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    Abstract—A Matlab based software for logistic regression is 
developed to enhance the process of teaching quantitative topics and 
assist researchers with analyzing wide area of applications where 
categorical data is involved. 
The software offers an option of performing stepwise logistic 
regression to select the most significant predictors. The software 
includes a feature to detect influential observations in data, and 
investigates the effect of dropping or misclassifying an observation 
on a predictor variable. The input data may consist either as a set of 
individual responses (yes/no) with the predictor variables or as 
grouped records summarizing various categories for each unique set 
of predictor variables' values. Graphical displays are used to output 
various statistical results and to assess the goodness of fit of the 
logistic regression model. The software recognizes possible 
convergence constraints when present in data, and the user is notified 
accordingly.  

 
    Keywords—Logistic regression, Matlab, Categorical data, 
Influential observation. 

I. INTRODUCTION 
OGISTIC regression is used in a wide range of 
applications leading to binary dependent data analysis. A 

Matlab based software for the analysis of logistic regression is 
developed. This work is motivated by the need of providing 
university-level students with statistical analysis tools that are 
interactive and easy to use. Other statistical tools have 
shortcoming that have been addressed by this software as 
follows:  a) stepwise regression is performed in a simple and 
interactive manner where the regression model is built either 
by progressively adding variables, or removing variables from 
the original full model. b) detection of influential observations 
is done with ease in terms of the ability to examine the effect 
of their presence or absence on the significance of the overall 
model, or their impact on variables’ significance. c)  Graphical 
User Interface that is flexible, interactive and easy to use. 
Further more, the main window of the Matlab-based statistical 
package provides the user with a variety of functions to 
manipulate input data like, creating new variables from 
existing ones, filtering, selecting, removing observations, and 
selecting variables for study in the model.  

In this paper, formulating the logistic regression and 
pinpointing its constraints and limitations is addressed. Next 
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the interpretation of logistic regression results is given for 
single effect and the overall fit of the model. Two applications 
are treated to illustrate the various features provided by the 
software. 

II. LOGISTIC REGRESSION FORMULATION 

A. Deriving the logistic regression model 
   Logistic regression is used to analyze the dependence of a 
binary response variable y on a set of K independent 
explanatory variables: 
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Pi is the predicted probability of occurrence (yi=1) for the 
ith observation (i=1..N). 1-Pi is the probability of non-
occurrence (yi =0). β is a (K+1) column vector of unknown 
parameters to be estimated including the intercept term. Xi is a 
(K+1) row vector of explanatory variables accounting for the 
ith observation. The explanatory variables may be continuous, 
categorical or both. The odds is defined as the ratio of the 
probability of occurrence over the probability of non 
occurrence.  

Linear regression based on (1) can not be used for the 
following reasons [1]: 

   1. The response yi is either 0 or 1 so the left hand size of 
(1) can not be evaluated. 

   2. The response variable is a discrete binary data and it 
can not be assumed to be normally distributed. 

   3. The predicted response may fall outside the (0-1) 
range, thus yielding meaningless results. 
 

 Equation (1) may be equivalently rewritten to yield the 
predicted probability of occurrence satisfying the constraint:   
0 <Pi <1 [2]:   
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The vector β is estimated by maximizing the likelihood 
function taking into account the contribution of the N 
independent observations:  
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   Equation (3) may be transformed, by taking the natural logs, 
to yield the following maximization problem:  
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where )(βf  is the log-likelihood function and may be 
rewritten as: 
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where X is (N)x(K+1) matrix corresponding to the N 
observations of the K-explanatory variables including a 
column vector of ones for the intercept. 

