
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:6, 2008

1192

Abstract—Evolvable hardware (EHW) is a developing field that
applies evolutionary algorithm (EA) to automatically design circuits,
antennas, robot controllers etc. A lot of research has been done in this
area and several different EAs have been introduced to tackle
numerous problems, as scalability, evolvability etc. However every
time a specific EA is chosen for solving a particular task, all its
components, such as population size, initialization, selection
mechanism, mutation rate, and genetic operators, should be selected
in order to achieve the best results. In the last three decade the
selection of the right parameters for the EA’s components for solving
different “test-problems” has been investigated. In this paper the
behaviour of mutation rate for designing logic circuits, which has not
been done before, has been deeply analyzed. The mutation rate for an
EHW system modifies the number of inputs of each logic gates, the
functionality (for example from AND to NOR) and the connectivity
between logic gates. The behaviour of the mutation has been
analyzed based on the number of generations, genotype redundancy
and number of logic gates for the evolved circuits. The experimental
results found provide the behaviour of the mutation rate during
evolution for the design and optimization of simple logic circuits.
The experimental results propose the best mutation rate to be used for
designing combinational logic circuits. The research presented is
particular important for those who would like to implement a
dynamic mutation rate inside the evolutionary algorithm for evolving
digital circuits. The researches on the mutation rate during the last 40
years are also summarized.

Keywords— Design of logic circuit, evolutionary computation,
evolvable hardware, mutation rate.

I. INTRODUCTION

VOLUTIONARY design of circuits, which is a branch of
evolvable hardware [1–3], refers to a technique introduced

to automatically design circuit where the circuit configuration
is carried out by evolutionary algorithm (EA). The basic
schema of an evolvable hardware (EHW) system is given in
Fig. 1. The evolutionary algorithm provides the circuit
configurations to the reconfigurable hardware, which could be
an FPGA, FPTA or other customized chips. The electronic
chip configures itself with the circuit configuration received
and sends the circuit’s response back to the evolutionary
algorithm. Based on the response received the EA modifies the
chromosome and supplies a new circuit configuration to the

Manuscript received October 25, 2005. This work was supported in part
by the EPSRC under grant number GR/S17178/.

E. Stomeo, C. Lambert and T. Kalganova are with Brunel University, West
London. UB8 3PH, Uxbridge, Middlesex, UK. (Tel: 0044 01895 266777; e-
mail: emanuele.stomeo@brunel.ac.uk).

Fig. 1. Basic evolvable hardware system.

chip. EHW is a technique inspired by natural evolution [4].
This technique began to be treated with increasing interest
since the 60s when Holland introduced the concept of genetic
algorithms (GA) [5], [6], which are the most general methods
of solving search and optimization problems. A lot of research
has been done in order to improve the classic GA for a given
problem and many others evolutionary algorithms have been
introduced as genetic programming (GP) [7], evolution
strategy (ES) [8–11], evolutionary programming (EP) [12],
[13], Cartesian Genetic Programming [14] etc. However, every
time a specific evolutionary algorithm is chosen for solving a
particular problem, all its parameters such as population size,
type of initialization, selection mechanism, and genetic
operators should be tuned in order to achieve the best results.
This is because the efficiency of EA is highly dependent on all
its parameters as already demonstrate by several researchers in
[4], [15–19]. In order to find the best values for evolutionary
algorithm’s parameters several researchers have tuned them
[18–20] in an attempt to find a general optimum for a set of
test functions. However, the results obtained are different for
different types of algorithms and problems as shown in Table
1. The design of circuits was not included in this set of test
functions. Therefore the behavior of the mutation rate for
designing combinational logic circuits has to be investigated.
The mutation operation accomplishes simple operation which
involves in flipping the value of some genes. The aim of this
operation is to bring more change (diversity) into the
population. By increasing the mutation rate, the genetic search
will be transformed into a random search but it also helps to
reintroduce lost genetic material [27]. In designing of
combinational logic circuits change some genes inside the
chromosome means to change the functionality of logic gates,
for example from AND to XOR, and to change the
connections between them.

The performance of the evolutionary algorithm (number of
generations required to completely design the logic circuits)
together with the quality (based on the value of the redundancy

Chose the Right Mutation Rate for Better
Evolve Combinational Logic Circuits

Emanuele Stomeo, Tatiana Kalganova, Cyrille Lambert

E

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:6, 2008

1193

TABLE 1. RESEARCH RESULTS ON MUTATION RATE

Author Year Approach Proposed mutation rate Problems

De Jong [19] 1975
GA (for online and offline

performance)
0.001

Grefenstette [18] 1986 Meta GA 0.01

General optimization problems (EHW not

included)

Shaffer et al [21] 1989
GA (using online average

performance)
0.005-0.01

Multimodal functions, FIR filter, 30 city travel

sales person, graph partitioning

Mühlenbein et al. [22] 1992
Iterated Hillclimbing or

(1+1,m,hc)-algorithm
1/l l=chromosome length Binary functions

Srinivas et al. [23] 1994 AGA

0.5(fmax-f)/(fmax-favg)

where fmax is the maximum fitness

value and favg is the average of the

fitness

Several multimodal function including TSP,

neural network weight optimization problems

and generation of test vectors for VLSI circuits

Niwa et al [24] 1995 GA 1/2n n=population size Markov chain

Haupt [25] 2000 GA 0.05-0.2 Electromagnetic (array factors)

Nijssen [26] 2003 (1:λ) EA 1/l l=bit-string length Trap functions

and number of logic gates used during design and optimization
of the logic circuits) of the obtained results has been studied
for different values of mutation rate.

