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 
Abstract—With global aging, people who require care, such as 

people with dementia (PwD), are increasing within many developed 
countries. And PwDs may wander and unconsciously set foot 
outdoors, it may lead serious accidents, such as, traffic accidents. 
Here, round-the-clock monitoring by caregivers is necessary, which 
can be a burden for the caregivers. Therefore, an automatic wandering 
detection system is required when an elderly person wanders outdoors, 
in which case the detection system transmits a ‘moving’ followed by 
an ‘absence’ state. In this paper, we focus on the transition from the 
‘resting’ to the ‘absence’ state, via the ‘moving’ state as one of the 
wandering transitions. To capture the transition of the three states, our 
method based on the hidden Markov model (HMM) is built. Using our 
method, the restraint where the ‘resting’ state and ‘absence’ state 
cannot be transmitted to each other is applied. To validate our method, 
we conducted the experiment with 10 subjects. Our results show that 
the method can classify three states with 0.92 accuracy. 
 

Keywords—Wander, microwave Doppler sensor, respiratory 
frequency band, the state transition, hidden Markov model.  

I. INTRODUCTION 

LDERLY population has been increasing in many 
developed country. According to the World Health 

Organization (WHO), the majority of developed countries are 
estimated to have 1.4 billion in elderly population over 65 years 
old by 2030 [1]. This implies that the number of people 
requiring nursing care will only increase within those countries. 
In one study, the number of PwD has increased in recent years 
[2]. PwD are likely to wander and unconsciously set foot 
outdoors, making them susceptible to serious accidents; for 
example, traffic accidents [3]. Therefore, the detection of a 
wandering elderly is required. However, round-the-clock 
monitoring can be a burden to caregivers. Hence, an automatic 
wandering detection using sensors is required in order to 
provide immediate response when an elderly person wanders.  

Systems based on GPS have been proposed for the detection 
of wandering [4], [5], for example, Solanas tries to recognize an 
elderly’s position when he/she is wandering outside [4]. 
Although a GPS can detect the movement of an object outdoors, 
it does not perform as well while trying to detect an object in a 
room, or when no obstacle is present. Moreover, the response 
may be delayed if the elderly goes from indoors to outdoors. 
Here, we focus on monitoring the elderly in their homes. The 
moment an elderly’s state changes to “absence,” monitoring is 
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required. Here, when an elderly wanders and goes outdoors, the 
state changes from the “resting” to “absence” state, via the 
“moving” state. Therefore, before the “absence” state is 
classified, the classification of the “moving” state is required. 
In wandering, the two types of state transition, “moving”-to- 
“absence”, “absence”-to-“moving”-to-“absence” and 
“resting”-to-“moving”-to-“absence”, are considered. 

Elloumi had proposed a human activity recognition system 
based on a movie camera [6]. Although moving technology has 
shown great progress in recent years, using a movie camera is 
an invasion of privacy, especially when it is used in bathrooms 
and toilets. Therefore, the use of other devices has been 
considered.  

Ma et al. had proposed a method to classify a human’s 
presence/absence as well as recognizing activity using infrared 
pyroelectric sensors [7], [8]. Pyroelectric sensors are able to 
obtain an object’s temperature. Therefore, using the captured 
temperature, a human’s presence/absence can be classified. 
One problem with pyroelectric sensors is that response may be 
difficult to achieve when the atmospheric temperature changes 
to a value similar to that of a human’s body temperature.  

Okuya and Sekine had proposed a human presence/absence 
classification and activity recognition system based on using a 
microwave Doppler sensor, which can capture an object’s 
motion [9], [10]. We have also previously used a microwave 
Doppler sensor to classify human presence/absence [11]. In our 
work [11], we were able to classify “sitting on a chair” and 
“absence” with 0.99 accuracy.  

In this paper, we propose a system that classifies three 
human states: “resting”, “moving,” and “absence.” Using data 
from a microwave Doppler sensor, a wandering model that can 
take into account the transition of the three states is developed. 

II. PROPOSED METHOD 

Our method is described in this section. A microwave 
Doppler sensor can capture a human’s motion, such as 
respiration, walking, standing and so on. Capturing a human’s 
characteristic motion is required to classify the three states: 
“resting”, “moving” and “absence.” Here, we propose setting a 
microwave on the ceiling so that a wider area can be covered. 
By radiating the microwave downwards, we can expect the 
capture of the features corresponding to each of the three states. 
Fig. 1 shows our method, which is separated into the learning 
phase (A) and the estimation phase (B). A microwave Doppler 
sensor outputs time-series signal I(t) corresponding to an 
object’s motion. Let t and k be continuous time and discrete 
time, respectively. All acquired data are first converted to 
digital signals, I(k) with sampling interval dt. Further, let
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)1( dtF   be the sampling frequency within measurement. In 

the learning phase, the wandering model is developed using 
I(k). In the estimation phase, the state of unknown data is 
estimated by the developed model.  

