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Abstract—Chua’s circuit is one of the most important electronic 
devices that are used for Chaos and Bifurcation studies. A central role 
of secure communication is devoted to it. Since the adaptive control 
is used vastly in the linear systems control, here we introduce a new 
trend of application of adaptive method in the chaos controlling field. 
In this paper, we try to derive a new adaptive control scheme for 
Chua’s circuit controlling because control of chaos is often very 
important in practical operations. The novelty of this approach is for 
sake of its robustness against the external perturbations which is 
simulated as an additive noise in all measured states and can be 
generalized to other chaotic systems. Our approach is based on 
Lyapunov analysis and the adaptation law is considered for the 
feedback gain. Because of this, we have named it NAFT (Nonlinear 
Adaptive Feedback Technique). At last, simulations show the 
capability of the presented technique for Chua’s circuit.  
 

Keywords—Chaos, Adaptive control, Nonlinear control, Chua's 
circuit. 

I. INTRODUCTION 
HUA’S circuit (Fig. 1) is a nonlinear electronic circuit 
that is the object of much scientific research activities. 

This circuit contains four linear elements (two capacitors, one 
inductor, and one resistor) and a nonlinear resistor, called 
Chua's diode [1], which can be built using off-the-shelf op-
amps. 
 

 
Fig. 1 Schematic description of Chua’s circuit 
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Since Chua's circuit is endowed with an unusually rich 

repertoire of nonlinear dynamical phenomena, it has become a 
universal paradigm for chaos [2].  

This circuit can generate even more phenomena that are 
chaotic. Also it is canonical in the sense that its vector field is 
topologically conjugate (i.e. qualitatively equivalent) to a 
large class of 3-D vector fields [2]. 

The Chua's circuit (a third-order autonomous, dissipative 
electrical circuit) has been investigated thoroughly at the 
experimental, numerical and analytical levels by many 
researchers.  

Anyway using  KVL and KCL, the equations that describe 
the nonlinear dynamics of Chua’s circuit is as follows: 
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where the nonlinear term )( 1vf  is : 
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pB  is the break point of  the nonlinear function f  Fig. 2 

(theoretically 1pB assumed be enough large). 

 
Fig. 2 Nonlinear term in Chua’s circuit 
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The practical diagram of this circuit is depicted in Fig. 3 
which is simulated using EWB software.  
 

 

Fig. 3 EWB simulation of Chua 
 

Chua’s circuit surprisingly exhibits approximately all 
features, which is usual in the chaos, bifurcation and fractal 
studies. For different values of the elements used in the 
implementation of this circuit, we can see different chaotic 
motion. For example using the quantities shown in Fig. 3 it is 
easy to derive a strange attractor as depicted in Fig. 4. 
 

 
Fig. 4 Phase portrait of v1-v2 for Chua’s circuit 

II. PROBLEM STATEMENT 
Up to now many control techniques have proposed for 

controlling systems that exhibit chaos. A complete list of 
references can be found in [3], [4]. Each method has its 
advantages and disadvantages. However here we want to 
present a method that is applicable in a vast variety of chaotic 
systems.   

Many publications consider the possibility of applying the 
methods of adaptation to the control of chaotic processes, 
which is not surprising because in many physical applications 
the parameters of the controlled plant are unknown and the 
information about the model structure (for example, 
dimensionality of the system equations or the form of the 
nonlinear characteristics) more often than not is incomplete.  

Three classes of control problem are usually considered in 
chaos control methodologies: 
-stabilization 
-chaotization 

-synchronization 
The problems of stabilization of the unstable periodic 

solution (orbit) arise in suppression of noise and vibrations of 
various constructions, elimination of harmonics in the 
communication systems, electronic devices, and so on. The 
purpose of this paper is “stabilization” of Chua’s circuit using 
a nonlinear adaptive technique. In other words, the control 
objective can  be stated as: 

0))((lim =
∞→

txit
                              (3) 

where ix  ( i  =1 , 2, 3) is the Chua’s circuit state variables; i.e. 

321 ,, ivv . That is the control aim is push the states of the 

given system to zero.  

III. ADAPTIVE CONTROL METHODOLOGY 
The majority of works make use of the methods of direct or 

indirect (identification-based) adaptive parametric control. 
The system model is,  thus,  parameterized, that is, comes to: 

),,( uxFx θ=                                   (4) 

where  θ   is the vector of the unknown parameters. The 
control law is also set down in the parametric form: 

),( ξxUu =                                    (5) 

where  )(θξ Φ=  that is, the vector of controller parameters 

is defined through the vector of parameters of system (4 ) (this 
format is called as Indirect STR). Controller (5) is usually 
designed using the reference model or the methods of 
linearization by feedback. However since our objective in this 
work is stabilization to zero the reference model is easily zero 
dynamics. 

The historical motivation for this method was come from 
[5] in which the authors consider a discrete time system as the 
plant and have used an approximate linearization about an 
operating point.  

