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Abstract—There are many situations where input feature vectors 

are incomplete and methods to tackle the problem have been studied 
for a long time. A commonly used procedure is to replace each 
missing value with an imputation. This paper presents a method to 
perform categorical missing data imputation from numerical and 
categorical variables. The imputations are based on Simpson’s fuzzy 
min-max neural networks where the input variables for learning and 
classification are just numerical. The proposed method extends the 
input to categorical variables by introducing new fuzzy sets, a new 
operation and a new architecture. The procedure is tested and 
compared with others using opinion poll data.  
 

Keywords—Classifier, imputation techniques, fuzzy systems, 
fuzzy min-max neural networks.  

I. INTRODUCTION 
ISSING information in data sets is a more than common 
scenario. There are many grounds for missing 

information in real-world applications: automatic equipment 
sensor errors or failures, optional data fields in medical files, 
refusals by respondents to answer questions compromising 
their privacy in surveys, etc. Since most statistical and data 
mining techniques assume that data is complete and there is 
no missing information, methods to tackle the problem [1], [2] 
have been under development for a long time. There are a 
number of references, basically about non-response in surveys 
[3], [4].  

A commonly used procedure is to replace each missing 
variable value with an estimated value or imputation obtained 
from the non-missing values of other variables in the same 
unit. There are different methods to perform these imputations 
depending on the type of variable with missing data and on 
the type of auxiliary variables. Here the imputation of 
categorical variables from other numerical and categorical 
variables is studied.  

In this article, performing imputations based on a neuro-
fuzzy classifier, a supervised learning method that takes a 
hybrid neural networks and fuzzy systems approach, is 
proposed. 

This is one of the most popular hybridizations in the 
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artificial intelligence literature because it combines the merits 
of the neural and fuzzy approaches. It has the innate benefits 
of neural networks –like massive parallelism and robustness– 
and, at the same time, uses fuzzy logic to model vague or 
qualitative knowledge and convey uncertainty [5]. 

The proposed classifier is based on Simpson’s fuzzy min-
max neural networks [6], [7] where the input variables for 
learning and classification are numerical only. The presented 
method extends the input to categorical variables by 
introducing new fuzzy sets, a new operation and a new 
architecture, allowing for greater flexibility and wider 
application.  

The new procedure is applied to non-response imputation in 
an opinion poll. The microdata (the set of the respondents’ 
individual answers to the questions) of this type of poll are 
especially suitable for evaluating the method, since they 
include numerical and categorical variables.  

The article is organized as follows. Section II describes the 
context, the data used and the polls it is taken from, 
emphasizing the non-response problem to be solved. Section 
III presents the architecture and operation of fuzzy min-max 
neural networks as a starting point for the new classifier, 
whereas section IV shows the new method based on new 
fuzzy sets from which new networks –and their architecture 
and operation– are defined. Section V presents the results of 
the experiment in the described context. They improve upon 
the results of applying traditional methods on the same data 
set.  

II. PROBLEM CONTEXT: POLITICAL OPINION POLLS 

A frequent procedure used to collect information about a 
population is to make a survey. When the questions refer to 
individual opinions or attitudes, these surveys are known as 
opinion polls [8]. These polls have proven to be an especially 
fast and easy-to-use tool, because they simplify the most 
technical phases of the survey process. As in most surveys, 
there is usually total or partial non-response –when the 
respondent fails to answer one or more of the questions, 
respectively–. The procedure for total non-response is usually 
addressed at the sampling design stage, and this paper focuses 
on partial non-response. 

Partial non-response is generally solved by imputing values 
to the missing variables from the answers of other respondents 
and from the non-missing variables of the same individual. 
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However, speed is more important in polls than accuracy, and 
the usual way of dealing with non-response is to add the 
“Don’t know/Not applicable” category and treat it like any 
other category. This is not a highly recommendable method 
because it causes problems at the results analysis stage [3], but 
it is widely applied in polls due to its straightforwardness. 