 

B.  Log-Likelihood maximization 
    The Newton-Raphson iterative method, derived from the 

multivariate second order Taylor's expansion around β, is 
applied to estimate the parameters that maximize the log-
likelihood function: 
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Where the 
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 denotes a (K+1) vector of partial 

derivatives of the function f(β) and is given by:  
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which is rewritten in matrix form as:   
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 denotes a (K+1)x(K+1) square symmetric matrix 

of second order derivatives known as the Hessian matrix of 
the function )(βf  and is given by: 
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which is rewritten in matrix form as: XDXf .'.
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Where D is an (N)x(N) diagonal matrix: 
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The iteration procedure starts with an initial guess set to:               
    yXXX ..)'( '1

0
−=β                                                   (9) 

At each iteration, a new estimate of the vector β  is obtained 
where (7) and (8) are used to evaluate respectively the 
derivative vector and the Hessian matrix. Convergence is 
reached if the norm of the derivative vector is sufficiently 
close to zero. 

 

C.  Convergence criteria 
   The iterative process to maximize the likelihood function 

fails to converge if [2],[3],[4]: 
1. There exists a perfect multicollinearity among the 

explanatory variables which may be detected if the matrix 
X'.X is singular.  

2.  There exists a perfect or quasicomplete separation of the 
response variable with respect to the explanatory variables. 
The perfect separation is detected if the response of each 
observation is predicted with probability 1 and the log-
likelihood goes to zero. In the case of quasicomplete 
separation, the maximum likelihood estimate does not exist as 
the Hessian matrix becomes unbounded.  

3.  Presence of small and/or sparse data set. 
4. A low percentage of values in the data set for which yi=1 

or for which yi = 0.   

III. DIGESTING LOGISTIC REGRESSION RESULTS  

A. Single effect of the explanatory variable  
   The coefficient βj estimated by the logistic regression 

models the single effect of the j-th explanatory variable on the 
response variable. Based on (1), a change of jXΔ  in the j-th 

explanatory variable while holding the rest of the variables 
constant, would change the predicted odds to: 
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and by a factor of  

          jj Xeodds Δ=Δ .β
                          (10.b) 

                                        

B. Marginal effect of the explanatory variable 
  The marginal effect of the j-th explanatory variable on the 

response variable is derived from (2) [1]: 
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Unlike in ordinary least squares, the marginal effect is not 
constant and depends not only on the coefficient of regression 
but also on the quadratic function of P. The marginal effect is 
maximal when P is close to 0.5.    

C.  Significance test of the individual regression 
coefficients 
   The negative inverse of the Hessian matrix calculated by 

(8.b) is used as an approximate to the variance-covariance 
matrix of the logistic regression. The standard deviation 
vector is estimated from the Newton-Raphson final iteration 
and given by:  
  )}).'.({ 1−= XDXsqrtDiags          (12) 

The Wald test χ2 statistics, based on the ratio squared of the 
parameter value over its standard deviation, provides a 
significance test for the logistic regression coefficients β with 
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one degree of freedom. The significance pvalue of each 
explanatory variable is determined using the Matlab cdf 
cumulative distribution function: 
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 Low pvalue indicates that the regression coefficient is 
significantly different from zero.                          

D.  Goodness of fit test 
   The overall goodness of the model fit is assessed by the 

following χ2 distributed term: 
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)( 0βfMax corresponds to the likelihood function under 
the null hypothesized of the intercept-only model, and 

),...( 0 KfMax ββ  corresponds to the estimated K-variables 

full model: H0:β1=β2=…=βK=0; versus H1: with at least one of 
the βj is significantly different from zero.                      

  
Based on G2 and using the chi-square cumulative 

distribution on a degree of freedom equal to the number of 
explanatory variables, the overall significance pvalue is 
obtained:   
                  ),,'2('1 2 KdfGchicdfpvalue =−=        (15) 

A low pvalue indicates that the model fits well and the null 
hypothesis should be rejected. 

E. Naglelkerke and Cox-Snell R2  
   Cox-Snell R2 and Nagelkerke's R2 are likelihood based 

indicators measuring the strength of the relationship between 
the dependent variable and the explanatory variables [5], [6]: 
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R2 varies between 0 and 1; high values of R2 (close to 1) 
mean that the observed and predicted responses correlate 
tightly. However, low values of these indicators are common 
even in the presence of strong relationship between the 
response and the explanatory variables.   

