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Abstract—This study extends the use of the Drainage Area 

Regionalization (DAR) method in generating synthetic data and 
calibrating PyTOPKAPI stream yield for an ungauged basin at a daily 
time scale. The generation of runoff in determining a river yield has 
been subjected to various topographic and spatial meteorological 
variables, which integers form the Catchment Characteristics Model 
(CCM). Many of the conventional CCM models adapted in Africa 
have been challenged with a paucity of adequate, relevance and 
accurate data to parameterize and validate the potential. The purpose 
of generating synthetic flow is to test a hydrological model, which 
will not suffer from the impact of very low flows or very high flows, 
thus allowing to check whether the model is structurally sound 
enough or not. The employed physically-based, watershed-scale 
hydrologic model (PyTOPKAPI) was parameterized with GIS-pre-
processing parameters and remote sensing hydro-meteorological 
variables. The validation with mean annual runoff ratio proposes a 
decent graphical understanding between observed and the simulated 
discharge. The Nash-Sutcliffe efficiency and coefficient of 
determination (R²) values of 0.704 and 0.739 proves strong model 
efficiency. Given the current climate variability impact, water planner 
can now assert a tool for flow quantification and sustainable planning 
purposes. 

 
Keywords—Ungauged Basin, Catchment Characteristics Model, 

Synthetic data, GIS.  

I. INTRODUCTION 

REDICTING runoff in most ungauged catchment 
territories is crucial to many viable applications in 

drainage design infrastructure, runoff forecasting, and many 
catchment management tasks [1]. However, how benevolent 
this task is, due to inadequate and lack of stream gauges or 
historical flow data, poses relative difficultly in many regions; 
thereby, making catchment yield and runoff prediction using 
alternative method or information, a recourse challenge. A 
yield is that portion of precipitation on a catchment that can be 
collected for use. Catchment yield is necessary to check if 
sufficient water is available at a chosen site. The most widely 
employed method in generating data in data scarce regions has 
been regionalization [2]-[5]. 

Recently coupled physically based models in the GIS 
environment with remote sensed data have aided physical 
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meaning on basin characteristics and hydrological processes at 
the catchment scale [6], [7]. However, the accuracy of the 
application these hydrological models at an ungauged basin is 
still based on the proximity of the two or several sites that 
shared similar physical or climatic hydrological characteristics 
[8]. 

This paper presents a regionalization approach in 
calibrating a CCM named ‘Python implementation of 
TOPographic Kinematic Approximation and Integration’ 
(PyTOPKAPI) model as a tool for evaluating water yield and 
runoff generation at a daily time step in the ungauged 
Mhlanga Basin, KwaZulu-Natal, South Africa. This study 
improves and helps eliminate uncertainty associated with low 
flow over estimation and safe yield prediction recorded in 
previous studies [17]. The versatility of the PyTOPKAPI 
model for an ungauged basin streamflow simulation is tested 
and validated with DAR synthetic data. Also, the main 
problem with the use of synthetic data is that the model is 
tested with respect to the assumptions made in generating the 
synthetic data. Thus, the present study shows the behavioral 
characteristics of the catchment response and sensitivity of the 
model’s parameter.  

The ‘PyTOPKAPI’ model is a physically-based distributed 
hydrological model developed as an improvement to the 
earlier TOPKAPI model [9]. It is coded in python 
programming language and can be accessed directly through 
an interactive PYTHON environment in a computer operating 
system before use. The model was tested on Liebenbergsvlei 
catchment in South Africa to simulate river discharge at 6-
hour time-step. The initial TOPKAPI model, consist of five 
modules (soils, overland, channel, evapotranspiration and 
snow) [10]. However, the infiltration process was not properly 
accounted for at the initial. Consequently, an improved 
PyTOPKAPI which incorporates a true representation of 
infiltration module (Green Ampt) was developed to produce a 
quick overland runoff when exposed to high rainfall and vice 
versa [9]. The DAR method has found application in several 
studies [8], [11]-[13]. Its approach of transposing data from 
donor to target catchment for river discharge prediction in an 
unknown catchment have been found to be relatively simple 
with minimal data requirement compared to other 
regionalization methods [12]. DAR works by simulating 
hydrologic response basin to geographic proximity of the 
ungauged watershed of interest [14]. Mohamoud [13] suggests 
choosing a basin with the closest stream gauge, while 
Smakhtin [15] suggests that several reference stream gauges 
by proxy should be used in order to smooth out any timing-
related issues between the ungauged and reference locations. 
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Factors like main channel slope, precipitation intensity, in 
addition to drainage area, contribute significantly to runoff 
generation in a river catchment [16]. This gives a better 
streamflow result and corrects the bias in the residuals for the 
two groups of stations used. Previous studies conducted in the 
study area (Mhlanga catchment) have used various methods to 
generate river flow considering that flow records are either not 
available or are limited in availability [17], [18]. This paper 
uses a regionalization drainage-area ratio approach in 
calibrating a CCM Model. 

