61.5 61.4 0 1 0 0 0 

3 175.6 165.3 0 0 1 0 0 

4 682.6 677.3 0 0 0 1 0 

5 703.4 700.1 0 0 0 0 1 

A. Network Architecture 

A multilayer feed forward pattern recognition network is 
used to train the data in Table II. This type of network consists 
of interconnected processing neurons working together to 
solve a specific task as illustrated in Fig. 3. The first layer is 
referred to as the input layer and it receives frequency value 
into the network as input. The next layer is the hidden layer 
that has connection with the input layer and also connected to 
the output layer as illustrated in the figure. The output layer 
provides output from the network corresponding to a mode 
shape nomenclature. A properly trained feedforward neural 
network can be used to solve problems involving nonlinear 
and complex input to output mapping.  

B. ANN Training 

The training commenced from the input layer and to the 
hidden layer in which the resulting error between the predicted 
and target values is propagated backwards from the output 
layer to hidden layer and back to the input layer. By doing so, 
the values of the weights and biases are updated continuously 
until a minimum error is achieved. One of the major problems 
in training a neural network is the issue of obtaining optimum 
weights and biases that can guarantee an optimum network 
performance. For this reason, Genetic Algorithm was 
implemented in the training process to facilitate acquiring 
optimum weights and biases so that mode shapes can be 
predicted with a high degree of accuracy. By incorporating 
genetic algorithm (GA) to the neural network, an effective 
training method is attained following the procedure (Fig. 4): 
i. Separate data into inputs and outputs 
ii. Randomly divide data into training, validation and testing 
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iii. Configure network: Assign number of neurons to the 
hidden layer, learning rate, training algorithm, transfer 
functions and epochs 

iv. Run GA iteratively with defined generations, 

chromosomes, mutation rate, cross over and selection to 
find the best fitness value using mean squared error 
(MSE) to determine the best fitness value and pass it to 
the network as the optimum weight and bias. 

 

 

Fig. 3 Neural Network architecture for mode shape recognition 
 

 

Fig. 4 Loop of GA optimising ANN training 

C. Results and Discussion  

The confusion matrix in Fig. 5 analyses the network’s 
response by showing the final network errors.  

The rows of the confusion matrix correspond to what the 
ANN predicted and the columns correspond to the known 
truth (target class). The cells along the diagonal (the green 
boxes) are a representation of how many times the trained data 
were correctly classified. The cells that are not on the diagonal 
(the red boxes) correspond to incorrectly classified 
observations. Each cell shows the number of observations in 
conjunction with the percentage of the total number of 
observations. From the matrix produced in Fig. 5, it can be 

seen that the network was able to accurately classify all the 
modes. 

 

 

Fig. 5 Confusion Matrix 
 
The model was able to map input frequencies (Hz) to their 

corresponding nomenclature associated with mode shapes. 
Following the results obtained, there is an evidence of using 
ANN to identify the vibratory mode of a turbo machine blade 
in operation without the need for extensive signal processing 
and computational time currently incurred in most scenarios. 
In addition, the nomenclature proposed for mode shape pattern 
recognition is suitable to interpret mode shape in real time and 
can be easily adapted to a graphical plot. Finally, in order to 
implement the algorithm in real time, it is important to collect 
training data from the turbomachine blade which it would 
serve. In other words, the algorithm is application specific 
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III. CONCLUSION 

The study in this paper presents mode shape classification 
of a small blade assembly using machine learning. The 
network performance evaluation shows that the ANN 
employed is capable of identifying the existing correlation 
between natural frequencies and mode shapes. This is 
achieved without the need of extensive signal analysis. This 
method is applicable to recognise mode shapes of a vibrating 
turbo blade assembly at resonance frequencies where modal 
data have been acquired and used to train the network. The 
solution presented in this work offers high advantage from the 
view that the network is able to classify mode shapes and can 
be employed in real time including simplicity in 
implementation and accuracy of the prediction. Future work 
will consider an extensive experimentation using experimental 
modal testing to and therefore increase the training datasets. 
Also, alternative machine learning approach will be explored.  
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