In election polls, though, there is one variable –which 
political party do you intend to vote for in the elections 
(voting intention, from now on)– for which the above method 
is not good enough, and missing values have to be imputed. 
Elsewhere we presented a paper where fuzzy control 
procedures were used to estimate voting intention in an 
electoral poll [9]. It stressed the potential of using methods to 
automatically obtain fuzzy set membership functions. This is 
what we propose to do now using neural networks. In this 
work a new fuzzy min-max neural networks classifier is 
applied to impute missing voting intentions from the answers 
to other questions in the same survey. To evaluate its 
operation, we selected poll number 2750 from the 
Sociological Research Center’s (institution responsible for 
making opinion polls for the Spanish Public Administration) 
catalog. The survey refers to the general elections held in 
Spain in 2008, containing 13.358 interviews with an answer to 
the voting intention question. The chosen poll contains 
questions with different types of variables: 
- Quantitative variables. Questions answered by entering a 

numerical value. They include questions referring to 
ideological self-location (the result of asking respondents 
to place themselves ideologically on a scale of 1 to 10, 1 
being the extreme left and 10 the extreme right). Other 
possibilities are the rating on a scale of 0 to 10 of three 
specific political figures, the likelihood to vote, and the 
likelihood to vote for three specific political parties. 

- Ordered categorical variables. Questions answered by 
entering categories that are so well ordered that they are 
easy and straightforward to transform into quantitative 
variables. They refer to government and opposition party 
ratings. The answer categories are “very good”, “good”, 
“fair”, “bad” and “very bad”, which we transform into the 
values 1, 0.75, 0.5, 0.25 and 0, respectively, assuming 
they are ordered equidistantly. As we will see, they 
should take values within the unit interval like the 
membership functions of fuzzy sets. 

- Categorical variables with non-ordered categories. 
Questions including voting intention and similar, such as 
vote memory (party the respondent voted for at the last 
general election), the Autonomous Community, which of 
the likely candidates the respondent would prefer to see 
as president of the government, how sure/definite the 
respondent’s voting intention is, the political party the 
respondent tips to win and the political party the 
respondent would prefer to win. 

Although missing values are found in all the above 
variables, this paper focuses on the imputation of the 
categorical voting intention variable only. The method most 
used nowadays to impute votes in opinion polls is to make 

predictions from logistic regressions with other variables. 
Besides, different procedures based on neural networks have 
been used to impute numerical variables from other likewise 
numerical values [10]-[12]. There is no knowledge of their use 
for imputing categorical variables from other numerical and 
categorical variables, as proposed in this paper. 

The new procedure presented here is an extension of 
Gabrys and Bargiela’s model [13], [14] –which is, in turn, 
based on an earlier model by Simpson [6], [7]–. The new 
procedure is an improvement on its predecessors since, unlike 
the earlier models –which exclusively admit numerical input 
data–, it accepts numerical and categorical data as inputs. Also 
it significantly improves upon earlier results, as shown in the 
experiment outlined in section V. To give a better 
understanding of the proposed method set out in section IV,  
the fuzzy min-max neural networks is described in section III. 

III. GABRYS AND BARGIELA’S MODEL 
The original fuzzy min-max neural networks algorithm was 

introduced in two articles by Simpson [6], [7]. It is a 
classification method that partitions the joint input variables 
space using nonlinear boundaries. Here, a later version that 
includes some improvements by Gabrys and Bargiela [13], 
[14] is outlined.  

A. Classification Model 
 

           

Class 1

Class 2  
Fig. 1 Hyperbox in R3 defined      Fig. 2 Fuzzy min-max hyperbo- 
 from its min and max points            xes along the boundary 
 
The n input variables must be numerical and the output 

variable –the variable to be imputed– is to be categorical. The 
operation is based on the hyperbox fuzzy sets defined in the n-
dimensional pattern space. A hyperbox in Rn is a Cartesian 
product of closed intervals on the real line and is completely 
defined by its minimum and maximum points, as shown in the 
three-dimensional example in Fig. 1. Although it is possible to 
use hyperboxes with an arbitrary range of values in any 
dimension, min-max networks only use values that range from 
0 to 1. 

Thus, the input space is the n-dimensional unit cube 
[ ] [ ] [ ]1,01,01,0 ×××= …nI . The hyperbox fuzzy set Bj is 

defined by the ordered set: 
( ){ } n

jjjjjj IxwvxbwvxB ∈∀= ,,,,,,  (1) 
 

where ( )njjj vvv ,,1 …=  is the hyperbox minimum, 

( )njjj www ,,1 …=  is the maximum, and ( )jjj wvxb ,,  is the 
membership function, where all patterns within the hyperbox 
have full class membership. Each class or classification 
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category matches one of the different values of the variable to 
be imputed, and it is the union of hyperbox fuzzy sets 

∪
Kj

jk BC
∈

= , where K is the set of indexes of the kth class 

hyperbox fuzzy sets. Fig. 2 shows an example of how the 
hyperboxes are aggregated to form nonlinear boundaries in a 
two-class I 2 classification problem. The first stage for 
classifying an input pattern is to calculate its membership 
function of each class as the maximum of its membership 
functions of each one of the hyperboxes defining this class 
(the maximum is the selected fuzzy union operator). The next 
stage is to classify –in our case, impute– the point as the 
category corresponding to the class with the greatest 
membership function.  