The experimental results achieved indicate that a fixed
mutation rate should not be used for designing logic circuits.
Furthermore the behavior of the mutation rate to be used
during evolution, for those who want to use a dynamic
mutation rate for design and optimization of logic circuits, has
been extrapolated. In this paper we focus only on online
average performance [21]. The (1+λ) evolution strategy
already tested for its performance [35–36] has been chosen as
evolutionary algorithm.

The paper is organized as follows: Section II gives a
classification of the evolvable hardware systems and explains
why an extrinsic evolvable hardware system (firstly introduced
by H. de Garis [3]) has been chosen for the simulations.
Section III describes an extrinsic evolvable hardware system,
from the definition of the evolutionary algorithm to the
description of the fitness function implemented. Section IV
gives the system set-up for the EA used. Section V presents the
experimental results. Section VI provides a discussion of the
results found. Last section gives conclusions and indicates
possible areas for future investigation.

II. CLASSIFICATION IN EVOLVABLE HARDWARE

As proposed by Torresen [40], Andersen [41] and Gordon
and Bentley [42], evolvable hardware can be classified in
several classes, depending on: evolutionary algorithm, target
technology, level of abstraction (Hirst [43]) and fitness
evaluation. Based on that classification a simpler
categorization is:

• Extrinsic environment [21], [28–32]

• Intrinsic environment [33], [34].

• Mixtrinsic environment [39].

Extrinsic EHW refers to a system whereby the evolutionary
algorithm runs in software. Intrinsic EHW describes situations
where the evolutionary algorithm is implemented in hardware
and mixtrinsic evolvable hardware is a hybrid combination of
intrinsic and extrinsic methods, usually the evolutionary
algorithm with the fitness function evaluation is done in
software and the evolved target implemented into hardware
(usually FPGA). The extrinsic evolvable hardware has been
chosen as an object of investigation due to its ability to collect
any relative information fairly easy.

III. EXTRINSIC EVOLVABLE HARDWARE

In this section the evolutionary algorithm used to evolve
logic circuits, together with the fitness function and
chromosome representations are presented. The approach in
question was introduced in [28].

A. Evolutionary Algorithm

The evolutionary algorithm chosen for the evolution of
combinational logic circuits is the (1+λ) evolution strategy
already tested for its efficiency in [45]. In this approach λ
represents the population size.

Each individual of the population represents a potential
solution to a given task. The algorithm is very simple and
easily implementable. In the first step all the chromosomes are
randomly initialized. At the second step the fitness value of
each individual is calculated (at each individual, represented
by the chromosome, is assigned a fitness value according to
how good it is), the fittest individual is selected and duplicated
for the population to the next generations. The new population
is brought up to date by mutating the best chromosome of the
previous generation (see Fig. 2).

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:6, 2008

1194

Fig. 2. Schematic of (1+λ) evolution strategy.

B. Chromosome Coding

The chromosome is a string of parameters (known as genes)
joined together. The string of genes represents a potential
solution to a given problem. In evolutionary design of
electronic circuits the chromosome contains all the needed
information to describe the structure and the connectivity of
the evolved combinational logic circuits. Since the final scope
of this research is to design combinational logic circuits using
Field Programmable Logic Array (FPGA), we have decided to
represent the electronic circuits as a rectangular array of logic
gates, see Fig. 3. The logic gates used for the simulations are:
AND, OR, XOR, NOT with up to 4 inputs and MUX, where
MUX is a multiplexer with 2 inputs and one control signal.
The chromosome is divided in three components:

• Geometry which contains information about the number
of rows, the number of columns of the rectangular array
and the degree of internal connectivity, also referred to as
level-back parameter [14]. The level-back parameter, or
so called connectivity parameter, defines how many
columns of cells to the left of the current column might
have their outputs connected to the inputs of the current
cell. The chromosome at this level is made of an array of
3 cells, the first contains the number of row, the second
the number of columns of the rectangular array and the
third contains the level back parameter.

• Functionality which describes the array of cells and
determines the circuit’s outputs. It is an array which
identifies all the logic gates together with their
functionality. The last cells of this array identify the logic
gates from which the circuit’s output are taken.

• Routing which represents the structures of each cell in the
circuit and the connections between them. This is
characterized by an array where the first cell identifies the
logic gate, the second identifies it’s the number of inputs
and the other cells identify the connections with other
logic gates.

The next session presents an example of chromosome
encoding.

Fig. 3. Example of chromosome during evolution.

C. Example of Chromosome Coding

In this section an example of the chromosome encoding is
presented. Supposing that for a particular experiment a circuit
layout with 2 rows, 3 columns and the maximum internal
connectivity (level back) is chosen. Therefore the chromosome
that describes the geometry of the circuits is the following
array: (2, 3, 3). The chromosome at functionality level is an
array which identifies each logic gates together their
functionality, based on the encoding table reported in Table 2,
and the circuit’s output. Therefore the chromosome at
functionality level for the circuit reported in Fig. 4 is the
following array: (4, 7, 5, 8, 6, 7, 7, 9, 8, 7, 9, 8, 5, 6), see Fig.
5. The numbers in bold identify the logic gate, the number
beside them identifies the functionality of that particular logic
gate and the last number is italic identify form which logic
gates the output of the circuits are taken. For example the first
number “4” identifies the logic gate. The second number “7”
identifies the functionality, AND gate in this case. The
chromosome at routing level contains information regarding
the structure of the logic gates and the connectivity between
them. In relation of the circuit in Fig. 4, the chromosome at
routing table is shown in Fig. 6. The first part of that array is
(4, 2, 1, 2); the number “4” identifies the logic gate inside the
circuit layout; “2” means that the logic gates identified by the
number “4” has got two inputs which are taken from the
output’s gates “1” and “2”.