A. Learning Phase 

Initially, a certain amount of data, I(k), which corresponds to 
a subject’s state, that is, the “absence”, “resting”, and “moving” 
states, are measured as learning data sets. Here, let N be the 
number of measurement data (1, 2, 3, …, n,…, N). Therefore, N 
learning data sets, In(k), are acquired. All In(k) are labeled 

}3,2,1{)( ken  for each time step k (1: absence state, 2: resting 

state, 3: moving state). Here, let f be the discrete frequency. 
In(k) is converted to ),( fkWn by Wavelet transform (WT) with 

three parameters, fstart, fend and df . Let fstart, fend and df be the 
lowest frequency, the highest frequency and the frequency 
resolution, respectively, in WT. ),( fkWn denotes the 

frequency characteristic for each time step k. Using ),,( fkWn  

two types of feature vector, Sn(k) and Rn(k), are calculated. 
Here, the frequency band from flow and fhigh is decided. As 
shown in (1), the summation of amplitude between fstart and fend 
is calculated for each k as Sn(k). As shown (2), the ratio of Sn(k) 
and the summation between flow and fhigh is calculated as Rn(k). 

All In(k) are converted into Sn(k) and Rn(k).  
 





high

low

f

ff
n fkWkS ),()(                                                             (1) 

 





end

start

high

low

f

ff

f

ff
n fkWfkWkR ),(),()(                                 (2) 

 
Using all Sn(k) and Rn(k), the thresholds for categorization, 

TS1, TS2, TR1, TR2, are calculated. First, in order to obtain the 
thresholds TS1 and TS2, CS1, CS2 and CS3 are calculated from 
Sn(k) as shown in (3)-(5).  
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Fig. 1 Overview of the proposed method 
 

Next, CS1, CS2 and CS3 are sorted in ascending order. For 
example, if CS1 is larger than CS2, the value of CS1 and CS2 are 
exchanged. The thresholds TS1 and TS2 are calculated using (6) 
and (7): 
 

2)( 211 CSCSTS                                                            (6) 
 

2)( 322 CSCSTS                                                           (7) 
 
TR1 and TR2 are calculated using (8)-(12) using Rn(k) and Sn(k). 
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Using both types of threshold, Sn(k) and Rn(k) are categorized 

to OSn(k) and ORn(k) using (13) and (14): 
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E1(k) and E2(k) are used to learn the HMM wandering model. 

The parameters of HMM, i.e., the state transition probabilities, 
the emission probabilities, and the initial state probabilities, are 
learned by measurement learning data. In this paper, the 
transition of state, }3,2,1{)( ks  is modeled as the state 

transition probabilities, A（s(k),s(k+1)）. Here, we define that the 
transition between the “resting” and “absence” states cannot be 
performed. Hence, A(1,2) and A(2,1) are fixed at 0. The relation 
between OS(k) and s(k) is modeled as the emission 
probabilities, BS(s(k),OS(k)). As well as BS(s(k),OS(k)), the 
relation between OR(k) and s(k) is modeled as the emission 
probabilities, BR(s(k),OR(k)). In addition, for the true state in 
learning, e(k), its emission probability, Be(s(k),e(k)) whose 
diagonal factor is defined as 1 is modeled. Let π be the initial 
state probabilities. Using the Baum-Welch algorithm, A, BS, BR 
and  are updated by OS(k), OR(k) and Be. Updating of A, BS, 
BR and  with the Baum-Welch algorithm is repeated R times. 
Further, the logarithm likelihood between the updated model 
and the learning data, L is calculated. If L is lower than ,  

updating is stopped and A, BS, BR and  are applied at this 
instance.  

B. Estimation Phase 

In the estimation phase, the unknown data, Inew(k) is 
obtained. By using TS1, TS2, TR1 and TR2 obtained by learning 
data sets, Inew(k) is converted to feature vectors, OSnew(k) and 
ORnew(k). Here, in order to obtain the optimal path,   the Viterbi 
algorithm is utilized with A, BS, BR, OSnew(k) and ORnew(k) as 
shown in (15).   