One of Gabrys and Bargiela’s improvements was to allow 
hyperboxes and not just numerical points as input patterns. In 
this case, each input is specified by a vector xh , h=1, 2, …, M, 
where [ ]u

h
l
hh xxx =  is the hth input hyperbox defined by its 

minimum vector ( )l
nh

l
h

l
h

l
h xxxx ,,, 21 …=  and its maximum 

vector ( )u
nh

u
h

u
h

u
h xxxx ,,, 21 …= . When l

hx  and u
hx  are equal, 

the hyperbox shrinks to a point. The membership function of 
the hyperbox fuzzy set Bj for an input xh is defined as 
 

( ) ( )( )[{
( )( ) ]}γ

γ

,1

,,1minmin
,,1

l
hiji

ji
u
hinihj

xvg

wxgxb

−−

−−=
= …   (2) 

 
where γ is a parameter regulating how fast the membership 
function decreases and g is the ramp-threshold function of two 
parameters: 
 

( )
⎪
⎩

⎪
⎨

⎧

<
≤≤

>
=

0.0
1.0.

1.1
,

γ
γγ

γ
γ

xsi
xsix

xsi
xg  (3) 

 
The function takes the value 1  –full membership– within 

the hyperbox and decays to zero as hx  moves away from the 
hyperbox. A two-dimensional example is shown in Fig. 3 for 
the hyperbox fuzzy set defined by the minimum vj = (0.4, 0.2), 
the maximum wj = (0.6, 0.4) and the parameter γ = 3.  

The hyperboxes are incrementally trained by appropriately 
adjusting their number and volumes in a neural networks 
framework. This accounts for the name of fuzzy min-max 
neural networks. The network architecture and learning are 
described next. 

 
Fig. 3 Membership function of the hyperbox in I 2 defined by the 

minimum vj = (0.4, 0.2), the maximum wj = (0.6, 0.4) and the 
parameter γ = 3 

B. Network Architecture 
The three-layer neural network implementing Gabrys and 

Bargiela’s fuzzy min-max neural classifier is shown in Fig. 4. 
Its topology is modified to meet the problem requirements. 
The input layer has 2n nodes, two for each of the n input 
vector dimensions corresponding to the minimums ( )l

hix  and 

the maximums ( )u
hix  of the input hyperboxes. Each 

intermediate layer node represents a hyperbox fuzzy set, 
where the connections with the input layer are the hyperbox 
fuzzy set minimum ( )ijv  and maximum ( )ijw  points, and the 

activation function is the above hyperbox membership 
function (2). 
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Fig. 4 Three-layer neural network implementing the fuzzy min-max 
neural network classifier 

 
Fig. 5 shows the jth node of the intermediate layer in more 

detail. The connections between the second- and third-layer 
nodes are binary values, whose expression is 

                  

⎩
⎨
⎧

=
                                        otherwise 

 C classforhyperbox is a if  B
u kj

jk 0
 1  (4) 
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Fig. 5 Implementation of the jth  node of the intermediate layer. It 
has 2n connections with the first layer, corresponding to the mins and 
maxs in each dimension of the jth hyperbox fuzzy set, and p with the 

last layer, one for each of its class nodes 
 

where Bj is the jth intermediate layer node and Ck is the kth 
output layer node. The result of this last node represents the 
membership degree of input xh to class k. The activation 
function for each output layer node p is the fuzzy union of the 
hyperbox membership functions according to the expression 

jkj

m

j
k ubmáxc .

1=
= . The classifier result for xh is the class k with 

the greatest ck value. The values for the connections are 
adjusted using the learning algorithm described next.  

