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Characterisation and Classification of Natural
Transients

Ernst D. Schmitter

Abstract— Monitoring lightning electromagnetic pulses (sferics)
and other terrestrial as well as extraterrestrial transient radiation sig-
nals is of considerable interest for practical and theoretical purposes
in astro- and geophysics as well as meteorology. Managing a con-
tinuous flow of data, automisation of the detection and classification
process is important. Features based on a combination of wavelet and
statistical methods proved efficient for analysis and characterisation
of transients and as input into a radial basis function network that is
trained to discriminate transients from pulse like to wave like.
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I. INTRODUCTION

ATMOSPHERIC electromagnetic pulse radiation (shortly
sferics) related to thunderstorms and tornados is a subject

of continuous monitoring within worldwide networks for some
decades with purposes going from early warnings for severe
weather conditions via geophysical research to psychobio-
logical studies [1], [2], [3]. But there is a lot more natural
transient electromagnetic activity from terrestrial as well as
extraterrestrial sources [7]. In the last years transient radiation
on different time scales from earth crust zones under severe
pressure is under consideration in the context of earthquake
precursors [4],[5],[6]. Characterising, discriminating and clas-
sifying natural transient signals therefore is a task with possi-
bly far reaching applications in very different disciplines.

Amplitude thresholding and exact correlation with time of
a properly identified pulse at various receiving places is suf-
ficient for localising the signal source. For sferics automated
location and intensity logging is practised successfully with
increasing accuracy within networks.

Automatic discrimination of transient signal shapes for
further investigations needs some more envolved methods we
want to discuss in this paper.

We concentrate upon typical transients received in the VLF
range (very low frequency, here used as: 300Hz .. 30kHz).
These are: unipolar pulses (from very different sources, partly
man made, but also possible earthquake pulse precursors Fig.
1), sferics (lightning radiation with ionospheric echoes, Fig. 2),
slow tailed sferics (presumably caused by lightnings followed
by a continuous current flow; these events are suspected to
cause sprites, i.e. voluminous discharges above a thunderstorm
up to the lower ionosphere, Fig. 3), tweaks (prolongued, iono-
spherically dispersed sferics, Fig. 4) and damped oscillations
(Fig. 5).

Ernst D. Schmitter is with the University of Applied Sciences Os-
nabrueck, 49076 Osnabrueck, Germany, (phone +49 541 9692093; email:
e.d.schmitter@fh-osnabrueck.de)

Fig. 1: Unipolar pulse

Fig. 2: Sferic: lightning transient with ionospheric echoes

II. SHAPE FEATURES OF TRANSIENTS

A. Statistics based features

Usually amplitude thresholding is the first step filtering out
strong signals. After that, some information about the transient
shape can be quantified using the signal value distribution.
For further processing, the signal y(i) is normalised, i.e. its
z-scores are calculated:

z(i) =
y(i) − µ

σ
(1)

Normalised signals of different sources can be compared
more easily. Together with the mean µ and the standard
deviation σ the signal y(i) can be reconstructed from the z(i).
z(i) is the dimensionless deviation of y(i) from the mean as
a multiple of the signal standard deviation. Fig. 6 shows the
corresponding z-score histogram to fig. 2.

For shape characterisation we use the 3rd and 4th moments
of the distribution, i.e. skewness sk and kurtosis ku:

sk =
1
n

n∑
i=1

z(i)3 (2)

ku =
1
n

n∑
i=1

z(i)4 − 3 (3)
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Fig. 3: Sferic with slow tail

Fig. 4: Tweak: ionospherically dispersed sferic

Skewness is sensitive to unipolarity of the signal. For
example a large negative skewness usually is a consequence
of a large negative pulse. Kurtosis is a measure of how tailed
the distribution is. A large positive value indicates a strongly
’leptokurtic’ distribution shape i.e. values are concentrated
around the mean with large (but rare) outliers produced by
bipolar pulses in the signal - in contrast e.g. to a gaussian bell
shaped distribution with about zero kurtosis as we have with
oscillations and noise. A broadened (’platykurtic’) histogram
shape is characterised by negative kurtosis.

B. Wavelet transform based features

Discrete wavelet transformations (DWTs) have proved to be
a valuable tool for transients characterisation.

Fig. 7 shows a signal train (29 = 512 components, 16ms at
32kHz sampling rate) containing a sferic (cp. Fig. 2) with
its DWT sum and detail coefficients with respect to the
highly localised Daubechies (DAUB4) wavelets [11]. For the
detection of the relevant signal features the energies in the
different DWT scales have been proved to be useful. The
energy e(s) on scale s simply is the squared sum of the DWT
coefficients of that scale.

Filtering out the slow components of a signal is an efficient
way to find out its pulse characteristics - in contrast to other
applications, where the fast varying part is unwanted ’noise’.

Looking at the frequency domain, zeroing more and more
of the less detail (’slow’) coefficients increasingly attenuates
the lower frequency amplitudes - fig. 8.