TABLE 2. GENE FUNCTIONALITY

Gene

functionality

Gate

function

2 NOT

6 WIRE

7 AND

8 OR

9 XOR

12 Multiplexer

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:6, 2008

1195

Fig. 4. Example of circuit

Fig. 5. Chromosome at geometry and functionality level.

4 2 1 2

5 2 4 7

6 2 5 8

7 2 2 3

8 3 5 2

9 3 0 0

7

0

Fig. 6. Chromosome at routing level.

D. Redundancy

In this paper the redundancy of the combinational logic
circuits is given by the Equation 1, where NLG represents the
total number of logic gates in our chromosome. NALG refers to
the number of active logic gates, which are the logic gates that
are currently used in a circuit configuration; therefore NALG is
equal to or less than NLG.

LG
N

ALG
N

r −= 1 (1)

Let us consider a numerical example, considering the circuit
layout in Fig. 3. The rectangular array is made of 6 columns
and 4 rows of logic gates. The highlighted logic gates are used
for a particular configuration; therefore they are connected to
each other in order to create the logic circuit. The logic gates
not highlighted are not connected, thus they are redundant. In
this example, NLG (the total number of logic gates) is 6*4=24.
The number of active logic gates (the logic gates that
participate in creating the digital circuit) NALG is 9. The
redundancy, calculated using equation (1) for the circuit’s
configuration of Fig. 3, is 0.625.

E. Fitness Function

In evolvable hardware the fitness function evaluates the
evolved circuits in terms of their functionality. Given a
particular chromosome the fitness function returns a value
which is supposed to be proportional to the utility and ability
of the individual which that chromosome represents [44]. In

our experiment a multi-objectives fitness function has been
considered. It has two main criteria: first design the fully
functional circuit and second, once the circuit is fully
functional evolved, optimization which leads to reduced
numbers of logic gates used in the circuit configuration.

The fitness function f is calculated as:

⎪⎩

⎪
⎨
⎧

≥+

<
=

onoptimizaticircuit 100 21

designcircuit 100 1
fff

ff
f (2)

where f1 is a design criterion that defines the percentage of
correct bits in the evolved circuit, f2 is the optimization
criterion for the optimization stage. The fitness function for the
functionality of the evolved circuit f1 is calculated as follows:

∑∑
−

=

−

=

−
⋅

−=
12

0

1

0
1

100
100

n

cf

m

i
ii dy

pm
f (3)

where m and n are the number of outputs and the number of
inputs of the given logic function, respectively; p is the number
of input-output combinations; yi is the ith digit of the output
combination produced by the evaluation of the circuit, di is the
desired output for the fitness case fc. |yi-di| is the absolute
difference between the actual and the required outputs.

The fitness function for the optimization stage has been
calculated below, where NLG is the number of the total logic
gates present in the chromosome, so NLG is equal to the
number of rows multiplied by the number of columns of the

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:6, 2008

1196

chromosome. max
PLGN is the number of primitive logic gates

necessary for building the logic gate with the highest number
of inputs present inside the chromosome. Fig. 7 shows how to
decompose a logic gates with 4 inputs. Therefore if a logic
gate has 4 inputs the number of primitive logic gates necessary
to build it is 3. Nrow and Ncol are the number of rows and

columns of the chromosome.
()jiPLGN

,
 is the number of

primitive logic gates necessary to build the (i, j)th logic gates.

()jiPLGN
,

 is 0 if the (i, j)th logic gate is unconnected.

()∑∑
= =

−⋅=
row col

ji

N

i

N

j
PLGPLGLG NNNf

1 1

max
2 ,

(4)

Fig. 8 shows the behaviour of a fitness function during the
evolution of a 2 bit multiplier. In that figure two different
stages are noticeable. The first shows the design of the
multiplier, with each generation the fitness function value
increases until it reaches 100%. At this point the functionality
of the circuit is completely evolved. During the first stage the
fitness function is calculated based on equation 3. The second
stage starts just after the circuit is evolved. This stage performs
the optimization of evolved circuits by reducing with each
generation the number of active logic gates. Furthermore
during this stage the fitness function, calculated from equation
4, also increases its value because the circuit is better
optimised.

Fig. 7. Decomposition of a non primitive logic gate into primitive
logic gates

IV. SETTING PARAMETERS

In this section the system set-up used to carry out all the
experiments is described. Firstly the evolutionary algorithm’s
parameters used are given, and then the circuit layout and the
logic of the evolved circuits are provided. Finally a description
of the circuits evolved, together with one example, is given.

A. Initial Parameters

In Table 3 the evolutionary algorithm’s parameters are
given; where the number of generations refers to the number of
cycles which each experiment has been evolved; population
size refers to the number of different chromosomes;
termination criteria is the maximum number of generations the
evolutionary algorithm can perform before the process will be
stopped; the mutation rate modifies the cell input, cell type (for
example form AND to XOR) and circuit output.

For the given logic functions the results are considered only
if the logic circuit has been successfully evolved 100 times out
of 100 runs (i.e. success rate 100%).