C. Learning Algorithm 
The learning set consists of M ordered pairs {xh , dh}, h=1, 

…, M, where [ ]u
h

l
hh xxx =  is the hth input defined by its min 

( )l
nh

l
h

l
h

l
h xxxx ,,, 21 …=  and max ( ,,, 21 …u

h
u
h

u
h xxx =  )u

nhx  

points, and dh∈{1, 2, …, p} is the index of one of the p 
classes. The process begins with the input of an ordered pair 
searching the hyperbox with the greatest membership degree, 
belonging to the same class and including or allowing 
expansion to include xh. If none of the hyperboxes satisfies the 
conditions, then a new hyperbox Bk for the input is created, 
adjusted and labeled by making class(Bk)=dh. This learning 
process forms classes that are non-linearly separable. This 
way existing classes can be refined over time, and new classes 
can be added without retraining. The hyperbox expansion can 
lead to an overlap between them. It is constrained by a user-
defined parameter θ, (0 ≤ θ ≤ 1) where⏐wji - vji⏐≤ θ , ∀  i=1, 
…n. The overlap is not a problem when it occurs between 
hyperboxes representing the same class. When there is an 
overlap between hyperboxes that represent different classes, it 
is solved using a contraction process following the principle 
of minimal adjustment. The contraction process only 
eliminates the overlap between those portions of the hyperbox 
fuzzy sets from separate classes that have full membership, 
allowing overlap between non-unit-valued portions of each of 
the hyperbox fuzzy sets. The bounds between two classes are 
the points with an equal membership function for both classes. 
In summary, the fuzzy min-max learning algorithm is a four-
step process: 

1. Search for the closest expandable hyperbox (if 
necessary)  

2. Expand hyperbox 
3. Test for hyperbox overlap 
4. Contract hyperbox 
It is repeated for each training input point.  

IV. MODEL WITH INPUT OF CATEGORICAL VARIABLES 
In contrast to the fuzzy min-max neural networks classifier, 

the proposed procedure considers categorical as well as 
numerical variables as input. The problem with a categorical 
variable input is that there is no measure of distance between 
the different values or categories from which hyperbox fuzzy 
sets membership functions can be defined. We will describe 
the new model according to the same framework as Gabrys 
and Bargiela’s model. The basic process will be: 
- Define distances between categories 
- Define hyperbox fuzzy sets in categorical variables 
- Extend network architecture and operation  

A. Defining Distances between Categories 

TABLE I 

    Religion 

    Cath. Prot Muslim Others Total 
  North 186 27 27 60 300 

West 48 6 18 48 120 
Region Center 63 109 148 32 352 

 East 59 12 8 22 101 
  South 31 63 94 21 209 

Total 387 217 295 183 1082 

 
To define a distance between the categories of a categorical 

variable, the relation of this variable to the variable to be 
imputed, which we have also assumed to be categorical, is 
considered. To illustrate this idea, Table I shows an example 
with the contingency table for the categorical variables region 
and religion. Table II is calculated from Table I by just 
dividing the value of each cell by its row total. The vector  (q1, 
…, qp) in each row of Table II contains the response rates for 
the religion categories in this region, referred to as the 
region’s religious profile.  

TABLE II 
    Religion 
    Cath. Prot. Muslim Others 
  North 0.62 0.09 0.09 0.2 

West 0.4 0.05 0.15 0.4 
Region Center 0.18 0.31 0.42 0.09 

 East 0.58 0.12 0.08 0.22 
  South 0.15 0.3 0.45 0.1 

Total 0.36 0.2 0.27 0.17 

 
 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:7, 2009

1776

 

 

To define distances between regions, their profiles are 
looked at, i.e. the center and south regions have similar 
profiles, (0.18, 0.31, 0.42, 0.09) and (0.15, 0.30, 0.45, 0.10), 
respectively. This means that religion is similarly distributed 
in these regions. The profiles for the north and east regions 
are also similar, albeit different from the center and south 
regions, whereas the west region is very different to the others. 
It could be said that, regarding religion, the center and south 
regions are closer to each other than to all the others; the north 
and east are also close, and so on. The category profiles are 
points of the p-dimensional space Rp belonging to the 
hyperplane defined by q1 +…+ qp =1. The distances between 
the profiles in this space can be used to define the distances 
between the categories. In this paper we considered two 
distances: 

 

Euclidean distance: ( ) ( )∑
=

−=
p

k
kjkiji ppaad

1

2
1 ,  (5) 