Here based on what published recently in [6] we generalize 
that method and modify it to achieve an adaptive feedback 
gain which strongly guaranty the robustness of the chaotic 
system especially Chua’s circuit. In addition, it is allowed to 
be nonautonomous system. Thus, we consider the uncontrolled  
general form of (4) as: 

   )),(( ttxFx =                                    (6) 

where nx ℜ∈ and nonlinear (.)F are state variables and 

well-defined nonlinear function which describe the system 
dynamics , respectively. . One of the most important 
assumption in the following formulation is that the nonlinear 
function (.)F satisfy the Lipschitz condition:  
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 yxyFxF −≤− ρ)()(                         (7) 

where ρ  is a positive number. Note that here we use the 

infinity-norm for the notation . ; i.e.  

i
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sup                                       (8) 

Inserting the control signal ),( txu into the system equation 

we expect the asymptotical stability. Thus the control signal 
varies the dynamics as follows: 

),()),(( txuttxFx +=                             (9) 

Note that our technique is schematically as shown in Fig. 5. 
Control and adaptation law can be considered as follows: 

 )(xFxu iiiii ββ −−=                            (10) 

))(( 34 xFxx iiiii += γβ                          (11) 

 
As can be seen from the above equations (10),(11) the control 
law is applied  to each state separately.  

Now we claim that this control law asymptotically stabilizes 
the Chua’s circuit into its equilibrium point. Using the 
following Lyapunov function, it is straightforward to prove the 
asymptotical stability of the controlled system: 
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where )1( niLi ≤≤  are constants that relate with the 

Lipschitz constant ρ  as follows:  
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Direct differentiation it is easy to see that: 
 

  
Fig. 5 Control methodology used in Chua’s circuit 

 

0≤V                                           (14) 
 

Now using Barbalat’s lemma we conclude that 0=V  iff 
.0=x  Thus it can be stated that the Chua’s circuit is globally 

asymptotically stable about its equilibrium point that is the 
chaotic orbits of uncontrolled Chua’s circuit can be stabilized 

to the origin using NAFT. This is a theoretical support for the 
following simulation based on the adaptive controller.  

IV. HISTORICAL AND BIBLIOGRAPHICAL DESCRIPTION 
The chaotic nature of Chua’s circuit was first observed by 

Matsumoto in 1983 using computer simulations [7], following 
the instructions of Chua, who had invented this circuit and had 
explained its operating principles to Matsumoto moments 
before he was rushed to a hospital for a major surgery, and 
who did not participate in the early phases of this research. In 
acknowledging his subsidiary role as a computer programmer, 
Matsumoto had named this circuit Chua’s circuit [7], [8].  

The first experimental Chua’s circuit which confirms the 
presence of chaos was due to  Zhong and Ayrom in 1984 [9], 
[10]. A second experimental circuit was reported by 
Matsumoto shortly after [11] and was designed by Tokunaga, 
who is also responsible for obtaining all of the experimental 
result presented in that paper. The global bifurcation landscape 
of Chua’s circuit [12] was obt ained by Komuro and a team of 
students of Matsumoto. The colorful bifurcation landscape in 
this paper [12] was drawn by a professional artist.  

The first rigorous proof of the chaotic nature of Chua’s 
circuit was given in [13], where the authors proved that there 
exists some parameters ),( βα such that Chua’s circuit 

satisfies Shil’nikov’s theorem and, therefore, has infinitely 
many Horseshoe maps [14]. Although the authors in [8] are 
listed in alphabetical order as a compromise to Matsumoto’s 
tradition of ordering his name first in earlier publications on 
Chua’s circuit, the rigorous proof of the main theorem is due 
to Komuro. However, since the limiting Cantor set from a 
Horseshoe map is not an attractor, this result does not imply 
that the double scroll Chua’s attractor is directly related to the 
chaotic phenomena associated with the Horseshoe map. This 
unsatisfactory situation has now been resolved by a recent 
proof that a 2-D geometrical model of Chua’s circuit gives rise 
to a double Horseshoe map, which generates strange attractors 
[15]. Another milestone was achieved in 1990 when a 
canonical circuit was discovered which is qualitative 
equivalent to a 21-parameter family C of continuous odd-
symmetric piecewise-linear vector fields [ 16]. 

Inspired by a question posed by professor J. Neirynck in 
1991 on whether this canonical circuit is unique, a systematic 
search has since been completed by several researchers, 
including A. Huang and Lj. Kocarev, where many more 
distinct canonical circuits has been found. The universal 
Chua’s circuit presented in this paper is therefore only one 

among many qualitatively equivalent circuits in the class *C .   
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V. SIMULATIONS RESULTS 
In this section, the numerical simulations for Chua’s circuit 

are presented. The simulations are executed for the quantities 
which are depicted on Fig. 3. The results can be seen in the 
attached figures.  

VI. CONCLUSION 
In this paper a new nonlinear adaptive control of chaos 

applied to the well-known Chua’s circuit is presented. The 
main approach is considering an adaptation law in the 
feedback path that is tuned via a nonlinear function based on 
Lyapunov analysis. The robustness of the introduced method 
can be seen from the attached graphs. As can be realized from 
the above text the motivation is from some previous tasks. 
However, the novelty is its robustness against the parameter 
variation and noisy measurements. In addition, complete 
references for the interested readers are  brought at the end of 
this task.  
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Fig. 6 3i  response of controlled Chua’s circuit without noise and 

perturbation 
 

 
Fig. 7 1v response for chua’s circuit without noise and perturbation 

 

 
Fig. 8 2v  response for chua’s circuit without noise and perturbation 

 
Fig. 9 3i  response of controlled chua’s circuit with noise and 

perturbation using NAFT 
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Fig. 10 1v response for chua’s circuit with noise and perturbation 

using NAFT 

 

 
Fig. 11 2v  response for chua’s circuit with noise and perturbation 

using NAFT 
 
 

 
Fig. 12 Phase portrait of controlled Chua’s circuit using NAFT 

 
 

 

Fig. 13 3D phase portrait of controlled Chua’s circuit using NAFT 
 


