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Abstract—In this study, the problem of discriminating between 

interictal epileptic and non- epileptic pathological EEG cases, which 
present episodic loss of consciousness, investigated. We verify the 
accuracy of the feature extraction method of autocross-correlated 
coefficients which extracted and studied in previous study.  For this 
purpose we used in one hand a suitable constructed artificial 
supervised LVQ1 neural network and in other a cross-correlation 
technique. To enforce the above verification we used a statistical 
procedure which based on a  chi- square control.  The classification 
and the statistical results showed that the proposed feature extraction 
is a significant accurate method for diagnostic discrimination cases 
between interictal and non-interictal EEG events and specifically the 
classification procedure showed that the LVQ neural method is 
superior than the cross-correlation one. 
 

Keywords—Cross-Correlation Methods, Diagnostic Test, 
Interictal Epileptic, LVQ1 neural network, Auto-Cross-Correlation 
Methods, chi-square test. 

I. INTRODUCTION 
T is known that determining whether a person with 
"seizures", "spells" or other episodic unusual behaviour, 

actually has epilepsy presents difficulties. For example 
episodic loss of consciousness need not signal epilepsy but 
could result from loss of blood supply to the brain from 
diseases of the blood vessels or the heart itself. Periodic low 
blood sugar and certain types of migraine headache may also 
lead to loss of consciousness [1]. Therefore, Non-Epileptic 
Events (NEEs) may be due to different organic or non-organic 
disorders. The diagnosis of Non-Epileptic Attack Disorder 
(NEAD) involves both exclusion of organic causes of NEEs 
and elucidation of positive phenomena of this entity [2]. The 
distinct entity of NEAD does not allude to any specific 
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psychological mechanism and this term includes a variety of 
synonyms like Pseudo Epileptic Seizure (PES), psychogenic 
seizure, pseudo seizure, hysterical seizure, hystero-epilepsy 
and functional seizure. The subject has recently attained 
renewed interest as intensive monitoring has diagnosed many 
cases of refractory seizures (20% or more) as non-epileptic 
seizures [3]. In the case of Epileptic events, the condition 
where the brain itself is the cause of periodic spells, the classic 
diagnostic approach has always been to perform an EEG and 
search for epileptiform "spikes" or "spike and waves" which 
may signify epilepsy [4, 5].  Electroencephalography remains 
a major complex technique in differentiating epilepsy and 
non-epileptic attacks like NEAD, syncope, narcolepsy, 
cataplexy, sleep disorders, etc. Proper clinical history and 
observation of an attack may not be sufficient for diagnosis 
and, therefore, ictal and postictal EEG, 24 hours ambulatory 
EEG and video EEG can be of immense help for the purpose. 
Long term monitoring (LTM) for epilepsy is the technological 
advancement to improve the yield of EEG data in 
differentiating Epileptic Seizure (ES) from Non- Epileptic 
Seizure (NES). LTM includes radio telemetry, cable telemetry 
and cassette recorders [6]. Suggestion and induction 
techniques along with simultaneous continuous video-EEG 
monitoring have been used to differentiate between EE and 
NEE. These include iv saline infusion, alcohol patch 
technique and hypnosis and NEEs could be induced in 77-
82% cases [7, 8].  

Ideally, an EEG is performed during an actual clinical or 
"ictal" event during which time runs of epileptiform 
discharges would be expected. However, ictal events may be 
few and far between. In practice most epileptics demonstrate 
epileptiform activity even in-between seizures (interictally). 
The human eye is the "gold standard" for recognizing 
epileptiform activity and to distinguish it from artifactual 
signals and from EEG activity that may mimic epileptiform 
activity but is benign ("normal variants"). However the 
unaided human eye cannot efficiently distinguish the specific 
details of interictal epileptic activity that are valuable 
regarding a final epileptic diagnosis [4, 5]. 
 

Our study [9], a diagnostic testing method used to 
discriminate between interictal epileptic EEG and non- 
epileptic pathological EEG events, this method based purely 
on signal processing and describes an algorithm which is 
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based on the estimation of a number of auto-correlated 
coefficients extracted from an interictal epileptic EEG 
segment. In particular, these coefficients are correlated with 
the coefficients of EEG segments of epileptic and non-
epileptic cases. Finally, the auto-correlation coefficients are 
extracted in a particular spectrum in contrast to the traditional 
methods where the final diagnosis of epilepsy depends on 
searching for epileptiform "spikes" or "spike and waves" [4, 
5]. In this way the autocorrelation coefficients of a specific 
interictal epileptic EEG segment may be used as a pattern 
recognition tool for epileptic diagnosis.  

