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 
Abstract—In order to explain the damping mechanism, related to 

the hunting motion of the wheel axle of a high-speed railway vehicle, a 
generalized dynamic model is proposed. Based on such model, 
analytic expressions for the damping coefficient and damped natural 
frequency are derived, without imposing restrictions on the ratio 
between the lateral and vertical creep coefficients. Influence of the 
travelling speed, wheel conicity, dimensionless mass of the wheel axle, 
ratio of the creep coefficients, ratio of the track span to the yawing 
diameter, etc. on the damping coefficient and damped natural 
frequency, is clarified. 
 

Keywords—High-speed railway vehicle, hunting motion, wheel 
axle, damping, creep, vibration model, analysis. 

I. INTRODUCTION 

N order to further increase the travelling speed of the bullet 
trains, a deeper understanding of the hunting motion is 

required. Among various vibration modes associated to the 
snake-like movement of the railway vehicle, the hunting 
motion of the wheel axle requires the simplest analysis. 
However, even in such relatively easy-to-understand study case, 
analytical expressions for the natural frequency of hunting were 
obtained only based on a geometrical model [1], [2]. Since such 
simplified model was developed under the assumption that the 
inertial effects, i.e. the mass of the wheel axle, can be neglected, 
the dynamical effects associated to the hunting motion were 
implicitly disregarded [3]. Moreover, the geometrical model is 
unable to predict the damping effect induced by the contact of 
the wheels with the rails [4], [5]. 

On one hand, in the absence of damping, under excitation, 
the mechanical system will continue to vibrate indefinitely [6], 
[7]. Thus, it appears that once started, the hunting vibration of 
the wheel axle cannot be naturally halted (attenuated). However, 
such result disagrees with the hunting behavior observed on 
actual railway carriages [1], [2]. On the other hand, although 
the creep phenomenon, occurring at the contact of the wheels 
with the rails, is well-known [8]-[13], the connection between 
the creep and the damping is still to be clarified. 

Accordingly, in this work, the hunting vibration model is 
improved by introducing the inertial effects, by removing the 
geometrical constraints concerning the rotation of the wheel 
axle, and by relaxing the tribological restrictions on the ratio of 
the lateral and vertical creep coefficients. Specifically, explicit 

 
Barenten Suciu is with the Department of Intelligent Mechanical 

Engineering, Fukuoka Institute of Technology, Fukuoka, 811-0295 Japan 
(phone: +81-92-606-4348; fax: +81-92-606-0747; e-mail: suciu@fit.ac.jp). 

relations of calculus for the damping coefficient and damped 
natural frequency are derived, in the case of dynamical hunting 
motion. Then, the influence of the geometrical, kinematical, 
inertial and tribological parameters on the damping coefficient 
and damped natural frequency is emphasized. 

II. MODEL ASSOCIATED TO THE HUNTING MOTION OF THE 

RAILWAY WHEEL AXLE 

Following the basic idea, advanced by Leonardo da Vinci, of 
a mechanism using a double-cone that self-propels upwardly on 
straight divergent rails, in 1829 the applicative idea of a self- 
driven train was proposed [14]. Concept of such gravitational 
locomotive was abandoned, in competition with locomotives 
employing combustible and electrical energy sources. Still, 
nowadays, the wheel tread of the railway vehicles is slightly 
conical [1], [15]. Moreover, the whole wheel axle can be 
circumscribed by a double-cone, which has a total height of 2H, 
a diameter at the conical base of 2R, and an apex angle of 

)/(tan 1 HR  (see Fig. 1). 
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Fig. 1 Geometrical and inertial parameters of a wheel axle that travels 
with a velocity V on parallel rails, of span 2b 

 
Fig. 1 presents a wheel axle travelling with a velocity V on 

parallel rails, of span 2b. G denotes the mass center of the wheel 
axle. P and Q are the contact points of the wheels with the left 
and right rails, respectively. 

