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Abstract—The typical insects employ a flapping-wing mode of 
flight. The numerical simulations on free flight of a model fruit fly 

(Re=143) including hovering and are presented in this paper. Unsteady 

aerodynamics around a flapping insect is studied by solving the 

three-dimensional Newtonian dynamics of the flyer coupled with 

Navier-Stokes equations. A hybrid-grid scheme (Generalized Finite 

Difference Method) that combines great geometry flexibility and 

accuracy of moving boundary definition is employed for obtaining 

flow dynamics. The results show good points of agreement and 

consistency with the outcomes and analyses of other researchers, 

which validate the computational model and demonstrate the 

feasibility of this computational approach on analyzing fluid 

phenomena in insect flight. The present modeling approach also offers 

a promising route of investigation that could complement as well as 

overcome some of the limitations of physical experiments in the study 

of free flight aerodynamics of insects. The results are potentially 

useful for the design of biomimetic flapping-wing flyers. 

 

Keywords—Free hovering flight, flapping wings, fruit fly, insect 
aerodynamics, leading edge vortex (LEV), computational fluid 

dynamics (CFD), Navier-Stokes equations (N-S), fluid structure 

interaction (FSI), generalized finite-difference method (GFD). 

I. INTRODUCTION 

ITH the advent in the progressive research for the 

applications and fabrication of autonomous micro aerial 

vehicles (MAV) or unmanned air vehicles (UAV), flapping 

mode flight is largely and widely studied in the past few years. 

With a wing spanwise of less than 10cm and a flight speed a 

few meters per second, MAVs experience the same low 

Reynolds number ( 100 −105 ) flight conditions as their 
biological counterparts. In this flow regime, flapping wings 

type flight gains more efficiency, maneuverability and a wide 

range of speed over the rigid fixed wings mode, which might be 

the reason of its presence in nature among millions of species of 

birds and insects. However, researchers have long realized the 

"quasi-steady" aerodynamics assumption is unable to capture 

the physical phenomena or forces generation in flapping flight 

properly at this scale where the unsteady state flow mechanism 

dominates. In the past few decades, much work has been done 

to study the aerodynamics and energetics of insect flight and 
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considerable progress has been made in these areas. The studies 

of Ellington [1]-[6], Dickinson [7], Ellington et al. [8], 

Dickinson et al. [9], Sane and Dickinson [10], Birch and 

Dickinson [11] and others revealed unsteady fluid mechanism 

in experimental aspects. Computer-based studies have also 

begun to play a bigger role in recent years to help unravel the 

intricacies of insect flight, most notably through the works of 

Liu et al. [12], Wang [13], Ramamurti and Sandberg [14], Sun 

and Tang [15] and Aono et al. [16]. These efforts have been 

successful in identifying and clarifying the high lift 

mechanisms available to flapping-wing insects to overcome 

weight. 

Few works have focused on numerically studying the 

unsteady flows around 3D free flapping flyer, largely owing to 

difficulties in modeling the complicated geometry and in 

simulating the 3D movements of wings. Additionally, the 

kinematics and kinetics are inferred from observations of 

subjects, whose behavior it can be very difficult to control. As 

consequences, the measurements obtained from tethered insect 

may not truly reflect conditions in free flight. In this paper, we 

present a computational study on the low Reynolds number 

flight of a model fruit fly. The numerical model integrates the 

computational fluid dynamics of the flow with the 

three-dimensional Newtonian dynamics of the flyer and the 

governing Navier-Stokes equations. In contrast to the other 

computational studies, the wing kinematics employed in this 

work is not acquired from published experimental data. Instead, 

a basic set of sinusoidal wing kinematics are provided and 

allowed to evolve in time to achieve designated hovering flight 

with small deviations. Stroke plane adjustment and mean 

positional angle shifting are employed to regulate airspeed and 

stabilize the body pitch angle, respectively. Visualization of 

flow field around the model fruit fly in flight has also been 

obtained. 

II. MATERIALS AND METHODS 

A. Morphological and Kinematic Model 

For the present work, we have adopted the morphological 

data on fruit fly Drosophila melanogaster from Fry et al. [17] 

for our computer model of a low-Re flapping wing flyer. The 

geometric model of the flyer itself was constructed from 

photographic images of the insect. The model flyer, referred to 

here as the model insect, has a body length of 2.78 mm and 

wing length R = 2.39mm . The wings are assumed to be rigid 

and of uniform thickness equal to 2% of wing length. 

Considering that the aerodynamic influence of the wing root is 

likely to be negligible, we did not model the wing base for 

simplicity, but instead curtailed the wings at a short distance 
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from the body. 