The statistical results of this method corroborate the 
previous research [11, 12], in that it is possible to correlate 
alpha, beta and gamma activities with epileptic activity. This 
conclusion is justified because in the experimental part the 
selected spectrum of each EEG segment that participated in 
the proposed method contained dominant alpha activity and 
fewer beta and gamma activities, which, however, influenced 
significantly the results, using cross-correlation technique. 
Furthermore, the same problem was investigated with the 
same feature data using an artificial LVQ1 neural network 
[10]. This experiment took place in order to be corroborated 
the results of our previous work [9]. The results of this 
experiment [10] showed that the LVQ1 neural network 
classified better in the frequency 8-40 Hz than the latest study 
[9], which yielded best results in the area between 5 - 70 Hz.  
Specifically, the two categorization methods didn’t yield 
equivalent results in the same frequencies that experimentally 
referred.  

The aim of the present study is to statistically compare the 
above results of the above methods in order to extract 
accurate statistically conclusion for the features of the 
proposed feature extraction mechanism. In order to 

evaluate the statistical significance of the 

classification scores obtained in the 

experimental part, the chi-square test was 

applied to the results. The two feature 

extraction methods presented are also compared in 

terms of their Cramer coefficient of mean square 

contingency, φ. Results are seen to be 

statistically significant at the a = 99.5% level 

of significance. 
So in the present work we compare statistically all the 

results of the both methods in order to extract the following 
two ascertainments: 
1. The hypothesis that the dominant alpha activity and 

fewer beta and gamma activities carried interictal 
epileptic features is fundamental statistically. 

2. The statistically improvement of the validation of the 
feature extraction method [13]. 

For the implementation of this we used statistically tools in a 
similar difficult problem [13]. 

In more details, we used a good fitted chi square model in 
order to compare the both results regarding a null Hypothesis, 
which indicates appropriately the classification problem. 
Furthermore, we made more robust this evaluation using the 
Cramer coefficient [13] of mean square contingency. 

II. THE FEATURE EXTRACTION METHOD 

A. The Basis of the Algorithm 
This study is based on the hypothesis that the shape of a 

segment of an EEG signal may be described by the degree of 
asymmetry around a characteristic point [9]. The degree of 
asymmetry of a segment is obtained via the Pearson criterion [13] 
and is described by the following equation: 

S  =  

_
X  -  Mo

s                                                                           (1) 

where:  
• S  the degree of asymmetry, 

•  
_
X  the mean value of the  signal segment,  

•  Mo the value of the characteristic signal (data) point,   

• s  the standard deviation of a signal segment. 
The degree of asymmetry may be characterized as an 

appropriately fit index because it includes all the necessary 
characteristics of the EEG for our purpose. In other words, using 
the highest peak of the spectral density of an EEG as a symmetric 
axis, the extracted index in the interictal epileptic case features the 
positions of the waves and spikes. Moreover, it also carries the 
general feature of the distribution across the spectrum. This 
consideration may be characterized as innovative because it is 
possible to detect characteristic differences between pathological 
cases that yield similar EEG recordings such as those referred to 
in the introduction. Furthermore, in the present study we chose to 
extend our research to include gamma activity, 5-70 Hz (fig. 1).  

 

 
Fig. 1 Spectral analysis of an EEG signal. Only the sub-band (5-70 

Hz) is shown 
 

B. The Autocorrelation Coefficients 
In this study we considered that the original EEG signal x(n) 

was segmented into k sequential overlap segments. Thus, we 
created sequence (wk), 

                                          where: 

1 1 1,..., 1 2{ } { , }k hk hk hk fw x x x+ + + + +=                                 (2) 
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And 0,1, 2,...,
2
nk
h

=  with f and h the constants described 

in the experimental part. 
In our case we considered that each EEG segment ( )kx w  

with a length of N was partitioned into k non-overlapping 
sequences with a length of L so that kL=N. The k non-
overlapping sequences can be expressed as: 

( ) ( ), 0,1,..., 1m k k kx w x w mL w L= + = −  and 

0,1,..., 1m k= − . 