In order to describe the fundamental hunting motion, Fig. 2 
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shows the wheel axle under a small displacement perturbation  
,  taken along the lateral axis ,y  and superposed on a small 

angular perturbation ,  taken around the vertical axis .z  P’ 
and Q’ represent the contact points of the wheels with the rails, 
when the mass center shifts to the point G’, under the lateral 
perturbation. 
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Fig. 2 Geometrical model for the contact of the wheel axle with the 
rails, during the hunting motion produced by lateral and angular 

perturbations 
 
Under assumption that the lateral displacement   is small, 

and also, the slope of the conical wheel tread HR /tan   
is small, the left radius of contact Lr  corresponding to point P’, 

and the right radius of contact Rr  corresponding to point Q’ can 

be calculated as [1], [2]: 
 

rrrrrr RL   ;                       (1) 
 
where r  is the contact radius of the unperturbed wheel axle. 

Due to the conical geometry of the wheels, the contact radius 
at the left wheel increases, and at the right wheel decreases, this 
producing a wedge effect that opposes the perturbation. 

Hunting vibration of the railway wheel axle can be described 
by the following set of two differential equations [1]-[3]: 
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where m  denotes the mass of the wheel axle (Fig. 1), 2
zz mRI   

is the yawing moment of inertia, corresponding to a rotation of 
the wheel axle around the vertical z  axis (Fig. 1), zR  is the 

yaw gyration radius, 1f  is the vertical creep coefficient, and 2f  

is the horizontal or lateral creep coefficient (Fig. 3). The creep 
coefficients are taken for the whole wheel axle, i.e. they include 
the creep effects at both P’ and Q’ contact points. 

Note that (2) was derived by assuming that displacements of 
the mass center along y and z axes, produced by the inclination 

of the wheel axle, are small, and also, by supposing that the 
gyroscopic effects are negligible [1], [2]. For instance, if the 
displacements of the mass center along y and z axes, due to the 
inclination of the wheel axle, are to be considered, in (2) the 
terms containing the perturbation   and the perturbation speed 

  should be corrected, by multiplying them with the quantity 
)/1/(1 br  [1]. However, the following dynamic analysis is 

done by accepting (2), as a sufficiently accurate starting point. 

III. VIBRATION MODEL CORRESPONDING TO THE 

GEOMETRICAL HUNTING MODE 

So-called geometrical hunting mode [1]-[3], is defined under 
the assumption that the inertial terms, of translation movement 

,m  and rotation movement ,2zmR  can be neglected in (2). In 

the other words, supposing that the mass of the wheel axle can 
be neglected ( 0m ), further simplification of (2) is achieved, 
as follows: 
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By applying a Laplace transformation to the set of equations 

(3), under nil initial conditions, and by substituting the coupling 
terms corresponding to the angle   and the lateral perturbation 
  from one equation to the other, the following characteristic 
equation can be derived [1]-[3]: 

 

0
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V
s
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                                      (4) 

 

Next, by rewriting Laplace operator as ,gis   the natural 

circular frequency, corresponding to the geometrical hunting 
motion can be obtained as [3]: 

 

rb
Vg

                                             (5) 

 
Usually, (5) is rewritten as follows, to obtain the well-known 

wavelength of the geometrical hunting motion [1]-[3]: 
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where gT  is the period, and gf  is the natural frequency of the 

geometrical hunting mode. 
In conclusion, under the relative drastic simplification of the 

vibration model, i.e. under the assumption that the mass of the 
wheel axle can be neglected, an explicit relation for the circular 
frequency of the hunting mode was achieved. However, since 
(4) does not contain a term in ,s   it appears that the mechanical 
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system is undamped. Thus, once excited, the hunting vibration 
of the wheel axle cannot be naturally halted (attenuated), this 
being a result in disagreement with the hunting behavior 
observed on the actual railway vehicles [1], [2]. For this reason, 
improvement of the vibration model is required. 

