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Centre Of Mass Selection Operator Based
Meta-Heuristic For Unbounded Knapsack Problem
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Abstract—In this paper a new Genetic Algorithm based on a
heuristic operator and Centre of Mass selection operator (CMGA)
is designed for the unbounded knapsack problem(UKP), which is
NP-Hard combinatorial optimization problem. The proposed genetic
algorithm is based on a heuristic operator, which utilizes problem
specific knowledge. This center of mass operator when combined
with other Genetic Operators forms a competitive algorithm to
the existing ones. Computational results show that the proposed
algorithm is capable of obtaining high quality solutions for problems
of standard randomly generated knapsack instances. Comparative
study of CMGA with simple GA in terms of results for unbounded
knapsack instances of size up to 200 show the superiority of CMGA.
Thus CMGA is an efficient tool of solving UKP and this algorithm
is competitive with other Genetic Algorithms also.
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I. INTRODUCTION

Knapsack problem is a well known and well-studied prob-
lem in combinatorial optimization, however polynomial time
algorithm for many cases have not been tried yet. It has a
wide range of applications, ranging from network planning,
network routing, parallel scheduling, to budgeting. As an ap-
plication, it is worth mentioning that the unbounded knapsack
problem(UKP) often arises in cargo loading and packing .
Suppose we need to load a vessel of capacity c with a cargo
composed of different types of items with each item of type
i having weight wi and value pi. The problem is how to load
the vessel with the most valuable cargo [15,5]. The unbounded
knapsack problem is NP-hard [15,10]. It may be formulated as
follows: a knapsack of capacity c is given, into which we may
put n types of objects. Each object of type i has a profit pi and
a weight wi ( without loss of generality, we assume that wi , pi

, c and n are all positive integers, and an unbounded number of
items of each type is available ). Determine the number xi of
i th type objects that maximize total profit without exceeding
capacity, i.e.

maximize

n∑
i=1

pixi (1)

subject to
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n∑
i=1

wixi ≤ c (2)

xi ≥ 0 are integers, i = 1, ..., n (3)

Two classical approaches for solving this problem exactly
are Branch and Bound [20] and Dynamic Programming [1].
Both of these exact algorithms have a running time that is
bounded by an exponential function of the length of input data.
Thus it is very difficult to obtain the exact solutions to many
large- scale knapsack instances which come from practical
applications [5]. Hence for those large-scale instances, it has
to rely on heuristic algorithms to obtain the near optimal
solutions to them [2, 9,12, 14,16, 19, 18].

Among those heuristic algorithms for knapsack problem,
Genetic Algorithm is found to be an effective method to
solve the knapsack instances approximately. Ken-li Li [13]
presented a problem-specific genetic algorithm for solving the
UKP. They have solved the UKP by transforming it into 0-
1 knapsack problem. In this paper, we have also used the
problem-specific heuristic operator (described in section 3.3
) to convert an infeasible solution into a feasible one, and
we have directly solved the UKP without transforming it into
0-1 knapsack problem. We have used a new operator called
Center of Mass Selection operator [17] (described in section
3.2 ), One Point Crossover and the Mutation operators to solve
the UKP. The proposed algorithm is capable of obtaining more
exact solutions for various problems.

The rest of this paper is organized as follows. In section II,
we presented an introduction to Genetic Algorithm. In section
III, a new Genetic Algorithm containing the heuristic operator
for solving the UKP is explained. Experimental results are
presented in section IV, and concluding remarks are provided
in section V.

II. AN INTRODUCTION TO GENETIC ALGORITHM

Genetic Algorithms are algorithms for optimization and ma-
chine learning based loosely on several features of biological
evolution. They require five components [21].
(i)A way of coding solutions to the problem on chromosomes.
(ii) An evaluation function, which returns a rating for each
chromosome given to it.
(iii) A way of initializing the population of chromosomes.
(iv) Operators that may be applied to parents when they re-
produce to alter their genetic composition. Standard operators
are mutation and crossover.
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(iv) Parameter settings for the algorithm, the operators, and so
forth.