Thereinafter the Power Spectral Density B̂P  of each EEG 

overlap segment ( )m kx w  was computed using Bartlett’s 
periodogram method [14] as follows: 
                                                                                                                                                                                                                                

21 1

0 0

1ˆ ( ) ( )
k L

j j
B k

m w
P e x w mL e

N
ω ω

− −

= =

= +∑ ∑                              (3)                             

It is considered that the Bartlett estimate ˆ ( )j
BP e ω  is an 

asymptotically unbiased and consistent estimate of the power 
spectrum ˆ ( )j

xP e ω . 
Furthermore, we considered that a sequence of frequencies 

{f} = {f1, f2, f3,…, fn} is the same length as set B̂P , the values 
of  f1 and fn being determined in the experimental part. Then, if 
fg is the element of  {f} sequence which corresponds to the Pg 
element of the {P} sequence, 

Where: ˆmax( ( ))i
g BP P e ω=  and 1≤g ≤n                (4) 

Then equation (1), taking into account equations (3, 4), is 
modified as follows: 

2
2

ˆ

ˆ ( )ˆ ( )

1

g
k

i
Bi

B

f f
S

P e
P e

N
N

ω
ω

−
=

−

−

∑∑

            (5) 

where  B̂P  is given by equation 3. 
Thereinafter, we considered set {D} of sequences which 

consist of the following: 
                ˆ ˆ ˆ

1 2 k-1{D}={D ,D ,...,D } , where:    

ˆ ˆ ˆ ˆ
1 1 2 2 1 2 3 3 1 2 3 4 k-1 1 2 3 kD={S ,S }, D={S ,S ,S }, D={S ,S ,S ,S },..., D ={S ,S ,S ,...,S }. 

 
Then the autocorrelation coefficients of the proposed method 

were computed as follows: 

1 2 3 1
ˆ [ , , ,... ]KC C C C C −=                            (6)  

where:  
                                                              

2
2 1

1

1

ˆ
ˆ

1

D
D

NC
N

−
=

−

∑∑
                            

In conclusion, these extracted autocorrelation coefficients 
may be characterized as a mapping of the variation of spectral 
density of an EEG as can be seen in figure 2 below. 

 

 
Fig. 2 In figure A an example of the variation of the 

autocorrelation coefficients is presented. In figure B, figure A  is 
transformed in order to present the variation  of the standard 

deviation in relation to time  

III. CLASSIFICATION PROCEDURE VIA CROSS-CORRELATION 
METHOD 

In this stage the extracted set of auto-correlation 

coefficients Ĉx  of an interictal epileptic EEG case were 

submitted to the cross-correlation [15] along with another set 

Ĉy  (interictal epileptic or non-epileptic case) as described 

below: 
1

1
1 1

2 2

1 1

ˆ ˆ ˆ ˆ( )( )

ˆ ˆ ˆ ˆ( ) ( )

k

i i i i
i

k k

i i i i
i i

Cx Cx Cy Cy
r

Cx Cx Cy Cy

−

=

− −

= =

− −
=

− −

∑

∑ ∑
            (7)                   

The extracted cross-correlation coefficient is a number 
between -1 and 1, which measures the degree to which two 
variable sets are linearly related. In our study we considered 
that the auto-correlated unknown EEG set has a perfect 
positive linear relationship with the auto-correlated interictal 

epileptic set Ĉx  when the cross-correlation coefficient is 

approximately 1. 

IV. CLASSIFICATION PROCEDURE VIA LVQ NEURAL NETWORK 
 
The extracted set of auto-correlation coefficients used as 

feature vectors for classification.  These vectors (codebook) 
are fed into an LVQ1 classifier, [16], first for training and 
then for the actual classification of unknown input vectors. 
During the training process, the codebook vectors directed 
towards the data vectors of the same class and distanced from 
those codebook vectors of a different class.  The adaptation of 
the weights of the neurons carried out iteratively, based on the 
Euclidean distance measure. Specifically, the architecture of 
the LVQ1 network used to classify the epileptic or non-
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epileptic feature vectors (p = 8). Input vectors of 
dimensionality 8 x 1 are weighted and fed to the first layer of 
neurons, known as the competitive layer. These neurons 
compete for inputs in a "greedy" way; hence the layer name. 
Four (4) such neurons form the competitive layer in our case. 
The output of the competitive layer, which is in fact a 
grouping of the inputs into subclasses, fed to the second linear 
layer, which groups subclasses into target classes. The weights 
connecting the two layers take on binary values of zero or 
one, indicating mere class membership and not actual 
weighting. 

