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Abstract—In this paper we consider the problem of change 

detection and non stationary signals tracking. Using parametric 
estimation of signals based on least square lattice adaptive filters we 
consider for change detection statistical parametric methods using 
likelihood ratio and hypothesis tests. In order to track signals 
dynamics, we introduce a compensation procedure in the adaptive 
estimation. This will improve the adaptive estimation   performances 
and fasten it’s convergence after changes detection.  

 
Keywords—Change detection, Hypothesis test, likelihood ratio 

least square lattice adaptive filters.  

I. INTRODUCTION 
HANGE detection constitutes a crucial problem while 
analyzing non stationary signals. This is especially the 

case in adaptive filtering, biomedical diagnosis and industrial 
process control [2,3,5,7]. Our contribution in this domain is 
the establishment of complementary tools for non stationary 
signal adaptive processing. The resulting algorithms 
characterize eventual changes in processed dynamic signals 
and improve their tracking by the adaptive estimation. 

The change detection methods we consider here are based 
on the analysis of the prediction error of the signal. In deed 
this parameter conveys important information on the real time 
estimation state. A signal variation causes nearly 
instantaneous changes in this parameter statistics. For this and 
because of the incertitude on the existence or not of changes, 
the probabilistic environment is imperative. Thus, the change 
detection remains to make the following hypothesis test: 

 Hypothesis H0: There is no change 
 Hypothesis H1: there is a change 

 Detection methods we consider are then based on statistical 
notions such as likelihood ratio and confidence interval. Two 
types of methods are addressed; the first is based on 
conditional probability function of the signal and on 
likelihood ratio. In the second, we construct Information 
Signals (IS) that must reflect changes information, the 
detection will be based then on confidence intervals 
established from these IS a statistical distribution.   
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II. SIGNAL MODELIZATION 
To estimate   signals     parameters   we   consider   the 

autoregressive model. In deed, this model has proved 
efficiency for the change detection even if it doesn’t really 
describe the studied signal. So the discrete process is 
described as follows:  

y(k)= a y k i e ki
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=
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                          (1) 

where ai : signal parameter of i order   
   p: model order 
   (e(k)): white noise 
 

Parameters estimation is made using adaptive lattice least 
square filter [1]. This numerically robust filter gives us 
reliable parameters estimation especially for the prediction 
error.  

III. LIKELIHOOD RATIO BASED  CHANGE DETECTION 
Based on conditional probability function and likelihood 

ratio [2, 4, 6], this approach generates detection tests by 
comparing a decisions function to a defined detection 
threshold.  

Consider a discrete random observation y(k)  with 
conditional probability function  Pθ(y), where  θ is the the set 
of signal parameters able to change. We suppose that the 
model before change is θ0  and the model after change is  θ1. 

The observations probability function conditioned by  θ0 is 
written   P yθ0 ( ) . The probability function conditioned by θ1 
by  P yθ1 ( ) . 

Log likelihood ratio (LLR) of the two functions is: 
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This parameter has an important role in the detection 
problem. In deed it’s mean before and after change is less than 
zero and it’s mean after change is positive. Thus: 
 
 E[s(y)/H0] < 0   et E[s(y)/H1] > 0 

 
The two following detection algorithms are then based on 

this important property.  
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A. Cumulated Sums Algorithm (CUMSUM)  
The decision function in this classical algorithm is the sum 

of all the LLR available at each sampling time. It is written as 
follows: 

 

g k s yi
i

k
( ) ( )=

=
∑

1
                              (3) 

Expression which is equivalent to: 
 

g(k) = g(k-1) + sk(y)                          (4) 
 

 The detection time td will be the instant at which the 
decision function becomes upper than the detection threshold 
h:    t d = Min{ t/ g(k)>h} 
 

Consider for θ the set of the AR parameters vector and the 
variance σ2 of the generating white noise 
(θ=[a a al l l

p
l

1 2, , ... ,σ ]T  ). 
 