The main advantage of wavelet transforms over Fourier and
related transforms however is its locality. So by transforming
back only those DWT coefficients localised near the time
event of interest isolates just the transient under investigation.
Because of taking into account local coefficients on the

Fig. 5: Damped oscillation

Fig. 6: Normalised signal value distribution (Fig. 2)

scales with the highest energy, more details of the pulse are
reconstructed as with a simple fast component filtering using
only the coefficients of the most detailed scale or a high pass
Fourier filter.

Fig. 9 shows the relevant part of the locally filtered signal
above a threshold containing the pulse wave packet. The time
distance of the ionospheric echoes converges to ∆t = 2h/c,
with h the height of the reflecting lower ionospheric boundary
and the velocity of electromagnetic radiation, c. With ∆t =
1/3 ms for this wave packet, h = 50km.

III. CLASSIFICATION WITH A RADIAL BASIS FUNCTION
NEURAL NETWORK

Signal skewness and kurtosis, i.e. the 3rd and 4th moments
of the value distribution together with the energies of the
wavelets scales form a feature vector suitable for classification.
In our example each signal has 512 = 29 components (using
32000 samples/sec this results in a duration of 16ms). The
energies of the DWT scales 2..9 are used for the feature
vector that in total has 10 components as inputs for the
classifier. The task of the classifier using this feature vector is
to discriminate unipolar pulses (output center value y = +1),
sferics (y = 0.5), slow tailed sferics (y = 0.0), tweaks
(y = −0.5), and oscillations (y = −1), so that events can
be automatically sorted and saved for further analysis. The
sequence of transients as just indicated can be characterised
by a continuous classification parameter going from ’pulse
like’ to ’wave like’.
A radial basis function network (RBFN, [12]) with a 10
parameter feature input and a single output parameter is trained
with a set of training vectors (see Fig. 10).

Each training vector consists of 10 features and a
classification value y. The matrix of training vectors is
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Fig. 7: Input signal and discrete wavelet coefficients from
large (slow) to small (fast) scale and the scale energies

(right).

Fig. 8: Subsequent attenuation of low frequency amplitudes
with DWT fast component filtering

normalised with respect to the mean and the standard
deviation of each component. With normalised feature vector
�x, K weights wj , basis function centers �tj and width
parameters cj the normalised classification output y(n) for a
(normalised) input �x is

y(n)(�x) =
K∑

j=1

wje
−cj(�x−�tj)

2
(4)

As starter parameters for a training process we randomly
select K basis function centers �tj from the training set and
define constant width parameters

cj :=
K

d2
max

(5)

with the maximum center distance

dmax = maxi,j�ti − �tj (6)

The initial weight matrix we get from

wj :=
m∑

i=1

g+
jiy

(n)
i (7)

Fig. 9: Locally component filtered signal and identification
of ionospheric echoes.

Fig. 10: Signal classification scheme

with m training vectors (�xi, y
(n)
i ), and g+ being the pseudoin-

verse matrix of gij := e−cj(�xi−�tj)
2
.

Weights, centers and width parameters are then optimised
(trained) using a Nelder-Mead-simplex algorithm [11] with
respect to the mean squared classification error.

We currently use K = 10 basis functions with m = 200
training vectors. m will be increased as soon as more reliably
classified examples are available. In a VLF monitoring system
the RBFN is successfully used to automatically sort the flow
of incoming amplitude thresholded signal chunks into the
mentioned transients classes. The fuzzy transition between the
transients is satifactorily reflected by the continuous output
parameter. Wrong classifications (i.e. with an y-error > 0.5)
occur in less than 5 % of the received samples.

A reason for choosing a RBFN was, that it has a
structure allowing a straightforward Takagi-Sugeno fuzzy rule
interpretation [13],[14] for each member function:

(if �x is in the domain of basis function j, then y(n) = wj)

allowing some more direct insight into the classification pro-
cess, than e.g. backpropagation networks. In this way domain
analysis of the basis functions using the trained centers, widths
and weights reveals correlations between feature combinations
and transients characteristics.

IV. CONCLUSION

A sequence of statistics and wavelet transform based
features proved useful with automating transients signal
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detection, classification and analysis. Whereas the moment
parameters skewness and kurtosis characterise global signal
distribution statistic properties, the wavelet scale energies
represent information about the behaviour at different time
scales.
Using a radial basis function net, the features successfully
discriminate transients received in the VLF frequency range
from ’pulse like’ to ’wave like’.
The sets of the wavelet coefficients with the highest energy
contents additionally provide the information to locally
reconstruct the most relevant part of the transient for further
analysis.

The transients shown in this paper have been monitored
with an E-field receiver, the signal then fed into the sound
card of a notebook and digitally processed with the described
algorithms in this paper - thus providing a mobile VLF
monitoring, discrimination and analysis system. We believe
that the discussed methods are valuable beyond this example.
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