Dynamic fitness function (design and optmization)

1

10

100

1000

10000

1 88 901 1031 1650 2846 6862

Number of generations

Fi
tn

es
s

fu
nc

ti
on

 v
al

ue

0

5

10

15

20

25

30

N
um

be
r

of
 p

ri
m

it
iv

e
ac

ti
ve

 lo
gi

c
ga

te
s

Fitness Function (F)

Primitive active gate

Design f 1 Optmization f 1 +f 2

Fig. 8. This graphic shows the behaviour of the fitness function. Two different stages may be seen, design f1 and optimization (f1 + f2). It is also
notable that the number of primitive active gates is reduced.

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:6, 2008

1197

TABLE 3. INITIAL DATA FOR THE EXPERIMENTS CARRIED OUT USING

(1+λ) EVOLUTION STRATEGY.
Number of generations 5000
Population size (λ) 5
Number of runs per each evolved circuit 100
Termination criteria for evolutionary process 5000

generations
Mutation rate 0.09 – 0.5
Elitism yes

TABLE 4. INITIAL DATA: DIMENSION SIZE AND CONNECTIVITY OF THE

CIRCUIT LAYOUT USED DURING SIMULATIONS

Number of rows 10
Number of columns 10 Circuit

layout Level back or
connectivity parameter
[14]

10

Fig. 9. Example of truth table (in Berkley format) used for the
evolution of logic circuit with (1+λ) evolution strategy.

Each logic circuit has been evolved 100 times for each
different mutation rate, starting from 0.09 to 0.5 with an
increasing step of 0.01. In Table 4 the features of the circuit
layout are given. Definitions of the number of rows, columns
and level back have been provided in the previous section. The
logic gates that participate in evolutionary processes are AND,
OR, XOR, NOT, and multiplexer with 2 inputs and one
control.

The connection between building blocks (combination of
primitive logic gates) is in interactive and cascade mode. Each
logic gate has up to 4 inputs. The structures of cascade and
interactive building blocks are given in Fig. 7. The logic
circuits evolved are randomly generated and fully defined by
truth tables. The truth tables used to describe the logic circuits
are compatible with the Berkeley format, see Fig. 9. where .i
specifies the number of inputs, .o the number of outputs, .p the
number of product or input-output combinations and .e the end
of file.

V. EXPERIMENTAL RESULTS

In this section the results of the evolved logic circuits are
presented. The intention of these experiments is to analyse the
variation of mutation rate influences:

• the number of generations required to design the
circuit

• the number of active logic gates obtained during
design

• the number of logic gates after the optimization stage
• the redundancy of logic gates

In Fig. 10 and Fig. 11 the average of the number of
generations of the evolved logic circuits with 2 and 3 inputs
respectively is given. This average is calculated by taking into
account the results out of 100 runs, which are all successfully
evolved. To better clarify how the average has been calculated.
Let us consider the circuit with 2 inputs and 3 outputs see Fig.
10. This circuit has been evolved 100 times with mutation rate
equal to 0.009; 100 times with mutation rate 0.01 and so on
until the mutation rate is equal to 0.5. So, this circuit has been
evolved 1500 times. The average is calculated out of 100 runs
per each value of mutation rate. Therefore each point on that
graph represents the average out of 100 runs of the number of
generations required to evolve the circuits.

From Fig. 10 and Fig. 11 it may be observed that, in terms
of the number of generations for evolving small circuits, the
best value of mutation rate is 0.1.

Number of generations - Mutation rate
for logic circuits with 2 inputs

1

10

100

1000

10000

0.009 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.2 0.3 0.4 0.5

Mutation rate

N
um

be
r

of
 g

en
er

at
io

ns

2 in - 2 out

2 in - 3 out

2 in - 4 out

2 in - 5 out

2 in - 6 out

Fig. 10. Average out of 100 experiments of the number of
generations required to completely evolve a logic circuit by changing
the mutation rate. The circuits are with 2 inputs and varying numbers
of outputs.

Number of generations - Mutation rate
for logic circuits with 3 inputs

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0.009 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.2 0.3 0.4 0.5

Mutation rate

N
um

be
r

of
 g

en
er

at
io

ns

3 in - 2 out

3 in -3 out

3 in - 4 out

3 in - 5 out

Fig. 11. Average out of 100 experiments of the number of generations
required to completely evolve a logic circuit by changing the mutation rate for
evolving logic circuits with 3 inputs. The solutions are given only for the
circuits which are 100% evolved.

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:6, 2008

1198

TABLE 5. SIMULATION RESULTS: REDUNDANCY OF EVOLVED RANDOMLY GENERATED LOGIC CIRCUITS. N.E. REFERS TO CIRCUITS WHICH ARE NOT

EVOLVED WITH SUCCESS RATE EQUAL TO 100%. IN EACH CELL THE AVERAGE VALUES OF THE REDUNDANCY CALCULATED USING 100 EXPERIMENTS

ALL COMPLETELY EVOLVED ARE REPORTED. THE BEST CIRCUIT’S CONFIGURATION FOR EACH LOGIC CIRCUIT IS HIGHLIGHTED.
Redundancy of evolved logic circuits

Logic circuits Mutation rate

in out p 0.009 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.2 0.3 0.4 0.5

2 2 4 0.816 0.830 0.809 0.824 0.824 0.829 0.811 0.826 0.824 0.829 0.829 0.819 0.851 0.840 0.842

