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Abstract—The most common result of analysis of high-

throughput data in molecular biology represents a global list of 
genes, ranked accordingly to a certain score. The score can be a 
measure of differential expression. Recent work proposed a new 
method for selecting a number of genes in a ranked gene list from 
microarray gene expression data such that this set forms the 
Optimally Functionally Enriched Network (OFTEN), formed by 
known physical interactions between genes or their products. Here 
we present calculation results of relative connectivity of genes from 
META-OFTEN network and tentative biological interpretation of the 
most reproducible signal. The relative connectivity and 
inbetweenness values of genes from META-OFTEN network were 
estimated. 
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I. INTRODUCTION 
ANY genome-scale studies in molecular biology deliver 
results in the form of a ranked list of gene names, 

accordingly to some scoring method. Many methods were 
developed for estimating a statistically justified threshold for 
the score value used to select a number of top-scored genes. 
The derived in this way gene signature are used, for example, 
for predicting outcome of treatment in cancer therapies [1-4]. 
The question is how many top-ranked genes to consider for 
further analysis. This question is usually approached from a 
statistical point of view, without considering any biological 
properties of top-ranked genes or how they are related to each 
other functionally.  

Several efforts have been made in attempt to take into 
account physical interactions between gene products at the top 
of the ranked list of genes. For example, in [5] network 
signatures of breast cancer metastases were derived using 
protein-protein interaction (PPI) database in combination with 
differential gene expression values. Various machine learning 
frameworks were developed in order to include network 
information into the analysis of gene expression data [6,7]. 
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Several attempts of meta-analysis of gene signatures were 
made for multiple cancer studies and for breast cancer in 
particular [8,9], finding recurrent patterns appearing in them 
(for example, the role of proliferation, RNA splicing, immune 
response genes). The method proposed in [10] is inspired by 
the idea of percolation in graph theory. Given a connected 
graph and k randomly selected nodes, one may estimate the 
expected size of the largest connected component formed by 
these genes. For many type of graphs, the typical behavior is 
the following: at some critical kcrit number of nodes, most of 
them start to be connected in a large connected component. 
This means that if the first k << kcrit  top-ranked genes form a 
relatively large connected component (compared to the 
randomly expected), their distribution on the graph of protein-
protein interactions is highly non-random and they form a 
tightly connected functional group. In this paper we estimate 
the values of in betweenness and relative connectivity of 
genes forming META-OFTEN network. 

II.  MATERIALS AND METHODS 
Gene signature consisting of 74 genes forming META-

OFTEN network, OFTEN networks for each dataset and 
ranked lists of differentially expressed genes obtained from 
[10]. We used HPRD version 9 database without complex 
with id=COM_2971 as a source of protein-protein interactions 
in human cells. For constructing the interaction graph, we 
used all binary protein interaction part of the database. In 
addition, the protein relations inside protein complexes were 
used. Cytoscape software [11] and BiNoM plugin [12] were 
used for constructing META-OFTEN network. Enrichment 
analysis of META-OFTEN genes performed by using 
Database for Annotation, Visualization and Integrated 
Discovery (DAVID) [13]. 

III. RESULTS AND DISCUSSION 
Gene signatures extracted from the lists of differentially 

expressed genes using the standard statistical approach usually 
show much more modest overlap (not more than few percents, 
see [14]). For example, in our analysis of the lists of 
differentially expressed genes from four breast cancer datasets 
[1] there are six genes CCNB1, CCNB2, DTL, NEK2, UBE2S 
and ZWINT genes are found in at least three datasets and only 
two RACGAP1 and RRM2 genes found in common between 
the top 100 differentially expressed genes (Fig. 1). 
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Fig. 1 Most variable genes from the list of top 100 differentially expressed genes between four breast cancer datasets
 