Logarithmic distance: ( ) ∑
=

−=
p

k
kjkiji ppaad

1
2 loglog,  (6) 

 
where ai, aj are the categories and (pik), (pjk), k=1, …, p, are 
the corresponding profiles. As the proportions forming the 
profiles take values between 0 and 1, the logarithmic distance 
is considered in an attempt to prevent proportionally short 
distances between high values from overdominating the 
calculations. Besides, to standardize and use the distances in 
the context of fuzzy set membership functions, we divide 
them by their maximum: 
 

( ) ( )
( ) 2,1,,

,max
,

,
,

== k
aad

aad
aac

jikji

jik
jik  (7) 

 
Correspondence analysis [15], for example, exploits this 

idea of distance between profiles. We discuss next how the 
distances can be used for inputting categorical variables in 
fuzzy min-max neural networks. 

B. Defining Hyperbox Fuzzy Sets in Categorical Variables 
Once the distances between the categories are defined, the 

next step is to define the hyperbox fuzzy sets in the 
categorical dimensions. As the minimum and maximum points 
determine the hyperbox in the numerical dimensions, it is 
assumed that, in the ith categorical dimension, it is determined 
by two categories eji and fji (which can also be equal) with a 
full membership function (equal to 1). In any other category 
aki, this ith dimension membership function takes the value  

 
( ) ( )),(1,),(1min ijihijihihij faceacab −−=  (8) 

 
where function c refers to any of the normalized distances 
previously defined in (7), and the size of the hyperbox in each 
dimension is limited by a user-defined parameter η , (0 ≤η 

≤1), where c(eji, fji) ≤ η. Fig. 6 is an example of the symmetric 
distance function c(ak, al) between the five categories of a 
variable and the membership function bj(ak) obtained for the 
jth hyperbox that is determined by the two full membership 
categories ej = a3 and fj=a5. 
 

 
Fig. 6 The symmetric distance function between categories c(ak,al) 

and the membership function bj (ak) of the hyperbox defined by 
categories ej = a3 and fj=a5 

 
When there are numerical and categorical variables, we 

define the Bj hyperbox membership function –of all the 
dimensions– by 

 

( ) ([
)]

( )[ ]
⎭
⎬
⎫−−

−−

⎩
⎨
⎧ −−=

++=

=

),(1,),(1minmin

,),(1

,),(1minminmin,

,,1

,,1

ijihiijihirnni

l
hiji

ji
u
hinihhj

faceac

xvg

wxgaxb

…

…

γ

γ

 (9) 

 
 where n is the number of numerical variables and r is the 
number of categorical variables; g is the ramp-threshold 
function defined in (3) and c i , i = n+1, …, n+r , are the 
normalized distances defined in (7) for the categorical 
dimensions; [ ]u

h
l
hh xxx =  is the numerical input defined by its 

vectors of minimum ( )l
hix  and maximum ( )u

hix  points; ah=(ah 

n+1, …, ah n+r) is the categorical input vector; vj i is the 
minimum and wj i is the maximum of the jth hyperbox in the 
ith numerical dimension, i = 1, …, n; and ej i, fj i are the two 
categories defining hyperbox Bj in the ith categorical 
dimension i = n+1, …, n+r.   

C. Extend network architecture and operation 
The above membership function treats the categorical 

variables in the same manner as it processes the numerical 
variables, where the inputs are categories in the first case and 
numerical hyperboxes in the second: the distances ci play the 
role of functions g and they are combined by the same fuzzy 
operators. This naturally extends the neural network 
operation. Fig. 7 shows the new network architecture 
including both types of variables, and Fig. 8 is the detail of an 
intermediate layer node. The only difference from Gabrys and 
Bargiela’s network is the input layer, where, apart from the 2n 
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numerical variable nodes, there are r additional nodes for the 
input categories, each having two connections with the 
second-layer nodes –one for each category ej i, fj i defining the 
Bj hyperbox– .  
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Fig. 7 Topology of the fuzzy min-max neural network implementing 
the new classifier, which admits numerical and categorical inputs 