 

),,,|)(),(Viterbi()(ˆ  RS BBAkORkOSks                    (15) 
 

Additionally, by using (16) with the optimal path ),(ˆ ks  the 

estimation result )(ˆ ke is acquired for each k. 
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III. EXPERIMENT 

We conducted an experiment in order to evaluate our 
method.  

A.  Experimental Setup 

Fig. 2 shows our experimental setup and the measurement 
system. A microwave Doppler sensor, IPS154, was set at a 
height of 2.3 m from the floor. The height corresponds to the 
height of a general ceiling and a single device can cover an area 
of radius 1.5 m. In this covered area, the “absence”, “resting”, 
and “moving” states were measured with a 0.01 seconds of 
sampling interval (dt) in 30 seconds. Further, we conducted the 
experiment with 10 healthy subjects who participated with 
informed consent. The age of the subjects is between 20–24 
years old.  

For signal processing, 0.1 Hz, 50 Hz and 0.1 Hz are set to 
flstart, fend and df, respectively. Additionally, when calculating 
the feature vector, flow and fhigh were set to 0.2 Hz and 0.8 Hz, 
respectively. These frequencies correspond to a human’s 
respirational frequency band. Each of the parameters: HMM, A, 
B, and  are, initially, set to a uniform random number based 
on the rand function in Matlab 2017. The repeated number, R 
and the threshold,  in the Baum-Welch algorithm are set 500 
and 1.00 10-3, respectively. 

B. Experimental Data 

All three states: “moving”, “resting” and “absence” are taken 
into account in our measurements. The “moving” and “resting” 
states are obtained when a subject is “walking” and “sitting,” 
respectively. At first a subject is asked to sit on a chair calmly to 
initiate the “resting” state. After a few seconds, we asked the 
subjects to stand up and walk in the experimental area to obtain 
the “moving” state. Before the entire measurement time (30 
seconds) has passed, the subjects are asked to leave the 
experimental area. The term “absence” is labeled as the 
duration when the subjects begin to leave until measurement is 
finished. Within the measurement of data I(k), the true state e(k) 
is checked and labeled for each discrete time step k. The 
process flow explained above is repeated 20 times for each 
subject. Therefore, 200 data I(k) are acquired totally.  

C. Evaluation 

All I(k) are converted into feature vector OS(k) and OR(k) 
with true state e(k). We performed the evaluation based on the 
leave-one-subject-out-manner. One subject’s OS(k) and OR(k) 
are applied as test data set, and the other subjects’ OS(k) and 
OR(k) are used as learning data sets to develop, A, BS, BR,   
(N=180). 

The true state and the classified state are compared for each 
time step k. Table I shows nine types of classification results, 
where three types of correct cases and six types of incorrect 
cases were obtained. For the correct cases, the “resting”, 
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“moving” and “absence” states are classified as TR, TM, and 
TA, respectively, as shown in Table I. However, for the 
incorrect cases, the “resting”, “moving” and “absence” states 
are classified as other states, denoted by TR1 or TR2, TM1 or 
TM2, and TA1 or TA2, respectively. Each type of classification 
is as shown in Table I. 

 

 

Fig. 2 Our experimental setup. The measurement data I(t) is sent to an 
A/D converter and converted into I(k) 

 
TABLE I 

RESULT OF EVALUATION I 

 
True State 

“Resting” “Moving” “Absence” 

Classified 
State 

“Resting” TR FR1 FR2 

“Moving” FM1 TM FM2 

“Absence” FA1 FA2 TA 

 

TNFAFAFMTMFMFRFRTP

TATMTR
accuracy





212121

(17) 

 
The evaluation flow above is repeated 10 times for each 

subject, and each classification result is counted up using all of 
the subjects’ data. The ratio of each index for all classification 
results are calculated so that the summation of all indexes 
represents 1. Further, using these indexes, the accuracies are 
calculated for each subject.  

Additionally, to validate our HMM-based model, we used 
two types of classification methods. The first method does not 
use HMM and classifies only the thresholds TS and TR. Using 

OS(k), the state, ),(ˆ ke  is estimated and accuracies are calculated. 