Given these five components, a Genetic Algorithm operates
according to the following steps.
Step 1. Initialize the population using the initialization proce-
dure and evaluate each member of the initial population.
Step 2. Reproduce until a stopping condition is met. Repro-
duction consists of iterations of the following steps:
a) Choose one or more parents to reproduce. Selection is
stochastic, but the individuals with the highest evaluations are
favored in the selection.
b) Choose a genetic operator and apply it to the parents.
c) Evaluate the children and accumulate them into a genera-
tion. After accumulating enough individuals, insert them into
the population, replacing the worst current members of the
population.
When the components of the Genetic Algorithm are chosen
appropriately, the reproduction process will continuously im-
prove the population, converging finally to solutions close to
a global optimum. Genetic Algorithms can efficiently search
large and complex (i.e., possessing many local optima) spaces
to find nearly global optima. A more comprehensive overview
of Genetic Algorithm can be found in [2,3,4,11].

A. A brief survey of GA based applications, wherein the
definition of basic operators need revision

Goldberg[11]suggested a modified crossover operator called
Partially Matched Crossover (PMX) for solving the Traveling
salesman problem and the other crossover operators are Order
Crossover( OX) and Cycle Crossover(CX) for the Traveling
salesman problem to maintain the tour. He also defined some
new mutation operators, namely, Inversion Mutation, Inser-
tion Mutation, Displacement Mutation, Reciprocal Exchange
Mutation and Shift Mutation for solving various problems.
The standard selection operators such as roulette wheel, rank,
tournament, etc., have been used by various researchers for
varied applications. In this paper we have used a new selection
operator based on center of mass ( described in section 3.2 )
for solving UKP.

B. A brief survey of problem-specific operators used with GA
applications

P.C.Chu and J.E.Beasley [7] used a problem specific heuris-
tic operator to improve a GA based solution for solving
generalized assignment problem. It includes two local im-
provements. The first one attempts to improve feasibility of
a child by reassigning jobs from overly-capacitated agents to
less-capacitated agents and the second one attempts to improve
the cost of the child by reassigning jobs to agents with lower
costs. The heuristic operator has a complexity of O(m2n).
P.C.Chu and J.E.Beasely [8] used a heuristic operator, like
what we have used in our paper for solving multi-dimensional
knapsack problem.

III. THE CENTER OF MASS SELECTION OPERATOR BASED

GENETIC ALGORITHM FOR SOLVING UKP (CMGA)

.

A. Representation and Fitness function

The binary coded Genetic algorithm is used for solving the
UKP shown below. The initial population of size 100 has been
chosen randomly, with each chromosome represented by the
total length l , which represents the sum of total number of
bits required for the upper bound of each variable i. Let n be
the total number of variables.
Step 1: ( initialize ) construct P random candidate solutions.
Step 2: (stopping criteria) if maximum number of iteration is
reached go to Step 10
Step 3: choose the best solution among the solutions
Step 4: Center of Mass = best solution
Step 5: (selection) apply Center of Mass selection operation
Step 6: (crossover) apply single-point crossover operation
Step 7: (Mutation) apply Mutation operation
Step 8: (feasibility operator) Apply the feasibility operator to
convert the infeasible solutions into feasible ones.
Step 9: go to Step 2
Step 10: display the best solution.