 
The second layer maintains a node for each hyperbox, which 

has numerical and categorical dimensions in this case. A 
network input takes the form ( ,,,,,,, 111 +nh

u
nh

u
h

l
nh

l
h axxxx ……  

)rnha +,… , where l
ihx  are the minimums and u

ihx  are the 

maximums of the input hyperboxes in dimension i, (i = 1,…, 
n), and ah i are the input categories in dimension i, (i = n+1,…, 
n+r). The second-layer activation function is the membership 
function defined in (9), and the connections between the 
second-layer and first-layer categorical nodes are the two 
categories eji and fji, (eji , fji = a1, …, ap) defining the Bj 
hyperbox in dimension i, (i = n+1, …, n+r). Its numerical 
node connections are the same Bj hyperbox minimums vji and 
maximums wji. Finally, like the original network, the third 
layer has a node for each one of the variable classification 
categories, and its connections with the intermediate layer are 
the same uj k as defined in (4). 
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Fig. 8 Detail of the nodes connected with the jth node of the 
intermediate layer 

Learning aims to establish the connections vji, wji, eji and  fji, 
that is, the hyperboxes defining each class. The first step –
taken only once– is to calculate the distances between the 
categories of categorical variables and the resulting 
membership function, as described above. This is followed by 
the iterative process to determine and update the connection 
values. This process is repeated for each input and has the 
same phases as the original network, with some minor 
changes:  

1. Search for the expandable hyperbox with the greatest 
membership function 

2. Expand hyperbox  
3. Test hyperboxes for overlap 
4. Contract hyperboxes according to the test result 
The expansion step must establish the two classes defining 

the hyperboxes for each categorical dimension, plus the 
hyperbox minimums and maximums for the numerical 
dimensions. For this purpose, the input ah is taken when there 
is no preset category in either of these dimensions. If there is a 
preset category, it is checked that the distance between the two 
does not exceed the size limits c (eji, fji) ≤ η , (0 ≤η  ≤1) before 
it is taken as the second category. 

When the overlap test result is positive, that is, when there 
is a non-empty overlap between portions with full 
membership representing different classes, the hyperboxes are 
contracted into a single dimension following the minimum 
change principle, beginning with the categorical dimensions. 
In one of these dimensions, the overlapping category of the 
recently expanded or created hyperbox is treated to change for 
another one reducing the hyperbox size, that is, another 
category closer to the first category defining the hyperbox. If 
this is possible, it is replaced –eliminating the overlap– and, if 
not, contracting in another dimension is tried, moving on to 
the numerical dimensions when there are no more categorical 
dimensions left. In this case, the contraction is performed as 
defined for the original network [9], distributing the 
overlapping space between the two hyperboxes. 

Finally, the new network operates similarly to its 
predecessor in terms of classification: imputation is made by 
assigning the category corresponding to the class with the 
greatest membership function. 

V. CASE STUDY: APPLICATION TO VOTING INTENTION 
IMPUTATION IN A POLITICAL POLL 

In this section, the new networks are applied to voting 
intention variable imputation in opinion poll number 2750 
archived at the Sociological Research Center. Their 
performance is then compared with other classical methods. 
An evaluation criterion that is frequently used in the 
supervised classification procedures area is used for  
comparisons: the correctly imputed rate, that is, the percentage 
of imputed values that exactly match the original data over the 
13358 inputs with non-missing voting intention. A 10-fold 
cross-validation is performed, partitioning the test data into 
ten parts (folds). A single fold is retained as the validation 
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data for testing the model, where the remaining nine folds are 
used as training data. The cross-validation process is then 
repeated 10 times with each of the 10 folds, and the results are 
averaged to produce a single estimation. The advantage of this 
method is that all observations are used for both training and 
validation, and each observation is used for validation exactly 
once. This procedure provides non-biased estimations of the 
correctly imputed rate. 

Eleven categories are taken for the voting intention 
variable, including the most important political parties, “Blank 
vote”, “Abstention” and a category of “Others”. This would 
appear to be quite a good granularity level for obtaining 
reliable proportions for nationwide voting intention, whereas a 
larger granularity would make the problem tougher. The 
above sixteen numerical and ordered and non-ordered 
categorical variables are used as classifier inputs. 

As already mentioned, the procedure most used nowadays 
for voting intention imputations in opinion polls is to make 
predictions from logistic regressions with other variables, and 
it will be taken as a baseline for comparison. The 10-fold 
cross-validation results of the data set with this type of 
regression and the sixteen variables (generated using 
SAS/STATS software, Version 9.1.3 of the SAS System for 
Windows. Copyright © 2002-2003 by SAS Institute Inc., 
Cary, NC, USA.) give a correctly imputed rate of 63.05%. 
Note that the likelihood equation for a logistic regression 
model does not always have a finite solution, making it 
difficult to estimate model parameters. Sometimes there is a 
non-unique maximum on the boundary of the parameter space 
at infinity. The existence, finiteness, and uniqueness of 
maximum likelihood estimates for the logistic regression 
model depend on the patterns of data points in the observation 
space [16]. When there is a complete or quasi-complete 
separation, there exist infinite estimations, and only if there is 
an overlap of sample points do unique maximum likelihood 
estimates exist. In this case, there is the possibility of 
separation because of the great many variables and categories 
and the output models are questionable. Another problem with 
the use of logistic regression is that units with missing values 
in the input variables are deleted, reducing the learning set 
size. 