2 3 8 0.762 0.759 0.750 0.771 0.752 0.758 0.769 0.777 0.776 0.769 0.772 0.801 0.812 0.816 0.817

2 4 16 0.711 0.729 0.717 0.710 0.700 0.731 0.742 0.730 0.744 0.748 0.756 0.777 0.779 0.809 0.789

2 5 32 0.671 0.686 0.683 0.687 0.692 0.700 0.703 0.703 0.720 0.713 0.700 0.723 0.765 0.763 0.749

2 6 64 0.646 0.644 0.650 0.675 0.674 0.665 0.672 0.668 0.680 0.668 0.691 0.715 0.730 0.734 0.748

3 2 4 0.790 0.788 0.790 0.809 0.808 0.798 0.813 0.814 0.811 0.818 0.816 0.845 0.850 0.868 0.869

3 3 8 0.738 0.735 0.726 0.740 0.740 0.740 0.740 0.752 0.748 0.775 0.781 0.805 0.837 0.831 0.737

3 4 16 0.685 0.688 0.691 0.704 0.700 0.707 0.709 0.738 0.732 0.723 0.733 0.802 0.755 N.E. N.E.

3 5 32 0.635 0.657 0.655 0.676 0.681 0.677 0.693 0.687 0.706 0.703 0.694 0.690 N.E. N.E. N.E.

3 6 64 0.638 0.623 0.654 0.652 0.650 0.665 0.674 0.703 0.686 0.715 0.711 0.773 N.E. N.E. N.E.

Primitive active gates - design stage

0

10

20

30

40

50

60

70

80

90

0.009 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.2 0.3 0.4 0.5

mutation rate

nu
m

be
r

of
 p

ri
m

it
iv

e
ac

ti
ve

 g
at

es

2 in - 2 out

2 in - 3 out

2 in - 4 out

2 in - 5 out

2 in - 6 out

Fig. 12. Average out of 100 experiments of the primitive active
gates required for the design stage, before the logic circuits are
optimized. The solutions are given only for the circuits which are
100% evolved. The circuits are with 2 inputs and varying number
of outputs.

Primitive active gates - design stage

0

10

20

30

40

50

60

70

80

90

0.009 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.2 0.3 0.4 0.5
Mutation rate

A
ct

iv
e

lo
gi

c
ga

te
s

3 in - 2 out

3 in - 3 out

3 in - 4 out

3 in - 5 out

Fig. 13. Average out of 100 experiments of the primitive active
gates required for the design stage, before the logic circuits are
optimized. The solutions are given only for the circuits which are
100% evolved. The circuits are with 3 inputs and varying number
of outputs

By increasing the complexity of the logic circuit based on
the number of input-output combinations [38], the mutation
rate which gives the best performance in terms of number of
generations is decreased to 0.03. Therefore, the best mutation
rate should be chosen according to the complexity of the task
to be solved. The complexity of those circuits in evolvable
hardware is mainly dependant on the number of inputs rather
than outputs [38]. Moreover it may be noticed in Fig. 11, that
if the mutation rate is very high (more than 0.3) the evolution
of more complex tasks is not performed. This is because of the
high randomness introduced in the chromosome. Therefore,
the random processes become dominant under the evolutionary
process if a mutation rate higher than 0.3 is used.

Table 5 illustrates the quality of the evolved logic circuits
based on redundancy (before the optimization stage). The
circuits with higher redundancy are those obtained with very
high mutation rates. These results place us in contrast to the
previously obtained results which advise the use of smaller
values of mutation rate in order to find a solution with fewest

numbers of generations. Therefore at this point the best trade-
off between a small mutation rate for finding the final circuit’s
configuration with the fewest number of generations and a
high mutation rate for finding the better-optimized circuits
should be determined. However, before the final solution is
outlined, the number of active logic gates required during
design and optimization should be analyzed. Fig. 12 and Fig.
13 show the number of active logic gates by varying the
mutation rate when the circuits are designed.

The experimental results demonstrate that the circuits with
fewer logic gates are those created with high mutation rates,
between 0.1 and 0.3. In Table 6 the number of active logic
gates used after the optimization stage is presented. In that
table the solutions with the smallest number of active logic
gates are highlighted.

One may notice that the best solutions are achieved by
decreasing the mutation rate as the complexity of the logic
circuits increases.

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:6, 2008

1199

TABLE 6. SIMULATION RESULTS OF THE MUTATION RATE FOR EVOLVING RANDOMLY GENERATED LOGIC. N.E. REFERS TO CIRCUITS WHICH ARE NOT

EVOLVED WITH SUCCESS RATE EQUAL TO 100%. IN THIS TABLE THE BEST SOLUTIONS (THOSE WITH THE SMALLEST AMOUNT OF LOGIC GATES

REQUIRED) ARE HIGHLIGHTED. IN EACH CELL THE AVERAGE VALUES OF THE REDUNDANCY CALCULATED USING 100 EXPERIMENTS IS REPORTED.
Average of number of active logic gates after optimization stage

Logic circuits mutation rate

in out p 0.009 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.2 0.3 0.4 0.5

2 2 4 2.75 2.45 2.11 2.17 2.04 2.08 2.01 2.00 2.00 2.01 2.01 2.00 2.00 2.00 2.00

2 3 8 4.36 4.25 3.51 3.40 3.23 3.16 3.14 3.27 3.06 3.10 3.06 3.05 3.03 3.38 4.25

2 4 16 6.23 5.56 4.69 4.32 4.33 4.37 4.18 4.16 4.15 4.12 4.10 4.11 7.41 10.57 17.59