V. EXPERIMENTAL PART 
In this study two (2) data types were recorded. On one hand 

42 interictal epileptic EEGs from diagnosed epileptic 
individuals were recorded and on the other hand 44 EEGs 
from diagnosed pathological cases, who had presented loss of 
consciousness, were also recorded. It must be noted that for all 
the EEGs of both data types it was impossible to diagnose 
with the eye or with known computer methods based on 
detection using "spikes" or "spike and waves". That is because 
in the interictal epileptic cases we selected original EEG 
segments which were devoid of characteristic epilepticform 
spikes, (see figure 3).  Furthermore, the epileptic and non-
epileptic EEG segments belonged to different adult 
individuals. 

 
Fig. 3 An example of the overlapping segmentation of two EEGs 

of 5 sec duration each, where l1 is the selected length of each EEG 
segment, w is the overlap window and c is the non-processed EEG 

segment.  In case 1 there is an EEG segment which sources from F3-
F4 electrode pairs(left hemisphere) while in case 2 there is an EEG 

segment which sources from F4-F8 electrode pairs (right 
hemisphere). In both cases the gamma activity is evident 

 
All recordings were taken using a digital 

electroencephalograph with RHY-100 Stellate software. 
Subjects were at rest, with closed eyes. Voltage difference (in 
µVolts) was recorded between leads O2 and CZ. The selection 
of these leads is justified because it is known that from these 
regions of the scalp can be extracted those faster activities such 
as alpha, beta and gamma. All EEG recordings lasted for twenty 
(20) continuous seconds (the duration having been selected 
after experimentation), thus producing a 4000 samples long 

record each at a 200 Hz sampling rate. Further processing was 
carried out off-line, in Matlab 5.2, on a Pentium PC. 
Furthermore, for the extraction of characteristic interictal 

epileptic set Ĉx , an interictal epilepticform EEG was recorded 

lasting three (3) continuous minutes, thus producing a 36000 
samples long record.  

These data were submitted into two classification methods, 
the cross- correlation method and the LVQ neural method. 
The scores of the classification procedures of these methods 
are presented below: 

VI. THE FEATURE EXTRACTION 

All (42+44=86) EEGs recorded were submitted to the auto-
correlation procedure as described in section II.B. We 
ascertained that the best results were extracted using n=2000, 
F=1000, h=128 and k=8 in equation 2. Furthermore, after 
experimentation we adopted those frequencies between 5 and 
70 HZ as the most suitable spectrum for each EEG segment. 
In total 86 auto-correlation vectors were yielded, each of size 
(1x8). In table II an example of two characteristic vectors of 
the extracted auto-correlation coefficients can be seen. After 
that, the complete database of EEGs (epileptic and non 
epileptic) was submitted to the auto-correlation procedure and 
thereafter each of the extracted auto-correlated sets was cross-

correlated with the interictal epileptic set Ĉx  (section III) in 

order to ascertain their degree of linear relationship. For the 
extraction of the interictal epileptic set the determination of 
the parameters of equation (8) took place as follows:   

 
w=200, l=36000,  l1=4000,  g=180,  
thus c=l-gw=36000-(180*200)=0 
 

TABLE I 
AN EXAMPLE OF TWO AUTO-CORRELATION COEFFICIENT SETS 

 
Auto-Correlation Coefficients  (C) 

Interictal 
Epileptic EEG 

Non- Epileptic 
EEG 

0.0280 0.0059 
0.0238 0.0021 
0.0192 0.0025 
0.0169 0.0023 
0.0146 0.0024 
0.0117 0.0021 
0.0105 0.0016 
0.0091 0.0017 

  
 
Hence, for this extraction 180 auto -correlated sets of 

coefficients were produced from the original epilepticform EEG 

and the appropriate set Ĉx  was selected according to section 

III. 
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VII. THE RESULTS OF THE CROSS-CORRELATED METHOD 

A. The Selection of the characteristic interictal epileptic set 

Ĉx  

The selection is based on the claim that a particular 
characteristic segment of an epileptic EEG may carry specific 
epileptiform features [17]. For the determination of this 
segment we used a method that is based on the overlapping 
segmentation of the original EEG.  The algorithm of this 
method is described as follows: 