By writing the LLR in terms of the conditional probabilities 
P yθ0 ( ) and  P yθ1 ( ) , we obtain the following increment : 

 

si=
1
2 2 2

0
2

1
2

1
2

1
2

0
2

0
2Ln

e i e iσ

σ σ σ
− +

( ) ( )
                     (5) 

where   el(k)=y(k) - a y k il
i
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The algorithm drives the difference between the normalized 
squared prediction errors under  p

θ0
 and  p

θ1
. 

B. Kullback Divergence Algorithm (DIVE) 
This algorithm is based on a similar decision function to the 

precedent, but with an increment given by. 
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The difference is that the correction of the increment is 

made by subtraction of the conditional mean before change. 
This make the test be symmetric. In case of AR and Gaussian 
process the expression is: 
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This algorithm drives the difference between the normalized 
squared prediction errors under p

θ0
 and p

θ1
 

C. Implementation and Application 
As the set of parameters is not available, we must estimate 

it to run the tests. We have to estimate two models: M0 (before 
change model and M1 (after change model). 

For M0 we use the adaptive lattice least square algorithm. 

At each time all information is used to estimate this global 
model. And for M1 we use a sliding window Burg algorithm. 

We applied the two algorithms to non stationary signals 
presenting different kind of changes: abrupt and progressive, 
occurring in the model and in the signal energy.  

Fig. 1 presents the multiple changes case and in Table II we 
present the different tests results.  

We remark that: 
-The tests don’t require an optimal estimation since the 

model order changes are detected even if the order becomes 
upper to the order of the prediction algorithm (Test n° 3). 

-The low variations are not detected 
-The detection threshold influences the detection speed and 

the false alarm rate. A too high threshold gives an important 
detection delay but a small threshold may increase the false 
alarms risks.   

 
TABLE I 

CHANGE DETECTION TESTS 

test Changing parameter  tc 

1 Abrupt model change 500 

2 Model order change 500 

3 Progressive model change tc =350, 850 

4 Abrupt change in variance  500         

5 Progressive  variance change   tc   350, 850 

6 Multiple changes 
 

 tc1=500 

 tr2= 1000 
 

TABLE II 
DETECTION RESULTS 

test td,CUMSUM td,dive 

1 535     (h=20) 588      (h=20) 

2  No detection No detection 

3 629,914     (h=20) 589,849     (h=20) 

4 515     (h=10) 522      (h=10) 

5 577     (h=10) 573      (h=10) 

6 517,1005  (h=10) 518, 1005 (h=10) 
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Fig. 1 Multiple changes detection 

a: non stationary signal 
b: decion function for CUMSOM 

c: decision function for DIVE  

IV. CONFIDENCE INTERVAL BASED CHANGE DETECTION 
In opposition with the precedent approach, the method we 

consider in this paragraph is independent from a detection 
threshold choice. The generated detection tests is function of 
confidence intervals constructed from the statistical 
distribution of specific information signals (IS)[7]. These 
signals must reflect the change information, that’s why we 
consider the prediction error and it’s variance as IS.  We 
develop three tests based on χ2, Fisher and Student 
distributions. The test will be applied in three steps: 

1-Information signal construction. 
2-Choice of the confidence degree α necessary parameter 

for confidence interval construction. 
3-Choice of n the freedom degrees of the considered 

statistical distribution. This parameter is in relation with the 
length of the quasi stationary slices of the signal [7], [8]. 

A. χ2 Distribution based Test  
This test is based on the comparison of an estimated value 

$χ2with two threshold values delimiting the confidence 
interval [8].  The   χ2 variable generated by the prediction 
error e(k) is given by :        

 β n (k)= e kn
i k n

k
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1= − +
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where    e n (k)  =
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k
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And the detection test will be: 
I f   χ αn, /1 2

2
−  ≤ ≤βn k( )  χ αn, /2

2 :  
H0 true, no change 

Else     H1 true, there is a change 
 

B. Fisher Distribution based Test 
The Fisher variable is the ratio of two χ2 variables divided 

by their respective freedom degree number [8].  

