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Abstract—Evolvable hardware (EHW) is a developing field that
applies evolutionary algorithm (EA) to automatically design circuits, 
antennas, robot controllers etc. A lot of research has been done in this 
area and several different EAs have been introduced to tackle 
numerous problems, as scalability, evolvability etc. However every 
time a specific EA is chosen for solving a particular task, all its 
components, such as population size, initialization, selection 
mechanism, mutation rate, and genetic operators, should be selected 
in order to achieve the best results. In the last three decade the 
selection of the right parameters for the EA’s components for solving 
different “test-problems” has been investigated. In this paper the 
behaviour of mutation rate for designing logic circuits, which has not 
been done before, has been deeply analyzed. The mutation rate for an 
EHW system modifies the number of inputs of each logic gates, the 
functionality (for example from AND to NOR) and the connectivity 
between logic gates. The behaviour of the mutation has been 
analyzed based on the number of generations, genotype redundancy 
and number of logic gates for the evolved circuits. The experimental 
results found provide the behaviour of the mutation rate during 
evolution for the design and optimization of simple logic circuits. 
The experimental results propose the best mutation rate to be used for 
designing combinational logic circuits. The research presented is 
particular important for those who would like to implement a 
dynamic mutation rate inside the evolutionary algorithm for evolving 
digital circuits. The researches on the mutation rate during the last 40 
years are also summarized. 

Keywords— Design of logic circuit, evolutionary computation, 
evolvable hardware, mutation rate. 

I. INTRODUCTION

VOLUTIONARY design of circuits, which is a branch of 
evolvable hardware [1–3], refers to a technique introduced 

to automatically design circuit where the circuit configuration 
is carried out by evolutionary algorithm (EA). The basic 
schema of an evolvable hardware (EHW) system is given in 
Fig. 1. The evolutionary algorithm provides the circuit 
configurations to the reconfigurable hardware, which could be 
an FPGA, FPTA or other customized chips. The electronic 
chip configures itself with the circuit configuration received 
and sends the circuit’s response back to the evolutionary 
algorithm. Based on the response received the EA modifies the 
chromosome and supplies a new circuit configuration to the  
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Fig. 1. Basic evolvable hardware system.

chip. EHW is a technique inspired by natural evolution [4]. 
This technique began to be treated with increasing interest 
since the 60s when Holland introduced the concept of genetic 
algorithms (GA) [5], [6], which are the most general methods 
of solving search and optimization problems. A lot of research 
has been done in order to improve the classic GA for a given 
problem and many others evolutionary algorithms have been 
introduced as genetic programming (GP) [7], evolution 
strategy (ES) [8–11], evolutionary programming (EP) [12], 
[13], Cartesian Genetic Programming [14] etc. However, every 
time a specific evolutionary algorithm is chosen for solving a 
particular problem, all its parameters such as population size, 
type of initialization, selection mechanism, and genetic 
operators should be tuned in order to achieve the best results. 
This is because the efficiency of EA is highly dependent on all 
its parameters as already demonstrate by several researchers in 
[4], [15–19]. In order to find the best values for evolutionary 
algorithm’s parameters several researchers have tuned them 
[18–20] in an attempt to find a general optimum for a set of 
test functions. However, the results obtained are different for 
different types of algorithms and problems as shown in Table 
1. The design of circuits was not included in this set of test 
functions. Therefore the behavior of the mutation rate for 
designing combinational logic circuits has to be investigated. 
The mutation operation accomplishes simple operation which 
involves in flipping the value of some genes. The aim of this 
operation is to bring more change (diversity) into the 
population. By increasing the mutation rate, the genetic search 
will be transformed into a random search but it also helps to 
reintroduce lost genetic material [27]. In designing of 
combinational logic circuits change some genes inside the 
chromosome means to change the functionality of logic gates, 
for example from AND to XOR, and to change the 
connections between them.  