The second method is based on HMM, in which there are no 
restrictions to the transition of states. In the initialization of the 
state transition matrix A, none of the factors takes 0. Both 
comparison methods are also evaluated based on the 
leave-one-subject-out-manner. Moreover, in order to confirm 
how each feature vector, S(k) and R(k), works in this 
classification, each state is classified using a single feature 
vector. According to our previous study [11], we can classify a 

human’s presence/absence with 0.98 accuracy by using only 
the summation between the amplitude of the respirational 
frequency band. Our previously-reported feature [11] is similar 
to this experiment’s S(k). Here, in this evaluation, we assume 
that, while S(k) is useful to distinguish a human’s absence from 
presence, S(k) is also useful in classifying the “resting” and 
“moving” states. Therefore, we validated that a human’s 
presence/absence can be classified using our HMM-based 
method, where only OS(k) is required. Both the “moving” and 
“resting” states are distinguished as “present” state from 
“absence” state (evaluation type I). In addition, we validated 
that a human’s “resting” and “moving” states can be classified 
using our HMM-based method, where only OR(k) is required 
(evaluation type II). In both evaluation types, the accuracy of 
presence/absence classification and the accuracy of “resting”/ 
“moving” classification are calculated as shown in (18) and 
(19): 
 

PAaccuracy
TNFAFAFMTMFMFRFRTP

TATMFMFRTR





212121

11 (18) 

 

2121 FMTMFMFRFRTP

TMTR
accuracyRM 


  (19) 

IV. EXPERIMENTAL RESULTS 

A. Examples of Measurement Data 

Figs. 3-6 show examples of our measurements and signal 
processing. From the beginning to about 8 s, a subject sat on a 
chair calmly, also known as the “resting” state. Next, the 
subject stood up and was walking in the experimental area for 
19 s, classified as the “moving” state. Finally, the subject goes 
outdoors at 19 s and no subjects are found in the experimental 
area by the end of the measurement. This scenario is measured 
as the “absence” state. 

Fig. 3 shows an example of (a) the measurement data I(k), 
and (b) the frequency characteristic W(k,f) of this experiment. 
As shown Fig. 3 (a), although I(k) is shaped flatly during the 
“resting” and “absence” states, I(k) varies significantly during 
the “moving” state. The “resting” and “absence” states are 
similar in shape. Here, as shown Fig. 3 (b), the frequency shows 
stronger amplitudes during the “moving” state. During the 
“resting” state at lower frequencies, i.e. less than 2 Hz, the 
frequency shows stronger amplitudes than any other frequency 
bands. During the “absence” state, the frequencies show 
weaker amplitudes. However, as shown in Fig. 3 (b), stronger 
amplitudes occur at lower frequencies, i.e. less than 2 Hz. From 
8 s to 19 s, a subject walks in the experimental area, also known 
as the “moving” state. During the “moving” state, I(k) changed 
significantly. As shown in Fig. 3 (b), most of the frequencies 
have strong amplitudes.  

Fig. 4 shows (a) the feature vector S(k), and (b) the feature 
vector R(k), obtained from the frequency characteristic, W(k,f) 
shown in Fig. 3 (b). The values of S(k) and R(k) correspond to 
W(k,f). Within the “resting” state, while S(k) varies only a little, 
R(k) varies significantly. On the other hand, within the “moving” 
state, while S(k) varies significantly, R(k) varies only a little. 



International Journal of Medical, Medicine and Health Sciences

ISSN: 2517-9969

Vol:11, No:12, 2017

683

 

 

While the subject is taking the “absence” state, S(k) and R(k) 
mostly vary only a little. However, at about 24 s, R(k) 
temporarily varies significantly. 

Fig. 5 shows (a) the categorized data OS(k), and (b) the 
categorized data OR(k) from Fig 4’s S(k) and R(k). Within the 
“resting” state, while S(k) shows 2 or 3, R(k) shows mostly 3. 
Within the “moving” state, while S(k) shows only 3, R(k) shows 
1 or 2 mostly, but also 3 sometimes. And, within the “absence” 
state, S(k) and R(k) show all categories: 1, 2 and 3. From 19 s to 
21 s, in the first term of the “absence” state, S(k) shows 3. 
However, in other terms of the “absence” state, S(k) shows 1 or 
2. 

Fig. 6 shows (a) the classified state using HMM, )(ˆ ke and (b) 
the true state transition e(k). The state transition can be captured 
by )(ˆ ke . However, some time lags are shown at the starting 

point of “moving” between )(ˆ ke and e(k). )(ˆ ke is delayed 0.5 s 
after approximately 0.5 seconds from e(k) to classify the 
“moving” state. At the starting points of “absence,” )(ˆ ke is 
delayed about 3 seconds to classify the “absence” state. 