2 5 32 7.24 6.98 5.95 5.46 5.45 5.35 5.27 5.38 5.36 5.33 5.24 12.61 29.19 27.96 41.65

2 6 64 8.21 7.52 6.59 6.35 6.21 6.13 6.10 5.87 5.78 6.07 5.88 16.97 36.00 43.48 49.00

3 2 4 10.43 10.05 8.49 7.42 7.62 7.69 7.12 7.11 6.86 7.18 7.39 7.69 8.55 10.77 12.55

3 3 8 16.84 16.50 13.37 11.25 11.05 10.57 10.85 10.88 11.81 11.45 11.66 24.07 26.44 36.40 50.00

3 4 16 24.18 21.78 17.66 16.70 16.61 18.52 19.71 24.96 27.70 32.23 36.84 33.00 55.00 N.E. N.E.

3 5 32 26.99 24.95 20.64 20.77 21.12 20.98 21.75 24.63 28.65 30.71 39.62 36.33 N.E. N.E. N.E.

3 6 64 26.82 29.54 22.11 22.13 26.15 29.09 27.75 33.75 36.86 36.61 37.38 47.33 N.E. N.E. N.E.

Based on those results one may conclude that the mutation
rate for the better optimized circuit in terms of logic gates is
inversely proportional to the complexity of the evolved circuit.
Therefore, supposing that a very simple circuit should be
solved, the best mutation rate to be chosen in order to have the
best result in terms of number of logic gates should be between
0.3 and 0.5. If the circuits are more complex, that value
(according with the experimental results shown in Table 6)
should be reduced to between 0.02 and 0.04. By taking into
account the results found in terms of number of generations,
redundancy and number of active logic gates used for getting
the optimized solutions, one may conclude that the mutation
rate should be chosen according to the complexity of the task
to be evolved and with the wishes of the user: less generations,
fewer logic gates or good redundancy. Simpler tasks should be
solved with a higher mutation rate. By increasing the
complexity of the task the mutation rate should decreased to
0.02-0.04.

VI. DISCUSSION OF THE RESULTS

The behavior of the mutation rate observed is particularly
important for those researchers wishing to implement a
dynamic mutation rate inside the evolutionary algorithm for
designing combinational circuits. It is also important for those
who evolve large circuits [45] using decomposition strategies.
For instance, supposing that a large circuit should be evolved;
the mutation rate should be very low, as depicted above. When
the stalling effect in the fitness function occurs (i.e. the
evolutionary algorithm is not able to produce better results and
the fitness values of the individuals of the population no longer
increase) the system will be decomposed, usually using
Shannon decomposition (see Fig. 14) [29] and the evolution of
the circuit will continue with two or more simpler sub-circuits.
At this stage the mutation rate should be changed in line with
the complexity of those sub-circuits.

S2

S0

S1
MUX

x1x2x3x4

x2x3x4
x2x3x4
x1

y1y2y3

y1y2y3

(a)

(b)

Fig. 14. Shannon decomposition.

VII. CONCLUSION

This paper describes how the mutation rate for an evolvable
hardware system should be chosen in order to solve and better
optimize the evolution of logic circuits. It should be noted that
the mutation rate for EHW systems modifies the logic cell
inputs, the cell functionality (for example from AND to NOR)
and the system output. The experimental results found prove
that the mutation rate should be inversely proportional to the
complexity of logic circuits: more complex circuits require a
smaller mutation rate. Therefore, these results are especially
important for all researchers who are using decomposition
strategies for evolving logic circuits, because they may now
implement a dynamic mutation rate which changes in real-
time, based on the complexity of the decomposed task. Further
work will be focused on exploring the evolution of bigger
logic circuits together with the use of different population
sizes. This will be done in order to identify the best set up for
all the parameters in the evolutionary algorithms for designing
logic circuits.

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:6, 2008

1200

ACKNOWLEDGMENT

First author thanks Dr Hemantha Kodikara-Arachchi for his
valuable suggestions.

REFERENCES

[1] X. Yao, T. Higuchi; “Promises and challenges of evolvable hardware”
IEEE Trans. Systems, Man and Cybernetics, Part C, volume 29, pp. 87
- 97, February 1999.

[2] H. de Garis. “Evolvable Hardware: Principles and Practice”.
Communications of the Association for Computer Machinery (CACM
Journal). August 1997.

[3] H. de Garis. “An Artificial Brain: ATR's CAM-Brain Project Aims to
Build/Evolve an Artificial Brain with a Million Neural Net Modules
Inside a Trillion Cell Cellular Automata Machine”, New Generation
Computing J., 12, no. 2, pp. 215 – 221. 1994.

[4] D. E. Goldberg. Genetic algorithm in search, optimization and machine
learning. Addison-Wesley Publishing Company, Incorporated, Reading,
Massachusetts, 1989.

[5] J. Holland. Adaptation in Natural and Artificial Systems. Ann Arbor,
MI: University of Michigan Press, 1975.

[6] M. D. Vose. “The Simple Genetic Algorithm”. MA: MIT Press 1999.
[7] J. R Koza. Genetic Programming: On the Programming of Computers

by Means of Natural selection. ISBN 0-262-11170-5. MIT Press, 1992.
[8] I. Rechenberg, “Evolution Strategy”, in J. Zurada, R. Marks II, and C.