IV. APPLICATION OF THE LOGISTIC REGRESSION 
   In order to illustrate the various software features we 

present the analysis of two applications selected from the 
literature and treated by the Matlab-based logistic regression 
software.  

A. Application I: Investigating risky software 
   The first application investigates whether or not a 

software project is risky or not, based on four criteria of the 
project: insufficient estimation for the requirements, lack of 
stakeholders’ commitment for estimation, lack of breakdown 
of the work product and the insufficient planning of project 

monitoring. All the explanatory variables are scaled from 0 to 
3. The response variable yi equals 1 for a risky software 
project and 0 for a not risky software project. The data 
consists of 32 observations and it is available in [3]. 

 
1) Interpreting results 

     Performing logistic regression on the data yields the 
results given in TABLE I. For each regression coefficient 
estimated, the standard deviation and the significance pvalue 
based on the Wald test statistics are reported. The variation in 
the odds calculated by (10.b) for a one-unit change in the 
explanatory variable ( 1=Δ jX ) is given in column 6. The 

95% confidence interval, given in column 7, is determined 
using the regression coefficient standard deviation: 

    jj seCI 96.1±= β                                   (18) 

The fit for this model gives a deviance 2χ =-2[-39.75/2– 
14.64/2]=25.11 on four degrees of freedom and a 
corresponding  pvalue<0.000 indicating a good overall fit.   

 
TABLE I 

LOGISTIC REGRESSION RESULTS: SINGLE EFFECT (LEFT OF TABLE) AND 
 OVERALL EFFECT (RIGHT OF TABLE) 

 
 
   In Fig. 1, predicted responses are plotted versus observed 

responses. The observations 16 and 25 are poorly predicted. 
The four data display of the response variable with respect to 
2-explanatory variables is illustrated by Fig. 2. The straight 
lines represent the regression contour lines described by (1) 
for different probabilities P (0.1, 0.5, 0.9) holding the 
remaining variables to their mean values.  

 

 
Fig. 1 Predicted probability versus the observed response: (+) 
denotes observation with yi=1, (o) denotes a response with yi=0. 

 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

761

 

 

 
Fig. 2 Four data display: two numerical predictors "lack of break 

down", "lack of commitment" and the binary outcome. (+) denotes a 
response with yi=1, (o) denotes a response with yi=0. The contour 
lines are displayed as a function of the probability of occurrence.   

 
2) Detecting influential observations   

   The software provides a utility for plotting both single 
effects and the overall effect due to the removal or the 
misclassification of an observation which may change a 
variable from non significant to significant [7]. 

   The effect of dropping an observation from the data on 
the significance of the variable "lack of break down" is shown 
by Fig. 3. Dropping any of the observations 16, 25 or 27 
would deteriorate the significance of the variable.  

 
Fig. 3 The effect of dropping an observation on the pvalue of the 
 variable "lack of break down". The solid line is the original pvalue.  
(+) denotes a response with yi=1, the (o) denotes a response with  
yi=0.  
 
The single effect due to the misclassification of a response 

from 1/0 or vice versa is plotted in Fig. 4 for the variable 
"Insufficient planning".  

 

 
    Fig. 4 The effect of misclassification of a single observation on  

     the significance pvalue of the variable "insufficient planning". The  
 solid line is the original pvalue. (+) denotes a response with yi=1 
 the (o) denotes a response with yi=0. 
 
   However, unlike in ordinary least squares, the plots of the 

residuals versus explanatory variables are not provided in the 
software because in the case of logistic regression, any 
apparent trends of dependence of the residuals on the 
explanatory variables would not necessarily reveal a violation 
in the fit [8].  

In addition the algorithm, detailed in [7] for detecting 
influential observations, is implemented in the software. The 
results are presented in Fig. 5 and appear to be in agreement 
with those reported in Fig. 3 and Fig. 4.  
 