IV. VIBRATION MODEL CORRESPONDING TO THE INERTIAL OR 

DYNAMICAL HUNTING MODE 

If the inertia terms m  and 2
zmR  are not neglected in (2), 

after performing the Laplace transformation of the equations of 
movement, the characteristic equation of the system can be 
written as [1]-[3]: 
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Thus, (7) appears as a fourth order polynomial equation, 

having a missing term, which corresponds to :s  
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where the polynomial coefficients can be identified as follows: 
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Thus, the polynomial coefficients (9) are depending on the 

creep circular frequency ,c  on the creep ratio f  (i.e., ratio 

of the lateral creep coefficient to the vertical creep coefficient), 

as well as on the dimensionless contact width b  (i.e., ratio of 
the track span 2b to the yawing diameter zR2  of gyration). 

These dependence parameters can be calculated as follows: 
 

zc RbbfffmVf /;/;)/( 121        (10) 
 
Both theoretical [8], [10] and experimental [11] evaluations 

of the vertical and lateral creep coefficients can be found in the 

literature. Accordingly, a variation range of 97.08.0 f  can 

be accepted for the creep ratio (see Table I). However, in order 
to simplify the analysis of the hunting motion, it is customarily 
considered that the lateral creep coefficient almost equals the 

vertical creep coefficient, and consequently, 1f  [1]-[5]. On 

the other hand, dimensionless contact width is close to one 

( 1b ), for various types of railway carriages. For instance, in 

the case of the Japanese bullet trains, Shinkansen, since the 
semi-span of the rails is 745b mm, and the yaw gyration 

radius is about of 775/  mIR zz mm, the dimensionless 

contact width displays a value of  196.0 b  (see Table I). 
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Fig. 3 Schematic view of one-quarter carriage, suspended on the wheel 
axle, as well as the vertical and lateral creep, occurring at the contact of 

the wheels with the rails 
 

TABLE I 
GEOMETRICAL AND PHYSICAL PROPERTIES OF THE WHEEL AXLE, RAILS AND 

RAILWAY CARRIAGE 

Property Value 

Mass of one-quarter carriage, M [kg] 12,500 [16] 

Mass of the wheel axle, m [kg] 1,250 [16] 
Yawing inertia moment of the wheel axle, 

2
zz mRI   [kg·m2] 

750 [16] 

Yawing inertia radius of the wheel axle, zR  [mm] 775 [17] 

Wheel diameter, 2r [mm] 860 [3] 

Wheel conicity,   [-] 
0; 0.01; 0.025; 0.05; 0.1; 

0.2 [15] 
Rails span, b [mm] 745 [3] 

Dimensionless contact width, zRbb /  [-] 0.96 [17] 

Creep ratio, 12 / fff   [-] 
0.8 – 0.97 

[8], [10], [11] 

 

Such tribological and geometrical restrictions ( 1 fb ) are 

not mandatory in the case of the present approach of the 
hunting vibration. Thus, the proposed model leads to explicit 
expressions for the damping coefficients and for the damped 
circular frequency, under a generalized approach of the wheel 
axle hunting motion. 

Next, the following change of variable is applied to (8): 
 

4/1ASs                                    (11) 
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Under this new variable ,S  the characteristic equation can 
be rewritten as: 
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where the polynomial coefficients attached to (12) are given by: 
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Since the maximal value of the term ,)( 22 fb   occurring in 

(13) and (14), can be estimated as: 
 

1015.0)8.096.0()( 222
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2  fb             (16) 
 

one concludes that it can be neglected ( 0)( 22  fb ). Hence, 

the severer restriction ,1 fb  usually used in the study of 

the hunting motion, can be replaced by a milder restriction 

( 0)( 22  fb ), to fulfill the analysis. As an advantage of such 

approach, the influence of the creep ratio, and the influence of 
the dimensionless contact width, on the damped frequency, and 
on the damping ratio, can be clarified. Moreover, since ,02 B  

the characteristic equation can be analytically solved, by 
rewriting it, as follows: 
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Thus, the discriminant of (17) can be calculated as: 
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and then, the solutions of (17) can be expressed as follows: 
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Note that, by taking in (19) the dimensionless contact width 

and the creep ratio as ,1 fb  solutions of the characteristic 

equation reduce to the following form: 
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a result which agrees with findings reported by [3]. 