Robinson (Eds.), Computational Intelligence: Imitating Life, 1994, pp.
147-159.

[9] H. G. Beyer and H. P. Schwefel, “Evolution strategies: A comprehensive
introduction,” Natural Computing: an international journal. Volume 1,
Issue. 1, pp. 3–52, 2002.

[10] T. Bäck, Evolutionary Algorithms in Theory and Practice. New York:
Oxford Univ. Press, 1996.

[11] H.-P. Schwefel, Numerical Optimization of Computer Models. New
York: Wiley, 1981.

[12] L. J. Fogel, A. J. Owens, M. J. Walsh. Artificial Intelligence through
Simulated Evolution. New York: Wiley, 1966.

[13] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution
Programs. Berlin, Germany: Springer-Verlag, 1994.

[14] J. F. Miller and P. Thomson. “Cartesian genetic programming”. In
Riccardo Poli, Wolfgan Banzhaf, William B. Langdon, Julian F. Miller,
Peter Nordin and Terence C. Forgaty, editors. Genetic Programming,
Proceedings of EuroGP 2000. Vol. 1802 of LNCS, pages 121-132,
Edinburg, 16 April 2000. Springer-Verlag.

[15] Myung-Sook Ko, Tae-Won Kang and Chong-Su Hwang. “Function
optimisation using an adaptive crossover operator based on locality”.
Eng. Applic. Artif. Intell. Vol. 10, No 6 pp. 519-524, 1997.

[16] K. Y. Chan, M. E. Aydin, T. C. Fogarty; “Parameterisation of mutation
in evolutionary algorithms using the estimated main effect of genes”
Congress on Evolutionary Computatio. CEC2004. ,Volume: 2 , 19-23
June 2004 Pages:1972 – 1979.

[17] K. Y. Chan, M. E. Aydin, T. C. Fogarty; “An epistasis measure based
on the analysis of variance for the real-coded representation in genetic
algorithms” Congress on Evolutionary Computation. CEC '03. Vol.: 1 ,
8-12 Dec. 2003 Pages:297 – 304.

[18] J. J. Grefenstette, “Optimization of control parameters for genetic
algorithms,” IEEE Trans. Systems, Man, Cybernetics. Vol. 16, no. 1,
pp. 122–128, 1986.

[19] K. De Jong, “The analysis of the behavior of a class of genetic adaptive
systems.” Ph.D. dissertation, Dept. Computer Science, University of
Michigan, Ann Arbor, 1975.

[20] A. E. Eiben, R. Hinterding, Z. Michalewicz; “Parameter control in
evolutionary algorithms” IEEE Transactions on Evolutionary
Computation, Volume: 3, Issue: 2, July 1999 Pages:124 – 141.

[21] J. D. Schaffer, R. Caruana, L. Eshelman and R. Das, “A study of control
parameters affecting online performance of genetic algorithms for
function optimization.” Proceedings of the Third International
Conference on Genetic Algorithms, ed. J. D. Schaffer, Los Altos, CA:
Morgan Kaufmann, June 4-7, 1989, pp. 51-60.

[22] H. Mühlenbein. “How genetic algorithms really work: I.Mutation and
Hillclimbing,“ in Parallel Problem Solving from Nature- PPSN II, R.

Männer and B. Manderick, Eds., Amsterdam, The Netherlands, 1992,
pp. 15-25.

[23] M. Srinivas, L. M. Patnaik. “Adaptive probabilities of crossover and
mutation in genetic algorithms”. IEEE Transactions on Systems, Man
and Cybernetics, Volume 24, Issue 4, April 1994 Page(s):656 - 667

[24] T. Niwa, M. Tanaka. “On the mean convergence time for simple genetic
algorithms”. IEEE International Conference on Evolutionary
Computation. Volume 1, 29 Nov.-1 Dec. 1995 Page(s):373.

[25] R. L. Haupt. “Optimum population size and mutation rate for a simple
real genetic algorithm that optimizes array factors”. IEEE International
Symposium Antennas and Propagation Society. Volume: 2, 16-21 July
2000. Pages:1034 – 1037

[26] S. Nijssen, T. Back; “An analysis of the behaviour of simplified
evolutionary algorithms on trap functions”. IEEE Transactions on
Evolutionary Computation. Volume: 7, Issue: 1, Feb. 2003. Pages:11 –
22.

[27] M. Srinivas, L. M. Patnaik; “Genetic algorithms: a survey”. IEEE JNL
Computer, Volume: 27, Issue: 6, June 1994. Pages:17 - 26

[28] T. Kalganova, J. Miller, “Evolving more efficient digital circuits by
allowing circuit layout evolution and multi-objective fitness”. Proc. of
the First NASA/DoD Workshop on Evolvable Hardware. IEEE
Computer Society, Pages 54–63. July 1999

[29] T. Kalganova; “Bidirectional incremental evolution in extrinsic
evolvable hardware”. Proc. of the Second NASA/DoD Workshop on
Evolvable Hardware. IEEE Computer Society, 13-15 July 2000. Pages:
65 – 74.

[30] E. H. Luna, C.A. Coello Coello, A.H. Aguirre. “On the use of a
population-based particle swarm optimizer to design combinational
logic circuits”. Proceedings of the 2004 NASA/DoD Conference on
Evolvable Hardware, 24-26 June 2004. Pages:183 – 190.

[31] S. Balkir, G. Diindar, G. Alpaydin,; “Evolution based synthesis of
analog integrated circuits and systems” Proceedings of the 2004
NASA/DoD Conference on Evolvable Hardware, 24-26 June 2004
Pages:26 – 29.