 
Fig.  5  Detecting influential observations in the data 

 
3) Stepwise Regression 

   The software provides a feature for investigating the 
effect of adding or removing iteratively one explanatory 
variable from the model. Based on (14), a χ2 deviance test on 
the difference between restricted and unrestricted model with 
one degree of freedom is used to test the significance of 
adding or removing a variable from the model. The effects of 
removing a single variable from the 4-variable unrestricted 
model are reported in TABLE II. These results are in 
agreement with those reported in TABLE I where the variable 
"lack of commitment" has the least effect on the dependent 
variable and the variable "insufficient planning" has the most 
significant effect.  

TABLE II  
EFFECT OF REMOVING A SINGLE VARIABLE FROM THE FULL MODEL 

 

 
 
4) Forecasting the probability of occurrence   

   The logistic regression software provides an interactive 
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tool for predicting the probability of a project being risky for a 
given set of the explanatory variables. This tool is illustrated 
by TABLE III. The expected probability of success is 
obtained from (2) and the variance is obtained from the 
binomial distribution [7],[9]:  
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which is simplified to:  
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TABLE III PREDICTED PROBABILITY P(YI=1|XI) OF A PROJECT BEING RISKY 

 

 
 

B. Application 2: The Titanic survivors 
   The second application investigates the survival factors of 

the 2201 people who were on board of the Titanic ship 
according to their economic status, gender and age. As an 
alternative way of representing the data of the 2201 subjects, 
the data is grouped into 14 unique combinations of the 
explanatory variables (e.g. male/first-class/adult) [10]. This 
way of grouping the data is not suitable with continuous 
explanatory variables. The log-likelihood function for grouped 
data is given by:            
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Where Xj is a unique set of values recording the economic 
status (first/ second/ third/ fourth class), gender (male=1/ 
female=0) and age (adult=1/ child=0). The economic class 
status is represented by 3 variables; the fourth class is coded 
by 0 in the three variables. The number of survivors (sj) and 
the total number of subjects (mj) for each category are 
recorded. 

The log-likelihood in (20) may be simplified similarly as 
done previously to: 
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The logistic regression results are given in TABLE IV. The 
deviance statistics for the model is 559 on 5 degrees of 
freedom. The regression coefficient of the second class is not 
significant (pvalue>0.35). The gender regression coefficient is 

2.4201 indicating that males had a lower priority for survival 
than women with an odds of 1/0.089 ≈ 11 to 1.   

 
TABLE IV RESULTS OF THE TITANIC APPLICATION (USING 3 EXPLANATORY 

VARIABLES FOR THE ECONOMIC STATUS). NUMBER OF CATEGORIES J=14 AND 
NUMBER OF SUBJECTS =2201 

 

 
 

  When the economic status is represented by only one 
variable and coded from 1 to 4 (for the four classes), the 
logistic regression of this model results in a deviance statistics 
of 470 on 3 degrees of freedom (pvalue ≈0). As displayed in 
TABLE V, the individual effects of all the three explanatory 
variables are significant. The difference between these two 
models is not significant as the regression coefficients from 
the two designs are within the 95% confidence interval of 
each other. 

 
       TABLE V RESULTS OF THE TITANIC (USING ONE VARIABLE FOR THE 

ECONOMIC STATUS).NUMBER OF CATEGORIES J=14 AND  
NUMBER OF SUBJECTS =2201 

 

 

V. CONCLUSION AND FUTURE WORK 
   In this paper, two applications were used to explain some 

of the features of the Matlab-based software.  The statistical 
analysis shown reflects the flexibility of the software in terms 
of user interactivity, manipulation of complex functions, and 
the ease of use due to the graphical-oriented interface. It is 
hoped that this statistical tool would help university students, 
staff and researchers in aiding the process of learning 
statistics, applying its various tools to complex business 
applications, and advancing the state of research of 
automation in quantitative tools to support both educators and 
researchers. 
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 In future work, the implementation details and 
interpretation of other dependent variable models, including 
ordinal, multinomial and panel data will be explored. 
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