The next section includes the detailed methodology 
followed during the study, focusing on the work objectives. 
Section IV provides the results and discussion on the use of 
DAR for PYTOPKAPI calibration, while Section IV 
summarizes the main findings and provides a concise 
recommendation for future research. 

II. STUDY AREA 

The area under study (Mhlanga) is located around 29º 42 
'9''S and 31º 6' 0''E east coast of South Africa with average 
slope of 0.6%. The area is in quaternary sub-catchment U30B, 
located within the Mvoti-Umzimkulu water management area. 
It has a draining area of 80 km² with a mean annual 
precipitation of 1000 mm, mean annual evapotranspiration of 
1210 mm and mean annual runoff of 0.4 m³/s, as obtainable in 
WR90 [18]. 

 

 

Fig 1 Mhlanga catchment map 
 
The study area is a typical smaller and ungauged catchment 

in South Africa, characterized with no streamflow data as 
against that usually available for Quaternary Catchments 
(QCs); it is confounded by missing streamflow, inaccurate 
measurement and recording of data, as well as inadequate 
record length for analysis, which are just some of the problems 
associated with the assessment of the region’s water resources. 
Despite ever increasing efforts since 1960 to automate and 
record daily streamflow, most of the automatic records are 
characterized with frequently gaps or inaccuracies, especially 
after extreme flood events when gauging plates require re-
calibration and are temporarily out of operation. In-filling or 

extending daily streamflow records using interpolation 
techniques and reference gauging stations in catchments with 
highly variable river systems, or where there are ephemeral 
rivers, is problematic [19].The study area is as represented in 
Fig. 1. 

III. MATERIALS AND METHODS 

Hydro-metrological data over a period of 16 years (1999- 
2014) consisting of daily rainfall and potential-
evapotranspiration) was collected from SASRI (South African 
Sugarcane Research Institute) weather web. The data was 
subjected to trend analysis and further processing in 
PyTOPKAPI model. Similarly, daily historical streamflow 
records for the Mdloti gauging river station (U3H001), a 
neighboring catchment to the study area, were obtained from 
the Department of Water and Sanitation (DWS). This data 
were to be transposed to the other basin to synthesize its 
discharge.  

The daily plot of the rainfall, discharge and 
evapotranspiration distribution pattern for the study period is 
presented in Figs. 2 and 3.  

 

 

Fig. 2 Plot of daily Rainfall and discharge measured at gauging 
station U3R001 

 

 

Fig. 3 Plot of daily Rainfall and discharge measured at gauging 
station SASRI 

A. Drainage Area Regionalization 

In order to check for the efficiency of the DAR, 
regionalization method was used to transpose flow data from a 
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nearby station with station number U3H001 and 3.865 km 
distance apart. The mean annual runoff for the period of 16 
years estimated from the method was compared with the 
reference natural mean runoff. The natural mean annual runoff 
value was used as a threshold for the estimated DAR method. 

The conventional DAR method is the common and easiest 
method for transposing data [13], [20], [21]. This method is 
implemented by multiplying the drainage area of an ungauged 
area to that of a nearby gauging station (1). This method 
performs best when the proportion of source to the interested 
site drainage area is within the range 0.5-1.5 [20]. In this 
study, the proposed method by Mohamoud [13], which 
addresses the earlier limitation (account for area ratio less than 
0.5), was used. This method is referred to in (1) and (2): 

 

	       (1) 

 

tan 	       (2) 

DAR was used for generating synthetic flow to test and 
validate the PyTOPKAPI hydrological model. DAR can 
effectively predict runoff at a daily time-step. Nearby gauged 
Stream flow data (Mdloti station) was used to estimate the 
discharge at the Mhlanga (ungauged) basin. These data were 
utilized for the model simulation processes (calibration and 
validation). 

B. PyTOPKAPI: Data Requirements and Analysis 

A PYTOPKAPI model is data driven, which requires 
several data types ranging from topographic, land use, soil, 
and climatic data as input parameters. The topographic data 
entails a finer resolution (30m) ASTER DEM (Advanced 
Space-borne Thermal Emission and Reflection Radiometer) 
sourced from United States Geological Survey (USGS) [31]. 