The performance of the evolutionary algorithm (number of 
generations required to completely design the logic circuits) 
together with the quality (based on the value of the redundancy  
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TABLE 1. RESEARCH RESULTS ON MUTATION RATE

Author Year Approach Proposed mutation rate Problems 

De Jong [19] 1975 
GA (for online and offline 

performance) 
0.001 

Grefenstette [18] 1986 Meta GA 0.01 

General optimization problems (EHW not 

included) 

Shaffer et al [21] 1989 
GA (using online average 

performance) 
0.005-0.01 

Multimodal functions, FIR filter, 30 city travel 

sales person, graph partitioning 

Mühlenbein et al. [22] 1992 
Iterated Hillclimbing or 

(1+1,m,hc)-algorithm 
1/l   l=chromosome length  Binary functions 

Srinivas et al. [23] 1994 AGA 

0.5(fmax-f)/(fmax-favg) 

where fmax is the maximum fitness 

value and favg is the average of the 

fitness 

Several multimodal function including TSP, 

neural network weight optimization problems 

and generation of test vectors for VLSI circuits 

Niwa et al [24] 1995 GA 1/2n  n=population size Markov chain 

Haupt [25] 2000 GA 0.05-0.2 Electromagnetic (array factors) 

Nijssen [26] 2003 (1:λ) EA 1/l     l=bit-string length  Trap functions 

and number of logic gates used during design and optimization 
of the logic circuits) of the obtained results has been studied 
for different values of mutation rate. 

The experimental results achieved indicate that a fixed 
mutation rate should not be used for designing logic circuits. 
Furthermore the behavior of the mutation rate to be used 
during evolution, for those who want to use a dynamic 
mutation rate for design and optimization of logic circuits, has 
been extrapolated. In this paper we focus only on online 
average performance [21]. The (1+λ) evolution strategy 
already tested for its performance [35–36] has been chosen as 
evolutionary algorithm. 

The paper is organized as follows: Section II gives a 
classification of the evolvable hardware systems and explains 
why an extrinsic evolvable hardware system (firstly introduced 
by H. de Garis [3]) has been chosen for the simulations. 
Section III describes an extrinsic evolvable hardware system, 
from the definition of the evolutionary algorithm to the 
description of the fitness function implemented. Section IV 
gives the system set-up for the EA used. Section V presents the 
experimental results. Section VI provides a discussion of the 
results found. Last section gives conclusions and indicates 
possible areas for future investigation. 

II. CLASSIFICATION IN EVOLVABLE HARDWARE

As proposed by Torresen [40], Andersen [41] and Gordon 
and Bentley [42], evolvable hardware can be classified in 
several classes, depending on: evolutionary algorithm, target 
technology, level of abstraction (Hirst [43]) and fitness 
evaluation. Based on that classification a simpler 
categorization is: 

• Extrinsic environment [21], [28–32] 

• Intrinsic environment [33], [34]. 

• Mixtrinsic environment [39]. 

Extrinsic EHW refers to a system whereby the evolutionary 
algorithm runs in software. Intrinsic EHW describes situations 
where the evolutionary algorithm is implemented in hardware 
and mixtrinsic evolvable hardware is a hybrid combination of 
intrinsic and extrinsic methods, usually the evolutionary 
algorithm with the fitness function evaluation is done in 
software and the evolved target implemented into hardware 
(usually FPGA). The extrinsic evolvable hardware has been 
chosen as an object of investigation due to its ability to collect 
any relative information fairly easy.  

III. EXTRINSIC EVOLVABLE HARDWARE

In this section the evolutionary algorithm used to evolve 
logic circuits, together with the fitness function and 
chromosome representations are presented. The approach in 
question was introduced in [28]. 

A. Evolutionary Algorithm 

The evolutionary algorithm chosen for the evolution of 
combinational logic circuits is the (1+λ) evolution strategy 
already tested for its efficiency in [45]. In this approach λ
represents the population size. 

Each individual of the population represents a potential 
solution to a given task. The algorithm is very simple and 
easily implementable. In the first step all the chromosomes are 
randomly initialized. At the second step the fitness value of 
each individual is calculated (at each individual, represented 
by the chromosome, is assigned a fitness value according to 
how good it is), the fittest individual is selected and duplicated 
for the population to the next generations. The new population 
is brought up to date by mutating the best chromosome of the 
previous generation (see Fig. 2). 
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Fig. 2. Schematic of (1+λ) evolution strategy. 