1. An original EEG segment x(n) of length l was 
segmented into g overlap segments of lengths l1 with 
overlap window w. It must be noted that the 
determination of these lengths (l, l1, w) was based on 
previous studies [12] and this was corroborated in the 
experimental part of the present study. The correlation of 
these lengths is determined as follows (see figure 3): 

gw c l+ = ,     where:   
10 c l≤ ≤                     (8) 

It should be noted that the values of parameters g, w and 
l1 are determined in the experimental part and depend on 
EEG recording conditions such as the sampling rate, the 
duration of recording and the adapted filters. For better 
comprehension in our experiment we adopted as the most 
suitable values for the above parameters:  w=200, 
l=36000, l1=4000, g=180, thus c=l-gw=36000-180*200=0, 
these values are also mentioned in the experimental part. 
2. Thereinafter the selected EEG segments were 
submitted to the autocorrelation procedure as described in 
section II.B.  
3. Then the extracted sets of auto-correlated coefficients 

1 2 3
ˆ ˆ ˆ ˆ{ , , ,... }gC C C C were cross-correlated with the first 

set Ĉ1  according to section III. Hence, a set of ĝr  cross-

correlated coefficients was produced,  

      where: 1 11 12 1ˆ , ,...,g gr r r r⎡ ⎤= ⎣ ⎦  

4. The value 1̂gr  was calculated. 

5. Finally, from the above set 1̂gr , the coefficient that 

was nearest in value to 1̂gr  was selected as the ideal 

cross-correlated xr coefficient. This meant that selected 

set Ĉx , when cross-correlated with the other sets, yielded 

a new set x̂gr of cross correlated coefficients with the best 
linear relationship, 

where: 1 2ˆ , ,...,xg x x xgr r r r⎡ ⎤= ⎣ ⎦  

For this reason estimated set Ĉx  may be characterized as 

ideal for our purpose.  

B. The extraction of the cross-correlation coefficients 
In table II the results of the cross-correlation coefficients, 

which were extracted according to the processing procedure 
described in section VII.A, are presented.  

In more details, this table shows that the cross-correlated 
coefficients in the interictal epileptic EEG case range between 
0.80 and 0.99 while in the non-epileptic case they range 
between 0.05 and 0.90. The first general conclusion to be 
drawn is that the interictal epileptic sets present a better 

correlation with the interictal epileptic set Ĉ1 than the non 

epileptic sets because their values are nearer the unit. 
 

TABLE II 
THE EXTRACTED CROSS CORRELATION COEFFICIENTS r 
 

Cross-Correlation Coefficients (r) 
Interictal Epileptic EEG Non -Epileptic EEG 

1 0.93 24 0.99 1 0.67 24 0.78 
2 0.95 25 0.91 2 0.84 25 0.72 
3 0.98 26 0.86 3 0.08 26 0.68 
4 0.96 27 0.93 4 0.67 27 0.27 
5 0.93 28 0.90 5 0.80 28 -0.14 
6 0.89 29 0.93 6 0.34 29 0.68 
7 0.90 30 0.94 7 0.87 30 -0.78 
8 0.99 31 0.95 8 0.23 31 0.89 
9 0.82 32 0.96 9 0.47 32 0.91 

10 0.99 33 0.91 10 0.13 33 -0.09 
11 0.96 34 0.85 11 0.71 34 0.85 
12 0.98 35 0.94 12 0.13 35 0.15 
13 0.89 36 0.95 13 0.71 36 0.37 
14 0.86 37 0.93 14 -0.05 37 0.11 
15 0.80 38 0.97 15 -0.33 38 0.72 
16 0.83 39 0.92 16 0.24 39 0.78 
17 0.98 40 0.81 17 0.08 40 -0.05 
18 0.93 41 0.94 18 0.90 41 0.88 
19 0.92 42 0.88 19 0.63 42 0.56 
20 0.95 43  20 -0.56 43 0.87 
21 0.94 44  21 0.59 44 0.24 
22 0.91 45  22 0.67 45  
23 0.90 46  23 -0.21 46  

 

