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Abstract—In this paper, an effective sliding mode design is 

applied to chaos synchronization. The proposed controller can make 
the states of two identical modified Chua’s circuits globally 
asymptotically synchronized. Numerical results are provided to show 
the effectiveness and robustness of the proposed method. 
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I. INTRODUCTION 
HAOS control and synchronization have been intensively 
studied during the last decade [1]. Chaos synchronization 

is closely related to observer problem in control theory [2]. 
Generally speaking, chaos synchronization can be thought as 
the design problem of a feedback law for full observer using 
the known information of the plant, so as to ensure that the 
controlled receiver synchronizes with the plant. Given a 
chaotic system, which is considered as the master system, and 
another identical system, which is considered as the slave 
system, the dynamical behaviors of these two systems may be 
identical after a transient when the slave system is driven by a 
control input. In this paper, the goal is to force the master–
slave n -dimensional chaotic systems to be synchronized even 
if they have differences in initial conditions or expose to 
external disturbances such as channel noise. In order to 
increase the robustness of the closed loop systems, the key 
idea is that a sliding mode type of controller is employed. 
Based on this proposed method, a switching surface is 
designed for chaos synchronization. 
The paper is organized as follows. In Section II, the sliding 
mode controller and the switching surface is designed. In 
Section III, the proposed controller is applied to a coupled 
modified Chua’s circuits. Numerical simulations are carried 
out in Section IV for illustration and verification of the 
presented methodology. Finally some concluding remarks are 
given in Section V. 
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II. SLIDING MODE CONTROLLER 
Consider the following two n-dimensional chaotic systems: 

 
)(xfAxx +=&                   (1) 

 
and 
 

)()( tuyfAyy ++=&                (2) 
 

nnRA ×∈  is a constant matrix, nn RRf →:  is a continuous 

nonlinear function and nRu ∈  is the control input. The control 
problem considered in this paper is that for different initial 
conditions of systems (1) and (2), the two coupled system, i.e. 
the master system (1) and the slave system (2), to be 
synchronized by designing an appropriate sliding mode control 

)(tu  which is attached to the slave system (2) such that: 
 

0)()(lim →−
∞→

tytx
t

 

 

where ∗  the Euclidean norm of a vector. 

Considering nRxye ∈−=  and yxMxfyf ,)()( =− , error 
dynamics can be written as: 
 

)(, tuMAee yx ++=&                (3) 
 

Following the active control approach of Bai and Lonngren 
[3], to eliminate the nonlinear part of the error dynamics, we 
can choose yxMtBvtu ,)()( −= , where B is a constant gain 
vector which is selected such that ),( BA  be controllable and 
then (3) becomes: 
 

)(tBvAee +=&                   (4) 
 
Now the original synchronization problem can be replaced by 
the equivalent problem of stabilizing the zero solution of the 
system (4) by a suitable choice of the sliding mode control. In 
the following, the sliding mode controller will be designed 
using variable structure control [4] and sliding mode control 
[5] methods. Let us introduce )(ess =  as the sliding surface 
which can be defined as: 
 

Cees =)(                    (5) 
where C  is a constant vector. 

When in sliding surface, the controlled system satisfies the 

Behzad Khademian, and Mohammad Haeri, Member, IEEE 

Chaos Synchronization Using Sliding Mode 
Technique 

C 



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:6, 2007

852

 

 

following conditions: 
 

0)( =es                     (6) 
 
and 
 

0)( =es&                     (7) 
 
Notice that the second one is the necessary condition for the 
state trajectory to stay on the switching surface 0)( =es . 

Using (4) in (5) we can rewrite equation (7) as: 
 

0))(()( =+= tBvAeCes&              (8) 
 
Solving equation (8) for )(tv  yields the equivalent control 

)(tveq : 

 
CAeCBtveq

1)()( −−=                (9) 
 
where existence of the 1)( −CB  is the necessary condition. 

By using (9) in (5), the error dynamics in sliding mode is 
given as follows: 
 

eACCBBIe ])([ 1−−=&               (10) 
 
The vector C  is selected such that all the eigenvalues of 

ACCBBI ])([ 1−−  have negative real parts, so the controlled 
system is asymptotically stable. 

To design the sliding mode controller we use the constant 
plus proportional rate reaching law [4]: 
 

kssqs −−= )sgn(&                 (11) 
 
where )sgn(⋅  denotes the sign function, and the gains 0>q  
and 0>k  is determined such that the sliding condition is 
satisfied and sliding mode motion will occur. 

From equations (8) and (11), we can obtain )(tv : 
 

)]sgn()([)()( 1 sqeAkICCBtv ++−= −         (12) 
 
which yields: 
 

⎪⎩

⎪
⎨
⎧
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In order to observe the stability of the error dynamics with 

the forgoing controller, we choose 2/2sV = , as a possible 
Lyapunov function. Then the derivative of V  becomes: 

0)sgn(
)])sgn()([)((

)(

2

1

<−−=

++−=

+==
−

ssqks

ssqeAkICCBBAeC

sBvAeCssV &&

     (14) 

 
Notice that ss)sgn(  is always positive when 0≠e  and 

0, >kq . 