B. Chromosome Coding 

The chromosome is a string of parameters (known as genes) 
joined together. The string of genes represents a potential 
solution to a given problem. In evolutionary design of 
electronic circuits the chromosome contains all the needed 
information to describe the structure and the connectivity of 
the evolved combinational logic circuits. Since the final scope 
of this research is to design combinational logic circuits using 
Field Programmable Logic Array (FPGA), we have decided to 
represent the electronic circuits as a rectangular array of logic 
gates, see Fig. 3.  The logic gates used for the simulations are: 
AND, OR, XOR, NOT with up to 4 inputs and MUX, where 
MUX is a multiplexer with 2 inputs and one control signal. 
The chromosome is divided in three components: 

• Geometry which contains information about the number 
of rows, the number of columns of the rectangular array 
and the degree of internal connectivity, also referred to as 
level-back parameter [14]. The level-back parameter, or 
so called connectivity parameter, defines how many 
columns of cells to the left of the current column might 
have their outputs connected to the inputs of the current 
cell. The chromosome at this level is made of an array of 
3 cells, the first contains the number of row, the second 
the number of columns of the rectangular array and the 
third contains the level back parameter. 

• Functionality which describes the array of cells and 
determines the circuit’s outputs. It is an array which 
identifies all the logic gates together with their 
functionality. The last cells of this array identify the logic 
gates from which the circuit’s output are taken. 

• Routing which represents the structures of each cell in the 
circuit and the connections between them. This is 
characterized by an array where the first cell identifies the 
logic gate, the second identifies it’s the number of inputs 
and the other cells identify the connections with other 
logic gates. 

The next session presents an example of chromosome 
encoding. 

Fig. 3. Example of chromosome during evolution. 

C. Example of Chromosome Coding 

In this section an example of the chromosome encoding is 
presented. Supposing that for a particular experiment a circuit 
layout with 2 rows, 3 columns and the maximum internal 
connectivity (level back) is chosen. Therefore the chromosome 
that describes the geometry of the circuits is the following 
array: (2, 3, 3). The chromosome at functionality level is an 
array which identifies each logic gates together their 
functionality, based on the encoding table reported in Table 2, 
and the circuit’s output. Therefore the chromosome at 
functionality level for the circuit reported in Fig. 4 is the 
following array: (4, 7, 5, 8, 6, 7, 7, 9, 8, 7, 9, 8, 5, 6), see Fig. 
5. The numbers in bold identify the logic gate, the number 
beside them identifies the functionality of that particular logic 
gate and the last number is italic identify form which logic 
gates the output of the circuits are taken. For example the first 
number “4” identifies the logic gate. The second number “7” 
identifies the functionality, AND gate in this case. The 
chromosome at routing level contains information regarding 
the structure of the logic gates and the connectivity between 
them. In relation of the circuit in Fig. 4, the chromosome at 
routing table is shown in Fig. 6. The first part of that array is 
(4, 2, 1, 2); the number “4” identifies the logic gate inside the 
circuit layout; “2” means that the logic gates identified by the 
number “4” has got two inputs which are taken from the 
output’s gates “1” and “2”. 

TABLE 2. GENE FUNCTIONALITY

Gene 

functionality 

Gate 

function 

2 NOT 

6 WIRE 

7 AND 

8 OR 

9 XOR 

12 Multiplexer 
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Fig. 4. Example of circuit 

Fig. 5. Chromosome at geometry and functionality level. 

4 2 1 2

5 2 4 7

6 2 5 8

7 2 2 3

8 3 5 2

9 3 0 0

7

0

Fig. 6. Chromosome at routing level. 

D. Redundancy 

In this paper the redundancy of the combinational logic 
circuits is given by the Equation 1, where NLG represents the 
total number of logic gates in our chromosome. NALG refers to 
the number of active logic gates, which are the logic gates that 
are currently used in a circuit configuration; therefore NALG is 
equal to or less than NLG. 

LG
N

ALG
N

r −= 1 (1) 

Let us consider a numerical example, considering the circuit 
layout in Fig. 3. The rectangular array is made of 6 columns 
and 4 rows of logic gates. The highlighted logic gates are used 
for a particular configuration; therefore they are connected to 
each other in order to create the logic circuit. The logic gates 
not highlighted are not connected, thus they are redundant. In 
this example, NLG (the total number of logic gates) is 6*4=24. 
The number of active logic gates (the logic gates that 
participate in creating the digital circuit) NALG is 9. The 
redundancy, calculated using equation (1) for the circuit’s 
configuration of Fig. 3, is 0.625. 