C. Tests of (least-squares) Correlation Coefficients 
In this stage we controlled the value of the r coefficient, 

which considered as significant for the classification 
decision. In such tests, r is the sample-derived estimate of ρ. 
Then we considered that the null hypothesis 
is: 0 0: 0H ρ = . Therefore, the sampling distribution of r 

for a population that has zero correlation ( 0)ρ =  has a 
mean value of 0µ =  and. Hence, a      t-statistic can be 

calculated as:                                    
2(1 )
2

r
k

σ −
=

−
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2

2
(1 2) 1

2

r r r kt
σ r r

k

µ− −
= = =

− −
−

                     (9)                             

The next step was to determine the appropriate value of the 
r coefficient in order to characterize it as a significant linear 
relationship between the correlated sets in our experiment.  
Thus, having 8k = , and the degree of freedom 

2 6v k= − =  we chose 0.01a =  and thus found critical 

/ 2 3.707tα = . Then the significant value of r was calculated 
as follows: 

2
2

/ 2 22

2 63.707 0.83
11

r k rt r
rr

α
−

= ⇒ = ⇒ = ±
−−

 

In conclusion, in our case, coefficient r may be 

characterized as significant when the null hypothesis is 

rejected  (1 0.83r≤ ≤ ). Taking this into account, table II is 

modified to table III.  

TABLE III 
THE CLASSIFICATION SCORE VIA CROSS-CORRELATION 

COEFFICIENTS 
Cross-Correlation Coefficients (r) 

CATEGORIES TRUE FALSE 
INTERICTAL-

EPILEPTIC 38/42=90% 4/42=10% 

NON-EPILEPTIC 36/44=82% 8/44=18% 

 

VIII. THE RESULTS OF THE LVQ1 (METHOD) 
In this procedure, we trained LVQ1 neural networks for each 

case. In order to differentiate class A (epileptic) from class B 
(non-epileptic), twenty (22) feature vectors (11 for each class) 
are used for training the classifiers and the other forty-four (44) 
are used for testing. The LVQ1 neural network, which was used 
in the aforementioned training procedure, is described in sections 
II and IV and was trained for a total of 500 cycles (epochs) with 
a learning rate in the order of 0.7 (fig 4). The results of this 
classification are presented in table IV. 

 
Fig. 4  Error plot while training an LVQ1 network using EEG feature 

vectors 
 

TABLE IV 
THE CLASSIFICATION SCORE VIA LVQ NEURAL NETWORK 

Cross-Correlation Coefficients (r) 
CATEGORIES TRUE FALSE 
INTERICTAL-

EPILEPTIC 36/42=86% 6/42=14% 

NON-EPILEPTIC 39/44=89% 5/44=11% 

IX. THE STATISTICAL EVALUATION OF THESE RESULTS 
The statistical procedure of both classification methods is 

based on the statistical x square control of the results. Thus, 
for implementation of this we used the following statistical 
controls.   

The results of a classification experiment can be put into a 
two-ways contingency table, [3,4]. A two-ways contingency 
table is structured on the basis of two criteria, along its two 
dimensions. Here we use "subject belongs to class i" 
(epileptic) as the first criterion (vertical dimension) and 
"subject is classified into class j"(non-epileptic) as the second 
criterion (horizontal dimension). An ideal classification 
method should produce a diagonal matrix of classification 
scores ("subject belongs to class i"(epileptic) and "subject is 
classified into class i"(epileptic)), corresponding to full 
dependency between the two above criteria, while practical 
methods would tend to this behavior. Evaluation of the 
statistical significance of the classification results is thus 
transformed into a hypothesis testing problem: The null 
hypothesis of independence of the two criteria is tested against 
the alternative hypothesis of dependence. The test statistic 
used for this purpose is the χ2. Statistically significant 
classification results correspond to rejection of the null 
hypothesis at a satisfactory level of significance.  

Let the contingency matrix S be of dimensions (r x c), 
meaning r rows and c columns, and let the (i, j)-th entry of S, 
{S(i, j)  =  fij ; i = 1, …, r; j = 1, 2, …, c} denote observed 
frequency of occurrence of the event (i, j) ("subject belongs to 
class i" and "is classified into class j") and  {eij ; i = 1, …, r; j = 
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1, 2, …, c} denote expected frequency of occurrence of the 
event (i, j). Then the test statistic is given by  

                          

                   
2r c

ij ij2

i=1 j=1 ij

(f -e )
=

e
χ ∑∑                        (10) 

 
which asymptotically follows the χ2 distribution with (r-1)(c-
1) degrees of freedom. When unknown, expected frequencies 
can be estimated from S using 

eij   =  
Ri Cj

 N                                     (11) 

where N is the total number of events in S, Ri is the sum 
across the i-th row of S and Cj is the sum across the j-th 
column of S.  