To make an additional comparison, using the same fuzzy 
min-max neural network classifier, another distance frequently 
used with categorical variables is considered: if ai, aj  are two 
categories, then c3 (ah , aj ) = 1 - δh j , where δh j is the 
Kronecker delta. In this case, the hyperbox membership 
function is defined by 
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where ej i is the only category defining the hyperbox Bj in that 
dimension i. 

The experiment has been performed implementing a 

classifier for each one of the three membership functions 
corresponding to the three distances. As the designed 
networks have some user-defined parameters for adjustment 
(the maximum numerical hyperbox size θ, the numerical 
membership function decreasing parameter γ and the 
maximum categorical hyperbox size η), estimations have been 
made for the set of parameter combinations resulting from γ = 
0.5, 1.5, 2.5, 3.5, 4.5, θ = 0.15, 0.25, 0.35, 0.45, 0.55 and η = 
0.15, 0.25, 0.35, 0.45, 0.55 (η makes no sense with the 
Kronecker distance). Tables III, IV, and V show the correctly 
imputed rates with the 10-fold cross-validation for the five 
parameter combinations returning the best results for each 
membership function. 

TABLE III 
EUCLIDEAN DISTANCE 

γ θ η % correctly imputed 

2.5 0.55 0.55 86.06 

2.5 0.55 0.35 85.93 

2.5 0.55 0.45 85.93 

1.5 0.45 0.55 85.91 

2.5 0.55 0.25 85.91 
 

TABLE IV 
LOGARITHMIC DISTANCE 

γ θ η % correctly imputed 

0.5 0.35 0.55 85.06 

0.5 0.45 0.15 85.04 

0.5 0.25 0.55 84.9 

0.5 0.55 0.15 84.88 

0.5 0.35 0.45 84.86 
 

TABLE V 
KRONECKER DISTANCE 

γ θ % correctly imputed 

0.5 0.55 72.86 

0.5 0.45 72.65 

0.5 0.35 72.46 

0.5 0.25 72.42 

1.5 0.55 72.02 
 
 
As the learning set order may have an impact on the results, 

the validation process was repeated several times with various 
randomizations of the input set. They resulted in similar rates, 
thereby confirming the method’s robustness.  

The tables merit a number of remarks: 
1. The correctly imputed rates for the Euclidean and the 

logarithmic distance are significantly greater than for the 
Kronecker distance and logistic regression. They are up 
around 13 percentage points over the first, and 22 
percentage points over the second. The results range –up 
to 86%, even with a great many classification categories– 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:7, 2009

1779

 

 

is much better than what is usually achieved in similar 
polls. 

2. There is no clear difference between the behavior of the 
Euclidean and logarithmic distances, and the logarithmic 
distance does not appear to solve potential problems 
stemming from proportionally short distances between 
high values. The question requires more thorough 
investigation before a distance is selected. 

3. Gabrys and Bargiela propose the use of different 
parameters θ and γ for each numerical dimension. The 
same parameters were used here, and we were able to 
improve results by varying the θ , γ and η thresholds in 
each dimension.  

4. The procedure presented here is specially suited for the 
case of a relatively high number of categories for 
imputation, as opposed to the more commonly dealt with 
case of binary variables with just two categories. 

5. Note that the proposed neuro-fuzzy classifier is suitable 
when the number of input variables –numerical and 
categorical– is high. In the case of missing values in input 
data sets, logistic regression estimations take into account 
only the complete data inputs. If there are a lot of 
variables all with non-response, the number of inputs may 
decrease dangerously. The proposed procedure always 
uses all the available data in the most efficient way, and 
the more variables there are, the better the results will be. 
Using the method, the select variables step can be 
eliminated, and this leads to more automatic imputation.   

This paper presents very early results, and the next step will 
be to test the method on other public repository files.  
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