Next, by employing (19), (17), and (11), one reverses the 
change of variables, from   to ,S  and then, from S  to ,s  
and obtains all the four solutions of the characteristic equation, 
as listed below: 
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Then, it is useful to observe that the square roots occurring in 

(21)-(24), can be rewritten as: 
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where   is a dimensionless parameter, which can be 
calculated as: 
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Accordingly, (21)-(24) can be rewritten as: 
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In order to identify the damping spontaneously occurring at 

the contact between the conical wheels and the rails, during the 
hunting motion of the railway wheel axle, one pays attention to 
similarities between (27)-(30), and solutions (31): 
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which correspond to (32), i.e. to the characteristic equation of a 
classical damped one-degree of freedom vibration system, 
consisted of a spring connected in parallel to a dashpot [6], [7]: 

 

02 22  nnss                            (32) 
 

Here, n  is the natural circular frequency, and   is damping 

ratio, which has to satisfy the condition ,10    in order to 

achieve damped oscillations [7]. 

Firstly, one observes that solutions 1s  and 3s  of (27) and 

(29), are similar to solutions 5s  and 6s  of (31). Corresponding 

natural circular frequency 1,n  and damping ratio 1  can be 

identified as follows: 
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On the other hand, solutions 2s  and 4s  of (28) and (30), are 

similar to solutions 5s  and 6s  of (31). Again, corresponding 

natural circular frequency 2,n  and damping ratio 2  can be 

identified as: 
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Looking to the lower parts of (33) and (34), one observes that 

the damped natural circular frequency ,d  with respect to all 

the solutions ,,,, 4321 ssss  displays the same value: 
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Then, from upper part of (34), one observes that regardless 

the values of parameters b  and ,f  the term 02,2  n  

displays a negative value. In conclusion, solutions 2s  and 4s  

of the characteristic equation lead to a stable hunting movement, 
with a corresponding positive value for the damping coefficient 

.2  On the other hand, regarding the upper part of (33), since 

the following inequality takes place: 
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one concludes that regardless the values of parameters b  and 

,f  the term 01,1  n  shows a positive value. Consequently, 

solutions 1s  and 3s  of the characteristic equation lead to an 

unstable hunting motion, with a corresponding negative value 
for the damping coefficient .1  

Solving (33)-(34) for the damping ratios of the inertial 
hunting, after some manipulations, the following analytical 
expressions for the damping ratios 1  and 2  can be obtained: 
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                 (37) 

 
From (37), one notices that the damping ratios satisfy the 

following inequalities: 
 

1
1

1
2
2

2
1

21 



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
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which combined with (35), leads to the conclusion that the 
natural circular frequency 1,n  is smaller than the natural 

circular frequency :2,n  

 

1
1

1
2
2

2
1

1,

2, 











n

n                            (39) 

 

Summarizing, the natural circular frequency 2,n  and the 

damping ratio ,2  corresponding to solutions 2s  and 4s  of the 

characteristic equation are larger than the natural circular 
frequency 1,n  and the absolute value of the damping ratio 1  

corresponding to solutions 1s  and 3s of the characteristic 

equation (i.e., 212,1, ;   nn ). However, both hunting 

modes display the same value of the damped natural circular 
frequency .d  

Concerning the stability aspects of the hunting motion, it is 
possible to imagine that vibration 1  corresponding to 

solutions 1s  and ,3s  as well as vibration 2  corresponding to 

solutions 2s  and ,4s  satisfy the following equations of 

movement: 
 










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02

02

2
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
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                     (40) 