The degree of dependence between the two criteria can 
also be measured by the Cramer coefficient [13] of mean 
square contingency,  

2

( 1, 1)Nmin r c
χφ =
− − .                   (12)                                   

 
Coefficient φ takes on values between 0 (independence) and 

1 (full dependence). Two classification methods can in fact be 
compared in terms of their Cramer coefficient, as to the 
statistical significance of their results. Note that for 2x2 
contingency tables, (12) becomes 

                        N
χϕ =                                         (13)                               

 
In the test of case, the results form 2 x 2 contingency table. 

Expected frequencies accompany observed frequencies in the 
cells of Tables III, IV. As it can be seen in Table V, the χ2 
values of the test statistic, as computed from the results in 
Table VI are [45,11], respectively, for the Cross-Correlated 
feature vectors and [47,63] for the Lvq1 feature vectors. As an 
example, for the correct positive classification cell (1,1) of 
Table V (Cross-Correlation features), χ2 test value is 
computed as  

2 2 2 2
2 (38 22,47) (4 19,53) (8 23,53) (36 20,47) 45,11

22,47 19,53 23,53 20,47
x − − − −

= + + + = . 

From the tables of the χ2 distribution with one (1) degree of 
freedom and at the 99.5% level of significance, we obtain the 
critical value 7.879, which is lower than all test statistic 
values. The null hypothesis of independence is therefore 
rejected for the case and for both types of feature vectors. 
Furthermore, φ coefficient takes on value [0,26] for the 
experiment based on Cross-Correlation feature vectors and 
[0.28] for the Lvq1 feature vectors.  

 
 
 
 
 
 

 

TABLE V 
TEST CASE, SUBJECT EPILEPTIC VERSUS GROUP NON-EPILEPTIC 

CLASSIFICATION SCORES BASED ON LVQ1 AND CROSS-
CORRELATION FEATURE VECTORS 

 Lvq1 Cross-cor feature 
vectors   

Classified 
as: ⇒ 

Belongs 
to class: 

⇓ 

epil Non-epil Total 

epil 
36 (85,7%)
42

 

[20.02] 

6 (24%)
42

 

[21,98] 

38 (90, 4%)
42

 
[22,47] 

4
42

(9,

6) 
 [19,53] 

42 

Non-epil 

5 (11, 4)
44

% 
[20,98] 

39 (88,6%)
44

 

[23,02] 

8 (18, 2%)
44

 
[23.53] 

36 (81,8%
44
[20,47] 

44 

Total 41 45 46 40 86 

 

TABLE VI 
CHI-SQUARE TEST EVALUATION OF THE RESULTS IN TABLE IV  
Critical χ2 values from χ2 tables (a = 0.995 level of 
significance) in brackets, along with the Cramer coefficient φ. 

Lvq1 Cross-Correlated 
feature vectors 

χ2 statistic χ2 statistic 

[χ2
(1, 0.995)] [χ2

(1, 0.995)] 

Features ⇒ 
 

Test cases: 
⇓ 

φ value φ value  

Proba
bility 

Epil-Non-epil  
47,63 

[7.879] 
0.28 

P<0.001 
45,11 

[7.879] 
0.26 

P<0.001 

X. CONCLUSIONS 
In this study we investigated the reliability of diagnostic 

method the recognition of interictal epileptic and non- 
epileptic pathological EEG cases using auto-cross-correlation 
methods. For implementation of this we tested the vectors of 
the feature extraction via two known classification procedures. 
First the classic cross-correlation control against an artificial 
LVQ1 neural network. For more reliability of our experiment 
we used the aforementioned statistical techniques. In more 
details, from the tables of the 2χ  distribution with one (1) of 
freedom and at the 99.5% level of significance, we obtain the 
critical value 7.879, which is lower than all for both types of 
feature vectors (47.63, 45.11). The statistical results of the 
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proposed method corroborate the latest research [11] in that it 
is possible to correlate alpha, beta and gamma activities with 
epileptic activity. This conclusion is justified because in the 
experimental part the selected spectrum of each EEG segment 
that participated in the proposed method, contained dominant 
alpha activity and fewer beta and gamma activities, which, 
however, influenced significantly the results. 