 By considering the prediction error variances  s1
2

2
2

 et s  
estimated from two different size samples of the signal, and 
normalized by their respective freedom degree, we obtain the 
following Fisher variable: 

    F
s

s
= 1

2
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2                              (9)  

The detection test will be then: 

If F<Fn1,n2;α and   F-1<Fn2,n1;α  : 

H0 true, no change 

Else H1 true, there is a change 

C. Student Distribution based Test 
The Student variable results from the ration of two 

variables, the first normally distributed and the second is a 
Fisher variable. By considering the prediction error and its 
estimated variance we obtain the following Student variable: 

T =
−e k m k
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The detection test will be: 
If -Tn,α/2 ≤  T(k) ≤Tn,α/2  H0 true, no change  

 else  H1 true, there is a change 
    

D. Application and Results Discussion 
For the confidence degree α, we choose the value of 5%. 

This means that the estimation will have a confidence rate of 
95%. 

Fig. 2 illustrates the three tests applied on the signal (a) of 
Fig. 1 graphs in full line correspond to Information Signals 
and doted ones to the confidence interval. 

In Table III, we present the detection results for Table I 
signals we can remark that: 

- The change detection is faster than with the precedent 
approach. 

-The false detection rate is significant in some cases 
(Tests 4 and 3).  

  
 But we must say that this false detection problem is 
resolved if we choose a lower value for the parameter α, a 
value of 1% for example. But this may cause non detections 
especially when the change is not important. 
 

TABLE III 
χ2, FISHER AND  STUDENT. TESTS RESULTS 

test td,χ2 td,Fish td,Stud 
1 502 501,701 317, 534 
2 512 502,702 519,723 
3 629,914 589,849 575,997 
4 511 503 280, 501 
5 524 524,724 317 
6 511,1005 512 1075 399,609, 1001 
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Fig. 2 Multiple changes detection 

a: χ2 test, b: Fisher test, c: Student test 

V. CHANGE COMPENSATION PROCEDURE  
The delay considered between eventual successive change 

detections is T= 200 samples which is an important value. 
This is caused by the long temporization that we consider in 
order to ensure the global estimation convergence after any 
change detection.  
 To minimize this parameter, the solution we propose is to 
compensate the change in the pertinent estimation algorithm 
parameters in order to improve its tracking performances.  
 In lattice filters, the most important parameters that 
influence the estimation convergence are the partial 
correlation coefficients (PARCOR), we opt then for them 
compensation. 

As we use two adaptive estimations, a global one and a 
sliding window based one, we have the idea to compensate 
directly the global estimation PARCOR (M0 model). This is 
done by replacing them by those of the sliding window 
estimation (M1 model). There are two possibilities to do that: 
  1-Compensate when a change is detected 
  2-Compensate when the distance between the two 
estimation algorithms PARCORs is higher then a defined 
threshold s. 
 We choose the second method because in practice, it 
produces fast change detections.  In addition, the tracking 
performances of the adaptive estimation are improved. The 
result we obtain is to reduce the time delay T from 200 to 100.    

Fig. 3 presents change detection with and without 
compensation   and using CUMSOM and   DIVE     methods 
(Test 1). With compensation we obtain the following 
detection times: 
     td,CUMSOM =504  
     td,Dive         =505 
 The detection is really fastened and the decision functions 
are more smooth which decrease the false detection risks. 

Using methods of paragraph 4, we obtain similarly good 
results. For the example of Test 1, we have: 
      td,χ2     = 502 
      td,Fish  = 501 
      td,Stud  = 534 
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Fig. 3 Change detection with and without compensation 

CUMSUM decision functions (a,b), DIVE (c,d) 

VI. CONCLUSION 
In this work we considered statistical change detection 

applied with adaptive filtering. We implemented simple and 
performing tools that combined with adaptive estimation gave 
satisfying change detection. We also introduce a new 
compensation step which improved the tracking performances 
of the adaptive estimation and produced fastener change 
detection. 
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