B. Classification Results 

Table II shows the classification result of our method. 
Correct classification results, TR, TM and TA report 0.31, 0.31 
and 0.30, respectively, and are counted more often than any 
other classification results. For the incorrect classification 
results, FM2 and FA2 both reported 0.3. Table III shows the 
classification results of using a HMM whose state transition has 
no restraints. Each type of the classification results is reported 
about the same value, 0.09–0.16 and 0.34 accuracy. Moreover, 
when only OS(k) is used for HMM, the presence/absence is 
classified as shown in Table IV. Accuracies of the presence/ 
absence and “moving”/”resting” classifications are 0.97 and 
0.79, respectively. When only OR(k) is used for HMM, the 
presence/absence is classified as shown in Table V. Accuracies 
of the presence/absence and “moving”/”resting” classifications 
are 0.81 and 0.95, respectively. 
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Fig. 3 Example of I(k) and W(k,f) 
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Fig. 6 Example of estimation result, )(ˆ ke  and true result, e(k) 
 

TABLE II 
CLASSIFICATION RESULT OF OUR METHOD 

 
True state 

Resting Moving Absence 

Classified 
state 

Resting 0.31 0.01 0 

Moving 0.01 0.31 0.03 

Absence 0.01 0.03 0.30 

 
TABLE III 

CLASSIFICATION RESULT OF USING HMM WITH NO RESTRAINT OF STATE 

TRANSITION 

 
True state 

Resting Moving Absence 

Classified 
state 

Resting 0.10 0.09 0.15 

Moving 0.09 0.16 0.09 

Absence 0.13 0.10 0.09 

 
TABLE IV 

CLASSIFICATION RESULT OF USING ONLY OS(K) 

 
True state 

Resting Moving Absence 

Classified 
state 

Resting 0.22 0.04 0 
Moving 0.10 0.30 0.07 
Absence 0 0.01 0.26 

Gray position represents correct cases if presence/absence is classified. 
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TABLE V 
CLASSIFICATION RESULT OF USING ONLY OR(K) 

 
True state 

Resting Moving Absence 

Classified 
state 

Resting 0.31 0.01 0 

Moving 0.02 0.24 0.05 

Absence 0.00 0.10 0.28 

Gray position represents correct cases if presence/absence is classified. 

V.  DISCUSSIONS 

From Table IV, OS(k) is shown useful for the classification 
of a human’s presence/absence. Additionally, from Table V, 
OR(k) is shown useful for the classification of the “resting” and 
“moving” states. Therefore, when using both OS(k) and OR(k), 
the three states, “resting”, “moving” and “absence”, are 
classified more accurately. We conclude that because the focus 
was on the respirational frequency band, accurate 
classifications can be gained. The summation of amplitude 
between a human’s frequency band, S(k), becomes the 
characteristic of a human’s presence/absence. Moreover, R(k), 
the amplitude ratio of a human’s frequency band and other 
motions’ frequency bands, becomes the characteristic of a 
human’s “resting”/“moving.” In addition, state transition 
restraint plays an important role in classifying the three states. 
In real situations, two transitions: “absence” to “resting,” and 
“resting” to “absence,” could not be realized. Our model 
eliminates the latter restraint as it is capable of classifying the 
transitions of three states, from “resting” to “absence,” the 
“moving” state. 

Future work will include building a model of the state 
transition from “moving” to “absence” state. Moreover, 
combined with our previous method [11], the validation for 
wandering detection is required. 

VI. CONCLUSIONS 

In this paper, we classified a subject’s state as “absence,” 
“resting,” and “moving” by developing a transition model for 
these three states. Our method can classify the states with 0.92 
accuracy. Two types of feature vectors are utilized from the 
respiration frequency bands. The first feature vector, which is 
useful in distinguishing a human’s presence from absence, is 
obtained from the summation of amplitudes in the respirational 
frequency band. Moreover, the second feature vector, which is 
useful for classifying a human’s “moving” and “resting” states, 
is obtained from the amplitudes ratio of the respirational 
frequency bands and other frequency bands. For our modeling, 
we used an ergodic topology model with the restraint that no 
transition occurs between the “resting” and “moving” states. 

For future work, the transition from “moving” to “absence” 
should be taken into account. Moreover, in this experiment, we 
used relatively young subjects and measured the data in our 
laboratory. To better portray real situations, measurements 
should be performed on elderly subjects, particularly ones with 
dementia, in their homes.  
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