E. Fitness Function 

In evolvable hardware the fitness function evaluates the 
evolved circuits in terms of their functionality. Given a 
particular chromosome the fitness function returns a value 
which is supposed to be proportional to the utility and ability 
of the individual which that chromosome represents [44]. In 

our experiment a multi-objectives fitness function has been 
considered. It has two main criteria: first design the fully 
functional circuit and second, once the circuit is fully 
functional evolved, optimization which leads to reduced 
numbers of logic gates used in the circuit configuration.  

The fitness function f is calculated as: 
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where f1 is a design criterion that defines the percentage of 
correct bits in the evolved circuit, f2 is the optimization 
criterion for the optimization stage. The fitness function for the 
functionality of the evolved circuit f1 is calculated as follows: 
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where m and n are the number of outputs and the number of 
inputs of the given logic function, respectively; p is the number 
of input-output combinations; yi is the ith digit of the output 
combination produced by the evaluation of the circuit, di is the 
desired output for the fitness case fc. |yi-di| is the absolute 
difference between the actual and the required outputs. 

The fitness function for the optimization stage has been 
calculated below, where NLG is the number of the total logic 
gates present in the chromosome, so NLG is equal to the 
number of rows multiplied by the number of columns of the
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chromosome. max
PLGN  is the number of primitive logic gates 

necessary for building the logic gate with the highest number 
of inputs present inside the chromosome. Fig. 7 shows how to 
decompose a logic gates with 4 inputs. Therefore if a logic 
gate has 4 inputs the number of primitive logic gates necessary 
to build it is 3. Nrow and Ncol are the number of rows and 

columns of the chromosome. 
( )jiPLGN

,
 is the number of 

primitive logic gates necessary to build the (i, j)th logic gates. 

( )jiPLGN
,

 is 0 if the (i, j)th logic gate is unconnected. 

( )∑∑
= =

−⋅=
row col

ji

N

i

N

j
PLGPLGLG NNNf

1 1

max
2 ,

(4) 

Fig. 8 shows the behaviour of a fitness function during the 
evolution of a 2 bit multiplier. In that figure two different 
stages are noticeable. The first shows the design of the 
multiplier, with each generation the fitness function value 
increases until it reaches 100%. At this point the functionality 
of the circuit is completely evolved. During the first stage the 
fitness function is calculated based on equation 3. The second 
stage starts just after the circuit is evolved. This stage performs 
the optimization of evolved circuits by reducing with each 
generation the number of active logic gates. Furthermore 
during this stage the fitness function, calculated from equation 
4, also increases its value because the circuit is better 
optimised. 

Fig. 7. Decomposition of a non primitive logic gate into primitive 
logic gates

IV. SETTING PARAMETERS

In this section the system set-up used to carry out all the 
experiments is described. Firstly the evolutionary algorithm’s 
parameters used are given, and then the circuit layout and the 
logic of the evolved circuits are provided. Finally a description 
of the circuits evolved, together with one example, is given. 

A. Initial Parameters 

In Table 3 the evolutionary algorithm’s parameters are 
given; where the number of generations refers to the number of 
cycles which each experiment has been evolved; population 
size refers to the number of different chromosomes; 
termination criteria is the maximum number of generations the 
evolutionary algorithm can perform before the process will be 
stopped; the mutation rate modifies the cell input, cell type (for 
example form AND to XOR) and circuit output. 

For the given logic functions the results are considered only 
if the logic circuit has been successfully evolved 100 times out
of 100 runs (i.e. success rate 100%). 

Dynamic fitness function (design and optmization)
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Fig. 8. This graphic shows the behaviour of the fitness function. Two different stages may be seen, design f1 and optimization (f1 + f2). It is also 
notable that the number of primitive active gates is reduced.  
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TABLE 3. INITIAL DATA FOR THE EXPERIMENTS CARRIED OUT USING 

(1+λ) EVOLUTION STRATEGY. 
Number of generations 5000 
Population size (λ) 5 
Number of runs per each evolved circuit 100 
Termination criteria for evolutionary process 5000 

generations 
Mutation rate 0.09 – 0.5 
Elitism yes 

TABLE 4. INITIAL DATA: DIMENSION SIZE AND CONNECTIVITY OF THE 

CIRCUIT LAYOUT USED DURING SIMULATIONS

Number of rows 10 
Number of columns 10 Circuit 

layout  Level back or 
connectivity parameter 
[14] 

10 

Fig. 9. Example of truth table (in Berkley format) used for the 
evolution of logic circuit with (1+λ) evolution strategy. 