Since V  is a positive and decrescent function and V&  is 
negative semidefinite, it follows that the equilibrium point 

),,1,0( niei K==  of the systems (4) is uniformly stable, i.e. 
)(tei ∞∈ L . From (14), we can easily show that the squares of 

nitei ,,1,)( K=  are integrable with respect to time, i.e. 

2Lei ∈ . Based on Barbalat’s lemma and for any initial 
condition (4) implies that, ∞∈ Ltei )(& , which in turn implies 

0)( →tei  as ∞→t . Thus in the closed-loop system 
),()( tytx →  as ∞→t . This implies that two chaotic systems 

have been synchronized through the sliding mode control. 

III. SYNCHRONIZATION OF MODIFIED CHUA’S CIRCUIT 
In this section we apply the above techniques to modified 

Chua’s circuit described by [6]: 
 

yqz
zyxy

xxxfxfypx

−=
+−=

−=−=

&

&

& 72)(,))(( 3

         (15) 

 
which has a chaotic attractor as shown in Fig. 1 when 10=p  
and 7100=q . 
 

 
 

Fig. 1The modified Chua’s circuit chaotic attractor 
 

In order to observe synchronization behavior we have two 
modified Chua’s circuits where the drive system with three 
state variables denoted by the subscript 1 drives the response 
system having identical equations denoted by the subscript 2. 
Note that the initial conditions on the drive system are 
different from that of the response system. The two modified 
Chua’s circuits are described, respectively, by the following 
equations. 
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where )(tux , )(tu y  and )(tuz  are three control functions that 
to be determined in order to synchronize two modified Chua’s 
circuits. 

Considering ,( 12 xxex −= ,12 yyey −= )12 zzez −= , 
error dynamics can be written as; 
 

)(

)(

)()7/7/)33(2( 2
11

2
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  (18) 

 
To write equation (18) in the form of (3) we introduce the 
following matrices: 
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and the vector B is selected such that ),( BA  is controllable: 
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The sliding surface eCees )246()( ==  makes the 

sliding mode state equation asymptotically stable. Let us 
choose 2.5=k  and 1.0=q , large value of k can cause 
chattering, and appropriate value of q is selected to quicken 
the time of the reaching sliding mode motion as well as to 
reduce the system chattering. 

From equation (13) we can obtain )(tv : 
 

⎩
⎨
⎧

<+−−−
>−−−−

=
0)(05.0)2.71143.248857.21(
0)(05.0)2.71143.248857.21(

)(
ese
ese

tv   (20) 

 
and we can obtain the sliding mode controller from 

yxMtBvtu ,)()( −= . 

IV. NUMERICAL RESULTS 
To verify the effectiveness of the proposed synchronization 

approach, we did some numerical simulations. The initial 
values of drive system and response system in all simulations 

 
 

Fig. 2  Synchronized states of modified Chua’s circuits and control 
signals 

 
are taken ,02.0( 10 =x  ,05.010 =y  )04.010 =z  and 
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0002.0( 20 =x  ,0005.020 =y  )0004.020 =z  respectively. The 
synchronized states of the drive and response systems and the 
control signals are shown in Fig. 2. Error trajectories are 
shown in Fig. 3. To verify the robustness of the proposed 
method in presence of noise, white Gaussian noise with mean 
0 and variance 01.0  is added to the drive system states. As it 
is expected and shown in Fig. 4 the controlled system is stable 
and the error values are bounded. In order to have better 
performance in presence of noise, 5.1=k  is taken in the 
sliding surface. 

V. NUMERICAL RESULTS 
To verify the effectiveness of the proposed synchronization 

approach, we did some numerical simulations. The initial 
values of drive system and response system in all simulations 
are taken ,02.0( 10 =x  ,05.010 =y  )04.010 =z  and 

0002.0( 20 =x  ,0005.020 =y  )0004.020 =z  respectively. The 
synchronized states of the drive and response systems and the 
control signals are shown in Fig. 2. Error trajectories are 
shown in Fig. 3. To verify the robustness of the proposed 
method in presence of noise, white Gaussian noise with mean 
0 and variance 01.0  is added to the drive system states. As it 
is expected and shown in Fig. 4 the controlled system is stable 
and the error values are bounded. In order to have better 
performance in presence of noise, 5.1=k  is taken in the 
sliding surface. 

VI. CONCLUSION 
In this paper the synchronization of chaos by sliding mode 

controller has been developed and applied to a coupled 
modified Chua’s circuits. Based on variable structure and 
sliding mode theorems the control function is derived. Finally 
the numerical results are presented to verify the proposed 
method. 
 

 
 

Fig. 3 Error trajectories of synchronized coupled modified Chua’s 
circuits 
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Fig. 4 Synchronization of coupled modified Chua’s circuits in 
presence of noise 