B. Parent selection, Crossover and Mutation

We have used our own selection operator called Center of
Mass Selection operator. This operator uses the neighborhood
of the best string in the population for selection. It quickly
identifies the local optimum within the current population.
Here, the best fit individual (individual with the highest
objective function value) is taken as the Center of Mass xc

and the new individuals xnew are generated around the Center
of Mass, by using equation (4).

xnew
i = xc

i +
lir

k
∀i (4)

Where xc
i is the ith variable in the Center of Mass, li is

the upper bound of xi, r is the normalized random number
and k is the iteration number. For example, consider the 5-
variable UKP. Let the upper bounds for the 5 variables be 15,
18,13,23,13. The number of binary digits for each variable is:
4,5,4,5,4. So, the total length l = 22. we present conversion of
old chromosome into new chromosome in TABLE I. Assume
that the following chromosome (individual) is the center-of-
mass. xc = 1101001010001101010011

TABLE I
CONVERSION OF x

c INTO x

new

x

c (binary) 1101001010001101010011
x

c (decimal) 13, 5, 1, 21, 3
Iteration k 10

x

new(decimal) 13+(15*0.7)/10 = 14
5+(18*0.6)/10 = 6
1+(13*0.9) /10 = 2

21+(23*0.1)/10 = 21
3+(13*0.5)/10 = 4

x

new (binary) 1110001100010101010100

So, the new chromosome is created as xnew =
1110001100010101010100 Like this the remaining chromo-
somes will be generated in the population. We have used One
Point Crossover operator with the crossover probability of 0.9.
It will select two parents and based on a random number it will
get the position value, from which the remaining string from
the two parents get exchanged. We have also used Mutation
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operator with the probability of 0.05 ( which gives better
results compare to the other values). It will randomly change
some of the bits from 0 to 1 or from 1 to 0.

C. The heuristic Operator

During the evaluation of the fitness functions of the popula-
tion, we use this problem specific heuristic operator to trans-
form the infeasible solutions into a feasible one. It is presented
below. It consists of two phases. The first phase (called Drop)
examine each variable in increasing order and changes the
variable from one to zero if feasibility is violated. The second
phase (called Add) reverses the process by examining each
variable in decreasing order and changes the variables from
zero to one as long as feasibility is not violated. The aim of
the Drop phase is to obtain feasible solution from an infeasible
solution, while the Add phase seeks to improve the fitness of
a feasible solution.

Let R = the accumulated weight of the knapsack S.
1. initialize R =

∑
wi ∗ S[m];

2. for j = 1 to l do /* Drop phase */
if ( S[j] = 1 ) and ( R>c ) then
S[j] = 0; R = R - wj

end if
end for
3. for j = l to 1 do /* Add phase */
if ( S[j] = 0 ) and (R < c) then
S[j] = 1; R = R + wj

end if
end for.
4. end

D. example

For example, consider the same 5-variable UKP, with the
constraint equation is given by R = 77x1 + 65x2 + 88 x3 +
52x4 + 90x5 ≤ 1197.

Consider xnew = 1110001100010101010100
If we substitute this in the constraint equation above, we

get R = 3096 which is greater than 1197. so, the solution
is infeasible. To convert it into feasible one, we apply the
heuristic operator as follows: Drop phase: It replaces 1 by
0 from left to right as long as it is infeasible. The modified
string is 0000000000000001010100 Add phase: It replaces 0
by 1 from right to left as long as it satisfies the constraint.
The resultant string is 0000000000001111111111 which is a
feasible solution. In terms of computational complexity both
step. 2 and step. 3 require at most O(l), which is relatively
small.

IV. EXPERIMENTAL RESULTS

This algorithm has been tested for solving UKP (which is
NP hard)with single constraint so as to check its efficiency in
the context of vast search space. We generated the Unbounded
Knapsack test problems randomly for various sizes(n), follow-
ing the procedure given in [6], which is described below. The
value of pj varies from 1 to 1000, wj varies from 1 to 1000, bj
varies from 1 to 10. The right hand side value c is calculated

by using 0.5 ∗
∑
wj ∗ bj . This algorithm was implemented

in Visual Basic 6.0 and tested in Intel Core2 Duo , 1.60 GHz.
Processor and 1.0 GB RAM running under Windows XP.