Furthermore, the experimental results of the spectral 
analysis show that the algorithm that is described in equation 
(5) corroborates the hypothesis that the shape of a segment of 
an EEG signal may be described by the degree of asymmetry 
around a characteristic point [9].  

In conclusion, the classification and the statistical results 
showed that the proposed feature extraction is a significant 
accurate method for diagnostic discrimination cases between 
interictal and non-interictal EEG events and specifically the 
classification procedure showed that the LVQ neural method is 
superior than the cross-correlation one. 

 

REFERENCES   
[1] M.C. Brown, B.E. Levin, E. Ramsay, D.A. Katz, M.S. Duchowny, 

“Characteristics of patients with non-epileptic seizures,” J Epilepsy, 
1991, 4(5) pp. 225-229. 

[2] H. Meierkord, R. Will, D.R. Fish, S.D. Shorvon, “The clinical features 
and prognosis of pseudoseizures diagnosed using video-EEG telemetry,” 
Neurology, 1991, 41(10) pp. 1643-1646. 

[3] V. Ramani, “Intensive monitoring of psychogenic seizures, aggression 
and dyscontrol syndromes,” Adv. Neurol, 1986, 46(2), pp. 103-127. 

[4] F.A. Gibbs, E.L. Gibbs, W.G. Lennox, “Electroencephalographic 
classification of epileptic patient and control subjects,” Arch Neural 
Psychiatric, 1943, 50(2), pp. 111-128. 

[5] V. Ramani, S. Whalen, R. Loewenson, “Ictal characteristics of pseudo-
seizures,” Arch. Neurol., 1985, 42(9), pp. 1183-1187. 

[6] C.D. Binnie, Long-term monitoring, Comprehensive Epileptology. New 
York: Raven Press, 1991, pp.88-110. 

[7] J.J. Barry, O. Atzman, M.J. Morrell. “Discriminating between epileptic 
and non-epileptic events: the utility of hypnotic seizure induction,” 
Epilepsia 2000, 41(1), pp. 81-84. 

[8] T.S. Walczak, D.T. Williams, W. Berten, “Utility and reliability of 
placebo infusion in the evaluation of patients with seizures,” Neurology 
1994, 44(3), pp. 394-399. 

[9] M. Poulos, F. Geogiacodis, V. Chrissicopoulos, A. Evangelou, 
“Diagnostic Test for the Discrimination between Interictal  Epileptic and 
Non-Epileptic Pathological EEG Events using Auto-Cross-Correlation 
Methods,” American Journal of       Electroneurodiagnostic Technology, 
Dec 2003, v. 43, pp. 228-264. 

[10] S. Papavlasopoulos, M. Poulos, A. Evangelou, “Feature Extraction from 
Interictal Epileptic and Non- Epileptic Pathological EEG Events for 
diagnostic Purposes using LVQ1 Neural Network,” Proceedings of 
seventh International Conference on Mathematics Methods in Scattering 
Theory and Biomedical Technology, BIOTECH'7, 2005, Nimfaio, 
Greece. 

[11] A. Medvedev, J.O. Willoughby, “Can hypersychronisation of fast 
(gamma) activity lead to generalized epilepticform discharges?” 
Proceedings, Epilepsy Society of Australia, 1999, 41. 

[12] J.S. Barlow, “Methods of analysis of nonstationary EEGs with emphasis 
on segmentation techniques: a comparative review,” Clin. 
Neurophysiology, 1985, 2(5) pp. 267 - 304. 

[13] J.H. Zar, Biostatistical Analysis, New Jersey: Prentice-Hall, 1999, pp.72-
73. 

[14] S. Haukin, Adaptive Filter Theory, New Jersey:  Prentice Hall, 1996 pp. 
136-138. 

[15] N. Morrison, F. Donald, Multivariate Statistical Methods, New York: 
McGraw-Hill Book Company, 1976, pp.128-130 

[16] J. A. Kangas, T. Kohonen, J. T. Laakson, “Variants of Self-Organizing 
Maps,” IEEE Trans. Neural Networks, 1990, 1:1, pp. 93-99. 

[17] F. Mormann, K. Lehnertz, R.G. Andrzejak, C.E. Elger, “Characterizing 
preictal states by changes in phase synchronization in intracranial EEG 
recordings from epilepsy patients,” Epilepsia, 2000, 41(7), pp. 167-172. 

 

 

 