TABLE I 
INBETWEENNESS VALUES OF META-OFTEN GENES 

gene inbetweenness subnetwork global ratio 

CDK1 0,336 18 133 0,135 

HSP90AA1 0,211 7 159 0,044 

BIRC5 0,189 2 15 0,133 

NR3C1 0,069 6 99 0,06 

KIF11 0,058 2 9 0,222 

AURKA 0,052 4 27 0,148 

CDC20 0,037 5 25 0,2 

CCNB2 0,034 2 5 0,4 

RUNX1T1 0,034 3 26 0,115 

PTTG1 0,021 2 7 0,288 

CCNA2 0,021 2 30 0,067 

PCNA 0,018 4 85 0,047 

TPX2 0,017 2 5 0,4 

MARS 0,017 2 14 0,143 

LMNB1 0,017 2 19 0,105 

ITPR1 0,017 3 31 0,097 

MCM2 0,017 2 36 0,055 

TOP2A 0,017 2 52 0,038 

SPTAN1 0,017 2 65 0,03 

HSPA4 0,013 2 28 0,071 

KPNA2 0,012 3 38 0,079 

TXN 0,006 2 10 0,2 

PRPF40A 0,003 4 87 0,045 

CD74 0,003 5 13 0,385 

CCNB1 0,001 4 37 0,108 

PECAM1 0,001 2 24 0,0833 

GAPDH 3,81E-04 2 43 0,046 

TXNIP 3,17E-04 2 8 0,25 

 
 

 
Nodes of the META-OFTEN network are organized into 

several functional subgroups, represented by network modules 
and containing many genes known to be implicated in 
tumorigenesis. The most evident components of META-
OFTEN network described in [1]. Nodes of the META-
OFTEN network can be ranked with respect to their role in 
forming the structure of the graph (Table I). We calculated 
values of inbetweenness and ratio of the connectivity for the 
genes from META-OFTEN network. For example, genes 
CDC20, CCNB2, TPX2, CD74, PTTG1 have the highest 
relative connectivity. Realtive connectivity is the ratio of the 
connectivity in the network and the global connectivity in the 
global PPI network, as in [15]. Subnetwork values shows how 
many edges has every node in the META-OFTEN network. 
CDK1, HSP90AA1 and NR3C1 have highest number of 
edges. CDK1, HSP90AA1, BIRC5 have the highest 
inbetweenness values. Genes with highest inbetweenness 
values can be classified as “routers” or “bottlenecks” as in 
[16]. 

We used the Database for Annotation, Visualization and 
Integrated Discovery (DAVID) [13] to reveal biological 
meaning of genes forming META-OFTEN network from four 
independent breast cancer datasets. Results for selected the 
most significant top 10 categories are illustrated in Table II. 

Results in Table II provides information about biological 
themes in Gene Ontology terms enriched in a gene list from 
our META-OFTEN network relative to all annotated genes in 
human genome. The most evident genes from META-OFTEN 
network related to cell cycle processes (PRC1, NEK2, 
C13ORF15, AURKA, CEP55, PTTG1, CCNA2, TXNIP, 
CDK1, KIF11, TPX2, CENPF, BIRC5, CDC20, MCM2, 
TACC3, CDKN3, RACGAP1, GAS7, MCM6, CCNB1, 
CCNB2, MAD2L1, PSMC2, CKS2, BUB1B, KPNA2). These 
results highlighted that the most reproducible biological signal 
in four breast cancer is the cell cycle process.  

In this paper we presented results of relative connectivity of 
genes from META-OFTEN network and approach for 
tentative biological interpretation of the most reproducible 
signal. 
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  TABLE II 
CATEGORIZATION OF GENES FROM META-OFTEN NETWORK 
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Category Term Count % PValue Genes 