 
Solving the above set of differential equations, the following 

solutions for the vibrations 1  and 2  are obtained [6], [7]: 
 













)cos()exp(

)cos()exp(

22,222

11,111

ttC

ttC

dn

dn


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            (41) 

 

where 21,CC  are arbitrary constants, and 21,  are the initial 

phase angles. Since damping ratio 2  is positive, as the time t  

elapses, the amplitude of vibration )exp( 2,22 tC n  decreases, 

and this mode corresponds to a stable hunting motion. On the 
other hand, since the damping ratio 1  is negative, as the time 

t  elapses, the amplitude of vibration )exp( 1,11 tC n  

increases, and this mode corresponds to an unstable hunting 
motion. 

V.  RESULTS AND DISCUSSIONS 

Summarizing the results concerning the hunting frequency, 
(5) defines the natural circular frequency ,g  corresponding to 

the geometrical hunting motion, (10) defines an equivalent 
circular frequency ,c  related to the creep phenomenon, and 

(35) defines the damped natural circular frequency ,d   

corresponding to the inertial or dynamical hunting motion: 
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                  (42) 

 
Dimensionless parameter , introduced via (26), 

considerably influences the damped natural frequency and the 
damping ratio of the inertial hunting vibration. Further attention 
paid to   reveals that it can be calculated as (see (26)): 

 

brMc
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fbrbf
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fbfb c

g

22

42

22
1

42

2
2

2

1616
)(

16 



          (43) 

 

where in the above equation, the vertical creep coefficient 1f  

was substituted as follows [8]: 
 

rMcf 1 [N];  5102c [(m×kg)1/2/s2]           (44) 
 
In (44), the wheel radius can be taken as 43.0r m, and the 

mass responsible for the creep phenomenon can be taken as one 
quarter of the total mass of the vehicle, i.e., as 500,12M kg 

(see Fig. 3 and Table I). In the end, the parameter   can be 
calculated as: 

 

4
22

32 V
cfb

me                                (45) 

 
where the parameters related to (45) are given by: 

 

)2()(;; 2 brV
V

m

M

m
m e

e
e            (46) 

 
Thus, (45)-(46) illustrate that the dimensionless parameter 

  proportionally depends on the fourth power of the travelling 
velocity of the railway vehicle, on the dimensionless mass m  
of the wheel axle (i.e., ratio of the mass m  of the wheel axle to 
the mass M  of one-quarter vehicle), on the slope   of the 
wheel tread, and on the equivalent density e  of the wheel axle 

(i.e., ratio of the mass m  of the wheel axle to the volume eV  of 

the cylinder circumscribing the wheel axle). On the other hand, 
dimensionless parameter   depends inversely proportionally 

on the creep ratio f  (i.e., ratio of the lateral creep coefficient 

to the vertical creep coefficient), on the second power of the 

dimensionless contact width b  (i.e., ratio of the track span b2  
to the yaw diameter zR2  of gyration), and on the second power 

of the creep constant .c  
Next, substituting into (42) the relationship between circular 

frequency ,c  corresponding to the creep phenomenon, and 

the natural circular frequency ,g  related to the geometrical 
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hunting motion: 
 

)/(4  fbgc                           (47) 

 
one obtains the relationship between the natural circular 
frequencies, corresponding to the inertial, and geometrical 
hunting motions, as follows: 

 

ggd  



11

2
                  (48) 

 
In conclusion, the damped natural circular frequency 

corresponding to the dynamical hunting motion is smaller than 
the natural circular frequency corresponding to the geometrical 
hunting motion (see Fig. 4). Only when the dimensionless 
parameter   is nil ( 0 ), the inertial hunting frequency 
equals the geometrical hunting frequency ( gd   ). On one 

hand, 0  is obtained when the railway vehicle is at rest 
( 0V ), but in such case, the hunting motion is meaningless. 
On the other hand, 0  is obtained when the slope of the 
wheel tread is nil ( 0 ), i.e. the conical tread becomes 
cylindrical. 