[32] M. Oltean, C. Grosan; “Evolving digital circuits using multi expression
programming” Proceedings of the 2004 NASA/DoD Conference on
Evolvable Hardware, 24-26 June 2004 Pages:87 – 94.

[33] Yang Zhang, S.L. Smith, A.M. Tyrrell. “Digital circuit design using
intrinsic evolvable hardware” Proceedings of the 2004 NASA/DoD
Conference on Evolvable Hardware, 24-26 June 2004 Pages:55 – 62

[34] J.C. Gallagher, S. Vigraham, G. Kramer; “A family of compact genetic
algorithms for intrinsic evolvable hardware”. IEEE Transactions on
Evolutionary Computation, Volume: 8 , Issue: 2 , April 2004 Pages:111
– 126.

[35] J. Miller. “An empirical study of the efficiency of learning Boolean
functions using a Cartesian genetic programming approach” In Proc. of
the Genetic and Evolutionary Computation Conference. Volume 1, pp.
1135–1142, Orlando, USA, July 1999.

[36] T. Bäck, F. Hoffmeister, H. P. Schwefel. “A survey of evolutionary
strategies”. In R. Belew and L. Booker, editors, Proceedings of the 4th
International Conference on Genetic Algorithms, pages 2–9, San
Francisco, CA, 1991. Morgan Kaufmann.

[37] H. P. Schwefel. Numerical Optimization of Computer Models. John
Wiley & Sons, Chichester, UK, 1981.

[38] E. Stomeo and T. Kalganova. “Improving EHW performance
introducing a new decomposition strategy.” 2004 IEEE Conference on
Cybernetics and Intelligent Systems. Singapore 1-3 December 2004, pp.
439-444.

[39] A. Stoica, R. Zebulum, D. Keymeulen. “Mixtrinsic Evolution”. In
Fogarty, T., Miller, J., Thompson, A., Thompson, P. (Eds.),
Proceedings of the Third International Conference on Evolvable
systems: From Biology to Hardware (ICES2000), April 17-19, 2000,
Edinburgh, UK. New York, USA, Springer Verlag, 208-217.

[40] J. Torresen. “Possibilities and Limitations of Applying Evolvable
Hardware to Real-World Applications”. Proc. of the 10th International
Conference on Field Programmable Logic and Applications, Villach,
Austria, pp. 230-239. 2000.

[41] P. Andersen P. “Evolvable Hardware: Artificial Evolution of Hardware
Circuits in Simulation and Reality”, M.Sc. Thesis, University of Aarhus,
Denmark. 1998.

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:6, 2008

1201

[42] Timothy G. W. Gordon and Peter J. Bentley. “On Evolvable Hardware”.
In Ovaska, S. and Sztandera, L. Soft Computing in Industrial
Electronics. Physica-Verlag, Heidelberg, Germany, pp. 279-323. 2002.

[43] A. J. Hirst. “Notes on the Evolution of Adaptive Hardware”, Proc. of
Adaptive Computing in Engineering Design and Control, Plymouth,
U.K., pp. 212-219. 1996.

[44] D. Beasley, D. R. Bull, R. R. Martin. “An Overview of Genetic
Algorithms: Part 1, Fundamentals”. University Computing, 1993, 15(2)
58-69; ©Inter-University Committee on Computing.

[45] E. Stomeo et al. “On Evolution of Relatively Large Combinational
Logic Circuits”. The 2005 NASA/DoD Conference on Evolvable
Hardware. June 29 - July 1, 2005, Washington DC, USA. IEEE
Computer Society. Pages 59-66.

Emanuele Stomeo received a Laurea degree in
electronic engineering from Politecnico di Torino,
Turin, Italy in 2003. He is currently working towards a
PhD in computer science and engineering at Brunel
University, West London, UK. From 2000 to 2003 he
studied at RWTH Aachen University, Germany where
he pursued specializations in image processing and
digital design.
He carried out his Master Thesis work at Philips

Research Laboratories, Aachen, Germany in 2002-2003. He is currently a
member of the Bio-Inspired Intelligent Systems Research Group at Brunel
University, West London, UK.
His research interests are in evolvable hardware, evolutionary computation,
design of digital circuits and bioengineering applications.

Tatiana Kalganova received MSc degree from
Belarusian State University of Informatics and
Radioelectronics, Belarus in 1994 and PhD degree
from Napier University, UK in 2000.
In August 2000 she has joined Electronic and
Computer Engineering Department, Brunel University.
Her research interests are evolvable hardware, ant
colony algorithms, scalability in AI systems.
She was awarded a personal grant from the Education

Ministry of the Republic of Belarus for distinctive achievements in the field
of exact sciences in 1997, and a grant from the International Soros Science
Education Program (ISSEP) for distinctive achievements in the field of exact
sciences in 1996.

Cyrille Lambert received a diplôme d’éducation
supérieure spécialisée in microelectronic engineering
from Pierre et Marie Currie University, Paris, France
in 2000.
After spending three years in the industry as a digital
design engineer he joined in 2003 the computer
science and engineering department at Brunel
University, West London, UK. He is currently working
toward the PhD. degree as a member of Bio-Inspired

Intelligent Systems at Brunel University, West London, UK.
He carried out his Master Thesis work at the Swiss Centre for Electronics and
Microtechnology, Inc., Neuchâtel, Switzerland in 1999-2000.