GOTERM_BP_ALL GO:0007049~cell cycle 27 36 1,98E-15 

PRC1, NEK2, C13ORF15, AURKA, CEP55, 
PTTG1, CCNA2, TXNIP, CDK1, KIF11, 
TPX2, CENPF, BIRC5, CDC20, MCM2, 

TACC3, CDKN3, RACGAP1, GAS7, MCM6, 
CCNB1, CCNB2, MAD2L1, PSMC2, CKS2, 

BUB1B, KPNA2 

GOTERM_BP_ALL GO:0022402~cell cycle process 23 31 2,37E-14 

CDK1, KIF11, PRC1, NEK2, TPX2, CENPF, 
AURKA, CDC20, BIRC5, PTTG1, CEP55, 

RACGAP1, TACC3, CDKN3, GAS7, CCNB1, 
CCNB2, MAD2L1, PSMC2, CKS2, BUB1B, 

KPNA2, CCNA2 

GOTERM_BP_ALL GO:0000279~M phase 19 25,6 2,63E-14 

CDK1, KIF11, PRC1, NEK2, TPX2, CENPF, 
AURKA, CDC20, BIRC5, PTTG1, CEP55, 

TACC3, CCNB1, CCNB2, MAD2L1, CKS2, 
BUB1B, KPNA2, CCNA2 

GOTERM_BP_ALL GO:0022403~cell cycle phase 20 27 1,07E-13 

CDK1, KIF11, PRC1, NEK2, TPX2, CENPF, 
AURKA, CDC20, BIRC5, PTTG1, CEP55, 

TACC3, CDKN3, CCNB1, CCNB2, MAD2L1, 
CKS2, BUB1B, KPNA2, CCNA2 

GOTERM_BP_ALL GO:0000278~mitotic cell cycle 19 25,6 1,98E-13 

CDK1, KIF11, PRC1, NEK2, TPX2, CENPF, 
AURKA, CDC20, BIRC5, PTTG1, CEP55, 

CDKN3, CCNB1, CCNB2, MAD2L1, PSMC2, 
BUB1B, KPNA2, CCNA2 

GOTERM_BP_ALL GO:0006996~organelle 
organization 30 40,5 1,89E-12 

CAV1, PRC1, NEK2, AURKA, NR3C1, 
CEP55, PTTG1, PTK2B, HSPA4, CCNA2, 

TOP2A, CDK1, UBE2A, KIF11, HSP90AA1, 
CYCS, TPX2, CENPF, BIRC5, CDC20, 

MCM2, TACC3, RACGAP1, GAS7, CCNB1, 
CCNB2, MAD2L1, CKS2, BUB1B, 

SMARCA4 

GOTERM_BP_ALL GO:0000087~M phase of mitotic 
cell cycle 15 20,2 4,63E-12 

CDK1, KIF11, NEK2, TPX2, CENPF, 
AURKA, CDC20, BIRC5, PTTG1, CEP55, 

CCNB1, CCNB2, MAD2L1, BUB1B, CCNA2 

GOTERM_BP_ALL GO:0048285~organelle fission 15 20,2 6,24E-12 
CDK1, KIF11, NEK2, TPX2, CENPF, 

AURKA, CDC20, BIRC5, PTTG1, CEP55, 
CCNB1, CCNB2, MAD2L1, BUB1B, CCNA2 

GOTERM_BP_ALL GO:0051301~cell division 16 21,6 1,42E-11 
CDK1, KIF11, PRC1, NEK2, CENPF, CDC20, 
BIRC5, PTTG1, CEP55, RACGAP1, CCNB1, 
CCNB2, MAD2L1, CKS2, BUB1B, CCNA2 

GOTERM_BP_ALL GO:0016043~cellular component 
organization 33 44,5 8,30E-08 

CAV1, PRC1, NEK2, AURKA, NR3C1, 
CEP55, PTTG1, HLA-DMA, CD74, PTK2B, 
HSPA4, CCNA2, TOP2A, CDK1, UBE2A, 
HSP90AA1, KIF11, CYCS, TPX2, CENPF, 

BIRC5, CDC20, MCM2, TACC3, RACGAP1, 
GAS7, CCNB1, CCNB2, MAD2L1, RRM2, 

CKS2, BUB1B, SMARCA4 

KEGG_PATHWAY hsa04110:Cell cycle 11 14,8 1,35E-07 
CCNB1, CDK1, MAD2L1, CCNB2, PCNA, 
BUB1B, CDC20, MCM2, PTTG1, CCNA2, 

MCM6 
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