Each logic circuit has been evolved 100 times for each 
different mutation rate, starting from 0.09 to 0.5 with an
increasing step of 0.01. In Table 4 the features of the circuit 
layout are given. Definitions of the number of rows, columns 
and level back have been provided in the previous section. The 
logic gates that participate in evolutionary processes are AND, 
OR, XOR, NOT, and multiplexer with 2 inputs and one 
control. 

The connection between building blocks (combination of 
primitive logic gates) is in interactive and cascade mode. Each 
logic gate has up to 4 inputs. The structures of cascade and 
interactive building blocks are given in Fig. 7. The logic 
circuits evolved are randomly generated and fully defined by 
truth tables. The truth tables used to describe the logic circuits 
are compatible with the Berkeley format, see Fig. 9. where .i 
specifies the number of inputs, .o the number of outputs, .p the 
number of product or input-output combinations and .e the end 
of file. 

V. EXPERIMENTAL RESULTS

In this section the results of the evolved logic circuits are 
presented. The intention of these experiments is to analyse the 
variation of mutation rate influences:  

• the number of generations required to design the 
circuit 

• the number of active logic gates obtained during 
design  

• the number of logic gates after the optimization stage 
• the redundancy of logic gates 

In Fig. 10 and Fig. 11 the average of the number of 
generations of the evolved logic circuits with 2 and 3 inputs
respectively is given. This average is calculated by taking into 
account the results out of 100 runs, which are all successfully
evolved. To better clarify how the average has been calculated. 
Let us consider the circuit with 2 inputs and 3 outputs see Fig. 
10. This circuit has been evolved 100 times with mutation rate
equal to 0.009; 100 times with mutation rate 0.01 and so on 
until the mutation rate is equal to 0.5. So, this circuit has been 
evolved 1500 times. The average is calculated out of 100 runs 
per each value of mutation rate. Therefore each point on that 
graph represents the average out of 100 runs of the number of
generations required to evolve the circuits. 

From Fig. 10 and Fig. 11 it may be observed that, in terms
of the number of generations for evolving small circuits, the
best value of mutation rate is 0.1. 
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for logic circuits with 2 inputs

1

10

100

1000

10000

0.009 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.2 0.3 0.4 0.5

Mutation rate

N
um

be
r 

of
 g

en
er

at
io

ns

2 in - 2 out

2 in - 3 out

2 in - 4 out

2 in - 5 out

2 in - 6 out

Fig. 10. Average out of 100 experiments of the number of 
generations required to completely evolve a logic circuit by changing 
the mutation rate. The circuits are with 2 inputs and varying numbers 
of outputs. 

Number of generations - Mutation rate
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Fig. 11. Average out of 100 experiments of the number of generations 
required to completely evolve a logic circuit by changing the mutation rate for 
evolving logic circuits with 3 inputs. The solutions are given only for the 
circuits which are 100% evolved. 
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TABLE 5. SIMULATION RESULTS: REDUNDANCY OF EVOLVED RANDOMLY GENERATED LOGIC CIRCUITS. N.E. REFERS TO CIRCUITS WHICH ARE NOT 

EVOLVED WITH SUCCESS RATE EQUAL TO 100%. IN EACH CELL THE AVERAGE VALUES OF THE REDUNDANCY CALCULATED USING 100 EXPERIMENTS 

ALL COMPLETELY EVOLVED ARE REPORTED. THE BEST CIRCUIT’S CONFIGURATION FOR EACH LOGIC CIRCUIT IS HIGHLIGHTED. 
Redundancy of evolved logic circuits 

Logic circuits Mutation rate 

in out p 0.009 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.2 0.3 0.4 0.5 

2 2 4 0.816 0.830 0.809 0.824 0.824 0.829 0.811 0.826 0.824 0.829 0.829 0.819 0.851 0.840 0.842 

2 3 8 0.762 0.759 0.750 0.771 0.752 0.758 0.769 0.777 0.776 0.769 0.772 0.801 0.812 0.816 0.817 

2 4 16 0.711 0.729 0.717 0.710 0.700 0.731 0.742 0.730 0.744 0.748 0.756 0.777 0.779 0.809 0.789 