Next, one determines the values of the geometrical and 
dynamical hunting frequencies, in the case of a halted railway 
vehicle ( 0V ), and in the case of a railway carriage running at 
very high speed ( V ), as follows: 
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Thus, the circular frequency corresponding to the 

geometrical hunting motion, linearly increases against the 
traveling speed, and tends to infinity for V  (see Fig. 4). 
On the other hand, the damped natural circular frequency 
corresponding to the inertial hunting motion, non-linearly 
increases versus the travelling speed, but tends to a finite value 
when the railway vehicle is running at very high-speeds 
( V ) (see Fig. 4). 

Concerning the damping ratio associated to the hunting 
motion, (37) combined with (45) illustrates that dissipation of 
the hunting vibration can be explained by the damping effect 
produced via creeping at the contact between rails and wheels. 

Next, based on (37), one determines the values of the 
damping ratios 1  and ,2  in the case of a halted railway 

vehicle ( 0V ), and in the case of a railway carriage running at 
very high speed ( V ), as follows: 
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Fig. 4 Variation of the hunting circular frequency versus the travelling 
speed of the railway vehicle, in the case of the geometrical hunting 

mode, and in the case of the inertial (dynamical) hunting mode 
 

Note that, both damping ratios 1  and 2  monotonically 

decrease at augmentation of the travelling speed of the railway 
vehicle (see Fig. 5). 

For cylindrical wheels ( 0 ), the dimensionless parameter 
  is nil ( 0 ), and in such conditions 01   and ,12   

regardless the travelling velocity of the vehicle. 
In the absence of creep ( 0c ), the dimensionless parameter 

  tends to infinity (  ), and in such circumstances 

2/21   and ,2/22   regardless the travelling speed 

of the carriage. 
It seems that in the absence of creep ( 0c ), and also at very 

high travelling velocities of the railway vehicle ( V ), the 
total damping in the system fades ( 021  ), and in such 

conditions, the hunting motion cannot be naturally attenuated. 
To solve this problem, additional damping can be introduced 
into the system, by employing yaw dampers [17]. 
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Fig. 5 Variation of the hunting damping coefficients versus the 
travelling speed of the railway vehicle, in the case of two vibration 

modes, one showing negative damping (lower red line), and the other 
showing positive damping (upper blue line) 

VI. CONCLUSIONS 

In this paper, one paid attention to dynamical aspects of the 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:12, No:1, 2018

8

 

 

hunting motion associated to the wheel axle of bullet trains. A 
generalized model that accounts for the inertial effects on the 
motion of the wheel axle was suggested. Based on the derived 
analytical expressions for the damping coefficients and damped 
natural frequency, one clarified the influence of the train speed, 
wheel conicity, dimensionless mass of the wheel axle, ratio of 
the creep coefficients, and, ratio of the track span to the yawing 
diameter, on these dynamic parameters. 

Three main conclusions can be inferred from the performed 
analysis, as follows: 
1) Natural frequency of geometrical hunting vibration mode, 

linearly increases against the velocity, and tends to infinity 
at very high running speeds of the railway vehicle. On the 
other hand, the damped natural frequency, associated to 
dynamical (inertial) hunting motion, nonlinearly increases 
versus the traveling speeds, tending to a finite value, when 
the train is running at very high velocities. 

2) Geometrical hunting vibration mode occurs as undamped, 
and this result disagrees with the experimentally observed 
hunting of the actual railway carriages. On the other hand, 
damping ratios, related to the dynamical hunting motion, 
monotonically decrease at augmentation of the speed, and 
this agrees with the results observed during travelling tests 
of the railway vehicles. 

3) In the absence of creep, and at very high travelling speeds 
of the railway vehicle, the total damping in the system 
fades, and in such conditions the hunting motion cannot be 
naturally attenuated. To solve this problem, additional 
damping can be introduced into the system, by employing 
yaw dampers. 
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