According to measured data in [17], the weight of insect is 

W = 0.96mg , wing mean chord c = 0.874mm , stroke 

angle Φ = 2.44rad.  and average wing flapping 

frequency f = 218Hz . The Reynolds number in the hovering 

flight can be defined as 

 

Re =
c ⋅Uref

ν
=
R ⋅2Φ⋅ f ⋅ c

ν
=
4R2 ⋅Φ ⋅ f

ν ⋅ AR     

(1) 

 

whereν  is the kinematic viscosity of air (1.5×10−5m2s−1
),

Uref the average flapping velocity of the wing tip and aspect 

ratio AR = (2R)2 S with the surface area of a wing pair

S = 2Rc . The Reynolds number Re thus works out to be 
nominally around 143. 

B. Fluid Dynamics Modeling 

The dynamics of the fluid is governed by the incompressible 

non-dimensional Navier-Stokes (NS) equations, given in the 

arbitrary Lagrangian-Eulerian (ALE) form: 

 

∇ ⋅u = 0                                (2) 
 

∂tu = −(u−ug ) ⋅∇u+
1

Re
∆u− ∇p              (3) 

 

where u(x, t) and p(x, t) ( x ∈ Ω(t) )represent the velocity 
and pressure fields of the fluid domain Ω(t), respectively. The

ug
is the convection velocity of the computational node, which 

is equal to zero for stationary nodes. The above equations are 

solved on a hybrid Cartesian cum meshfree grid system, 

wherein immersed bodies/boundaries and their near fluid 

neighborhoods are discretized by meshfree nodes. The 

meshfree nodes convect with the motion of bodies/boundaries. 

Fig. 1 shows the nodal system on the model insect generated 

using an available finite-element grid generator. The flyer is 

located in a cubic domain with boundaries set at a distance of 

about 8 wing-lengths away flyer. The cubic domain is 

discretized by a 221
3
 Cartesian grid system (See Fig. 2). The 

grid is non-uniform with coarse grid on the outside and fine grid 

near the center where the model insect is located to give good 

resolution to the immediate flow around the flyer. The final grid 

has been selected through trials and comparison with 

experiments to ensure well-converged numerical performance. 

Solution by the present hybrid-grid scheme utilizes a 

projection-based method, which has been described by Chew et 

al. [18] and Yu et al. [19], and will not be elaborated here. The 

hybrid grid combines great geometry flexibility and accuracy 

of boundary definition with the computational efficiency of a 

Cartesian background grid used in bulk of the flow domain. The 

cloud of meshfree nodes employed around the model also gives 

good resolution to the fluid boundary layer. In the present case, 

the meshfree nodes constitute around 1% of the total nodal 

population. The Cartesian background grid/nodes are stationary 

in space in most applications, but they can also be convected 

with the overall motion of the model flyer if necessary. The 

latter is particularly useful in problems where the flyer is 

allowed to traverse freely through space, such as in forward or 

backward flight. 
 

 

Fig. 1 Discretized fruit fly model in downstroke flapping 

 

 

Fig. 2 Comparison between the messless points and its background 

Cartesian mesh 

C. Fluid-Body Interaction 

The flapping wing action of the model flyer drives the flow, 

whose dynamics has been stated above. The reaction force of 

the fluid in turn motivates the motion of the flyer in accordance 

with Newton’s laws. Let VC (t)  and ω(t)denote the linear 
and angular velocities of the flyer of mass M at its center of 

mass C, respectively. The governing dynamical equations for 

the flyer are then given by: 
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dXC (t)

dt
=VC (t)

dΘ(t)
dt

= K(t)[ ] ⋅ω(t)

d(M ⋅VC (t))

dt
= −Mg ⋅ iz + [σ ]⋅ndΓ

Γ(t )

∫

d I(t)[ ] ⋅ω(t)( )
dt

= x − XC (t)( ) × ([σ ]⋅n)dΓ
Γ(t )

∫


















   

(4) 

 

where Θ(t) is a rotation angle vector and K(t)[ ]  a 
transformation matrix. I(t)[ ] is the inertia tensor of the flyer, 
while σ[ ] is the Newtonian fluid stress tensor. The velocity of 
nodes on the moving body and wings of the model flyer is given 

by 

 

u(x, t) =VC (t)+Vx C (t)+ω(t)× (x − XC (t))       (5) 

 

whereVx C (t) represents the velocity of nodes relative to the 

body frame of flyer, which is non-zero for nodes of the wings. 

 As can be seen, both equations of fluid (2), (3) and model 

flyer (4), (5) require information about the surface (body and 

wing) configuration Γ(t) of the flyer. The time-dependent 
surface configuration Γ(t,XC (t),Θ(t))comprises information 
about the current disposition of the flyer in its body frame, 

which is known, as well as information on the current spatial 

location XC (t) and orientation Θ(t)of the flyer, which are 
unknown. The solution of the fluid-body interaction problem at 

time t thus involves solving the coupled equations of the fluid 

and the flyer, given above, while simultaneously iterating on 

XC (t) and Θ(t) to determine the configuration 

Γ(t,XC (t),Θ(t)) that satisfies all the governing equations and 
conditions (2) to (5). This is essentially a fixed-point iteration 

problem, which could be symbolically represented by the 

following process equation: 

 

Γ(t) = S(F(Γ(t))),                            (6) 
 

whereF symbolically denotes the flow solver, which computes 

the force/moment loading on the currently estimated 

configuration Γ(t) , and S is the body dynamic solver, which 
computes an updated configuration Γ(t) of the flyer. This 
process of estimation and update is repeated until the change 

between consecutive estimates of Γ(t) is less than a prescribed 
small real numberε , the convergence criterion. The free flight 
of the model insect is then described by the solution of Γ(t)as 
a function of time. The above methodology has been described 

in some detail and validated in fluid-body interaction study by 

Yu et al. [19]. 