2 5 32 0.671 0.686 0.683 0.687 0.692 0.700 0.703 0.703 0.720 0.713 0.700 0.723 0.765 0.763 0.749 

2 6 64 0.646 0.644 0.650 0.675 0.674 0.665 0.672 0.668 0.680 0.668 0.691 0.715 0.730 0.734 0.748 

3 2 4 0.790 0.788 0.790 0.809 0.808 0.798 0.813 0.814 0.811 0.818 0.816 0.845 0.850 0.868 0.869 

3 3 8 0.738 0.735 0.726 0.740 0.740 0.740 0.740 0.752 0.748 0.775 0.781 0.805 0.837 0.831 0.737 

3 4 16 0.685 0.688 0.691 0.704 0.700 0.707 0.709 0.738 0.732 0.723 0.733 0.802 0.755 N.E. N.E. 

3 5 32 0.635 0.657 0.655 0.676 0.681 0.677 0.693 0.687 0.706 0.703 0.694 0.690 N.E. N.E. N.E. 

3 6 64 0.638 0.623 0.654 0.652 0.650 0.665 0.674 0.703 0.686 0.715 0.711 0.773 N.E. N.E. N.E. 
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Fig. 12. Average out of 100 experiments of the primitive active 
gates required for the design stage, before the logic circuits are 
optimized. The solutions are given only for the circuits which are 
100% evolved. The circuits are with 2 inputs and varying number 
of outputs. 
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Fig. 13. Average out of 100 experiments of the primitive active 
gates required for the design stage, before the logic circuits are 
optimized. The solutions are given only for the circuits which are 
100% evolved. The circuits are with 3 inputs and varying number 
of outputs 

By increasing the complexity of the logic circuit based on 
the number of input-output combinations [38], the mutation 
rate which gives the best performance in terms of number of 
generations is decreased to 0.03. Therefore, the best mutation 
rate should be chosen according to the complexity of the task 
to be solved. The complexity of those circuits in evolvable 
hardware is mainly dependant on the number of inputs rather 
than outputs [38]. Moreover it may be noticed in Fig. 11, that 
if the mutation rate is very high (more than 0.3) the evolution 
of more complex tasks is not performed. This is because of the
high randomness introduced in the chromosome. Therefore, 
the random processes become dominant under the evolutionary 
process if a mutation rate higher than 0.3 is used. 

Table 5 illustrates the quality of the evolved logic circuits 
based on redundancy (before the optimization stage). The 
circuits with higher redundancy are those obtained with very 
high mutation rates. These results place us in contrast to the 
previously obtained results which advise the use of smaller 
values of mutation rate in order to find a solution with fewest 

numbers of generations. Therefore at this point the best trade-
off between a small mutation rate for finding the final circuit’s 
configuration with the fewest number of generations and a 
high mutation rate for finding the better-optimized circuits 
should be determined. However, before the final solution is 
outlined, the number of active logic gates required during 
design and optimization should be analyzed. Fig. 12 and Fig. 
13 show the number of active logic gates by varying the 
mutation rate when the circuits are designed.  

The experimental results demonstrate that the circuits with 
fewer logic gates are those created with high mutation rates, 
between 0.1 and 0.3. In Table 6 the number of active logic 
gates used after the optimization stage is presented. In that 
table the solutions with the smallest number of active logic 
gates are highlighted. 

One may notice that the best solutions are achieved by 
decreasing the mutation rate as the complexity of the logic 
circuits increases.  
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TABLE 6. SIMULATION RESULTS OF THE MUTATION RATE FOR EVOLVING RANDOMLY GENERATED LOGIC. N.E. REFERS TO CIRCUITS WHICH ARE NOT 

EVOLVED WITH SUCCESS RATE EQUAL TO 100%. IN THIS TABLE THE BEST SOLUTIONS (THOSE WITH THE SMALLEST AMOUNT OF LOGIC GATES 

REQUIRED) ARE HIGHLIGHTED. IN EACH CELL THE AVERAGE VALUES OF THE REDUNDANCY CALCULATED USING 100 EXPERIMENTS IS REPORTED. 
Average of number of  active logic gates after optimization stage 

Logic circuits mutation rate 

in out p 0.009 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.2 0.3 0.4 0.5 