A. Solution quality

TABLE II summarizes the results for each of the solved
problem. The Columns in the table are furnished as follows:

n : The number of variables
CPLEX: CPLEX solutions( optimum)
Opt : The number of trails out of 10 in which CMGA found

the optimum solutions.
Mean, Min, Max : The Mean, Minimum and Maximum

Objective values returned in the 10 trails (the val column) and
the respective relative deviation percentages below the optimal
value ( in dev column ). The CMGA found optimal solutions
in at least one of the 10 trails for all the 8 tested problems.
For 4 (50 percentage) of the problems the CMGA found the
optimal solution in every trails. Only in two cases, at n = 40 it
returns a solution 5.763 percentage below the optimal and at n
= 150 it returns a solution 3.641percentage below the optimal.
The CGMA to return best solutions for all sizes of problems.

TABLE II
CMGA RESULTS

n CPLEX Opt Mean Min Max
Val dev Val dev Val dev

10 3293 10 3293 0.0 3293 0.0 3293 0.0
20 6586 10 6586 0.0 6586 0.0 6586 0.0
30 10353 10 10353 0.0 10353 0.0 10353 0.0
40 13708 9 13629 0.576 12918 5.763 13708 0.0
50 16836 10 16836 0.0 16836 0.0 16836 0.0
100 34272 8 34245 0.078 34202 0.204 34272 0.0
150 53224 9 53030.2 0.364 51286 3.641 53224 0.0
200 77319 8 77250 0.089 76939 0.491 77319 0.0

No. of iterations : 3000 No. of runs:1 CPLEX : software

B. Comparison with other Algorithms

In order to bring out the efficiency of the proposed CMGA
, the set of generated problems have been solved by Genetic
Algorithm(GA) given in [13]. The values of the parameters
used in both the algorithm are listed in TABLE III. In TABLE
IV, we have compared our CMGA algorithm with the GA
described in [13]. In [13], the tournament selection operator
is used to solve the UKP. The tournament selection operator
picks two random solutions from the initial solutions and the
selection is made randomly based on a threshold value of
the user’s choice. Hence the randomness affects the solution
quality. But in this paper, center of mass selection operator
preprocesses the data to obtain the best initial solution, by
assuming this initial solution as center of mass and generate
the population existing around it, as candidate solutions for the
next generation. This causes the improvement in the solution
quality for successive generations. Simple GA obtained only
the near optimum solutions with average deviation of 0.0571
percentage. Where as this algorithm obtained optimum solu-
tions in all the test instances. This is solely because of the
center of mass selection operator.

V. CONCLUSION

In this paper a new Genetic Algorithm based on Centre of
Mass selection operator for solving the UKP is presented. Our
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TABLE III
PARAMETERS SET FOR THE TWO ALGORITHMS

Parameters GA CMGA
Population size 100 100

Selection Tournament Center of Mass
Crossover Uniform (0.9) One point (0.9)
Mutation 0.05 0.05

Max.iterations 3000 3000

TABLE IV
COMPARISON BETWEEN CMGA AND GA

n CPLEX GA dev CMGA dev
Optimum Value

10 3293 3208 0.026 3293 0
20 6586 6586 0 6586 0
50 16836 15636 0.071 16836 0

100 34272 33256 0.030 34272 0
150 53224 45386 0.147 53224 0
200 77319 71984 0.069 77319 0

Total average 0.0571 0
No. of iterations: 3000 No. of runs: 10 CPLEX: software

approach is different form the approach of Ken and Qing[13]
. They have solved the UKP by transforming it into 0-1
knapsack problem, and then by applying simple GA with tour-
nament selection. But our algorithm does not necessitate the
transformation process which causes the reduction of memory
space. Instead a new operator called Center of Mass Selection
operator has been used along with One Point Crossover and the
Mutation operators to solve the UKP. The proposed algorithm
is capable of obtaining better solutions for various problems
and this method gives quality solutions than the GA described
in [13]. We have used our new algorithm to solve only single
constraint NP hard problem up to problem size 200. However
this algorithm needs to be tested for solving problems of
larger size. The proposed algorithm can be used to solve multi
constrained optimization problems and also for multi objective
optimization problems, which is presently ongoing.
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