III. RESULTS AND DISCUSSION 

Fig. 3 shows the free normal hovering dynamics of the model 

fruit fly over a period of 40 wing cycles. The y-component of 

displacement fluctuation is the largest (Fig. 3A), while pitching 

is the largest component of rotational fluctuation (Fig. 3B), 

both within individual wing cycles and over the course of 

hovering simulation. Over the course of the 40 wing cycles, the 

body deviates<4% of a wing length from the designed hovering 

position (Fig. 3A), while the pitching angle of the body ( )tχ  

oscillates within a narrow band of < 3° after the 10th cycle (Fig. 
3B). In fact, both displacement and pitching oscillations 

decrease with increasing wing cycles, showing a gradual 

convergence towards a sustained quasi-steady hovering state. 

The larger body fluctuations registered at the beginning is due 

to the flyer being initiated into flight at time t=0 from a rest 

state. 
 

 

 

Fig. 3 (A) Translational fluctuation of the center of mass of flyer about 

the designated mean position. (B) Fluctuations of body orientation – 

mean body pitch angle χ ≈ 48° from the horizontal 

  

Unsteady fluid flow over flapping wings is governed by the 

dynamics of strong vortices generated at the edges of the wings. 

The vortical flow over the wings of the model fruit fly 

comprises a leading-edge vortex (LEV) over the straight 

anterior margin of the wing, a wing-tip vortex (WTV) and a 

trailing-edge vortex (TEV). The term WTV is used here to 

distinguish the strong vortex that extends contiguously from the 

LEV over the curved section of leading edge in the distal 40% 

of the wing (see Fig. 4).  

Fig.5 shows the vortex generation and shedding processes in 

hovering flight. The associated velocity fields in a lateral plane 

cutting across the vortex system at the wing root are also given. 

The bulk of vortical flow is shed via the WTV and TEV from 

each wing in a fairly continuous fashion during a stroke in an 

arc about the body. These vortices generated are roughly 

symmetric and of equal magnitude in the upstroke and 

(A) 

(B) 

( )

deg.

tχ
 Roll, 

Yaw 
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downstroke during normal hovering, where the stroke plane is 

nearly horizontal. One may also observe the jets of flow passing 

between the WTV and the TEV. A stacked sequence of these 

vortices about each wing drives the flow below the wing.
 

Fig. 4 Three-dimensional stream traces around the le

wing tip regions 

 

Fig. 5 Iso-vorticity surfaces around the model fruit fly during normal 

hovering. Also given is the velocity field in a lateral plane c

across the vortex system

IV. CONCLUSIONS 

This paper is concerned with a numerical study on the free 

hovering of a low Reynolds number flappin

modeled after the fruit fly. The unsteady flow is modeled by the 

incompressible Navier-Stokes equations, while the dynamics of 

the flyer is governed by Newton’s laws of free body in a gravity 

field. The deviation of center of mass of the inse

designated hovering position is typically less than 4% of one 

wing length while the orientation or pitching angle of the body 

varies within a band of less than 3 degrees for hovering flight. 

Flow field study shows that the flow jets induced by 

are broadly similar to those in published results for normal 

 

downstroke during normal hovering, where the stroke plane is 

observe the jets of flow passing 

between the WTV and the TEV. A stacked sequence of these 

vortices about each wing drives the flow below the wing. 

 

dimensional stream traces around the leading edge and 

 

urfaces around the model fruit fly during normal 

hovering. Also given is the velocity field in a lateral plane cutting 

across the vortex system 

 

This paper is concerned with a numerical study on the free 

hovering of a low Reynolds number flapping-wing flyer, 

modeled after the fruit fly. The unsteady flow is modeled by the 

Stokes equations, while the dynamics of 

the flyer is governed by Newton’s laws of free body in a gravity 

field. The deviation of center of mass of the insect from the 

designated hovering position is typically less than 4% of one 

wing length while the orientation or pitching angle of the body 

varies within a band of less than 3 degrees for hovering flight. 

Flow field study shows that the flow jets induced by the wings 

are broadly similar to those in published results for normal 

hovering. The present modeling approach offers a promising 

route of investigation that could complement as well as 

overcome some of the limitations of experiments in the area of 

free flight aerodynamics of insects.
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