2 2 4 2.75 2.45 2.11 2.17 2.04 2.08 2.01 2.00 2.00 2.01 2.01 2.00 2.00 2.00 2.00 

2 3 8 4.36 4.25 3.51 3.40 3.23 3.16 3.14 3.27 3.06 3.10 3.06 3.05 3.03 3.38 4.25 

2 4 16 6.23 5.56 4.69 4.32 4.33 4.37 4.18 4.16 4.15 4.12 4.10 4.11 7.41 10.57 17.59 

2 5 32 7.24 6.98 5.95 5.46 5.45 5.35 5.27 5.38 5.36 5.33 5.24 12.61 29.19 27.96 41.65 

2 6 64 8.21 7.52 6.59 6.35 6.21 6.13 6.10 5.87 5.78 6.07 5.88 16.97 36.00 43.48 49.00 

3 2 4 10.43 10.05 8.49 7.42 7.62 7.69 7.12 7.11 6.86 7.18 7.39 7.69 8.55 10.77 12.55 

3 3 8 16.84 16.50 13.37 11.25 11.05 10.57 10.85 10.88 11.81 11.45 11.66 24.07 26.44 36.40 50.00 

3 4 16 24.18 21.78 17.66 16.70 16.61 18.52 19.71 24.96 27.70 32.23 36.84 33.00 55.00 N.E. N.E. 

3 5 32 26.99 24.95 20.64 20.77 21.12 20.98 21.75 24.63 28.65 30.71 39.62 36.33 N.E. N.E. N.E. 

3 6 64 26.82 29.54 22.11 22.13 26.15 29.09 27.75 33.75 36.86 36.61 37.38 47.33 N.E. N.E. N.E. 

Based on those results one may conclude that the mutation 
rate for the better optimized circuit in terms of logic gates is
inversely proportional to the complexity of the evolved circuit. 
Therefore, supposing that a very simple circuit should be 
solved, the best mutation rate to be chosen in order to have the 
best result in terms of number of logic gates should be between 
0.3 and 0.5. If the circuits are more complex, that value 
(according with the experimental results shown in Table 6) 
should be reduced to between 0.02 and 0.04. By taking into
account the results found in terms of number of generations, 
redundancy and number of active logic gates used for getting 
the optimized solutions, one may conclude that the mutation 
rate should be chosen according to the complexity of the task 
to be evolved and with the wishes of the user: less generations, 
fewer logic gates or good redundancy. Simpler tasks should be 
solved with a higher mutation rate. By increasing the 
complexity of the task the mutation rate should decreased to 
0.02-0.04. 

VI. DISCUSSION OF THE RESULTS

The behavior of the mutation rate observed is particularly 
important for those researchers wishing to implement a 
dynamic mutation rate inside the evolutionary algorithm for 
designing combinational circuits. It is also important for those 
who evolve large circuits [45] using decomposition strategies.
For instance, supposing that a large circuit should be evolved;
the mutation rate should be very low, as depicted above. When 
the stalling effect in the fitness function occurs (i.e. the 
evolutionary algorithm is not able to produce better results and 
the fitness values of the individuals of the population no longer 
increase) the system will be decomposed, usually using 
Shannon decomposition (see Fig. 14) [29] and the evolution of 
the circuit will continue with two or more simpler sub-circuits. 
At this stage the mutation rate should be changed in line with
the complexity of those sub-circuits. 

S2
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S1
MUX

x1x2x3x4

x2x3x4
x2x3x4
x1

y1y2y3

y1y2y3

(a)

(b)

Fig. 14. Shannon decomposition. 

VII. CONCLUSION

This paper describes how the mutation rate for an evolvable 
hardware system should be chosen in order to solve and better 
optimize the evolution of logic circuits. It should be noted that 
the mutation rate for EHW systems modifies the logic cell 
inputs, the cell functionality (for example from AND to NOR) 
and the system output. The experimental results found prove 
that the mutation rate should be inversely proportional to the 
complexity of logic circuits: more complex circuits require a 
smaller mutation rate. Therefore, these results are especially 
important for all researchers who are using decomposition 
strategies for evolving logic circuits, because they may now 
implement a dynamic mutation rate which changes in real-
time, based on the complexity of the decomposed task. Further 
work will be focused on exploring the evolution of bigger 
logic circuits together with the use of different population 
sizes. This will be done in order to identify the best set up for 
all the parameters in the evolutionary algorithms for designing 
logic circuits. 
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