The DEM was resampled to 0.5km resolution and further 
processed for the extraction of flow direction, flow 
accumulation, stream network for watershed delineation of the 
catchment and terrain slope. These data were used to develop 
a true representation of the catchment. Fig. 4 shows the 
topographic processed maps required for the study. 

 
Fig. 4 Topographic data maps for PyTOPKAPI model input 
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C. Land Cover/ Use Data 

Land cover data were used to estimate the Manning’s 
roughness coefficient which determines the velocity of the 
overland flow [22]. The Mhlanga catchment was extracted 
from a larger Africa land use raster-based at a resolution of 1 
km2, obtained from the USGS website [23], and thereafter, 
downscaled to the same resolution (0.5 km) for use. The land 
cover map for the catchment is presented in Fig. 5. 

D. Soil  

The soil map was sourced at 1 km spatial resolution from 
the Harmonized World Soil database (HWSD) [24]. This was 
further downscaled to 0.5 km for input into PyTOPKAPI 
model. Other soil parameters/data were sourced from the 
literature [25]. Fig. 6 presents the catchment’s soil 
classification map legend as sourced from HWSD database, 
while Fig. 7 relates the soil texture to its properties, as 
required by PyTOPKAPI model. 

 
 

 

Fig. 5 Land cover/use map from [23] and the inferred Manning’s 
roughness map 

 

 

Fig. 6 Soil map of Mhlanga catchment. The legend identifies the soil in each cell to its textural class from the Harmonized World Soil database 
(HWSD)

 

 

Fig. 7 Maps that relate soil texture to its properties required by PYTOPKAPI
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TABLE I 
PYTOPKAPI PARAMETERS INITIAL AND POST-CALIBRATION MULTIPLYING 

FACTOR VALUES 

Spatially distributed 
parameters 

 

Parameter 
range 

Source 
Post-calibration 

Multiplying 
factor value 

Ground Slope tangent 
tanβ 

0.0018 - 
0.1717 

DEM [31] 
 

Channel slope tangent 
tanβᴄ 

0.00044 - 
0.024 

DEM [31] 
 

Soil layer depth (m) L 1-0.1 
Soil type map 

[26] 
 2.85. 

Saturated hydraulic 
conductivity (m/s) Ks 

6.38E-4 - 
7.19E-3 Soil textural 

map 
[25] 

 

 1.2 

Residual soil moisture 
content (cm³/cm³) θr 

41E-2 -75E-2 
 

Saturated soil moisture 
content (cm³/cm³) θs 

33E-2- 41.2E-
2  

Manning’s roughness 
coeff. (surface) no 

3E-2 - 12E-2 
Land-use map 

[23], [27] 
 1.0 

Manning's roughness 
coeff.(channel) nc 

0 – 5E-2 [28]  1.0 

Soil pore size ƛ 
19.4E-2 - 

32E-2 
Soil textural 

map [25] 
 

 
Soil bubbling pressure 

psib 
146.6 - 280.8 

 
Global parameters 

Cell Dimension(m) 500 DEM 

Max. Channel width (m) 25 
Aerial 

photograph  
Min. Channel width(m) 5 - 

Channel Area(m) A 
threshold 

25000000 

[28] 
 

Pore size distribution αs 2.5 
Power coefficient αo & 

αc 
1.667 

 
time step Δt 86400 - 

E. PyTOPKAPI Model Set-Up  

The model was setup by inputting the above process 
information - topography, soil characteristics, land use, and 
data obtained from literature. The model set up requires geo-
processed input cell, global and forcing files as parameters. 
These entails catchment boundary, DEM, soil depth, surface 
slope, saturated and residual moisture content, soil 
conductivity, manning overland pore size index and bubbling 
pressure. These parameters constitute the cell parameters 
required for PyTOPKAPI. 

The global parameter file entails geometric characteristics 
of the channel or grid cell values in the model. These 
parameters include lateral dimension of the grid cell (x), 
model time step (Δt), pore size distribution ), power 
coefficient from manning equation ( 	&	  and area with 
which the cell initiates a river channel ( , as well as 
its maximum and minimum channel width (  & ). 

The forcing file contains rainfall, reference and actual 
evapotranspiration data in an HDF5 binary file. This is stored 
in a 2-D array, each row representing a single time step and 
each column a single model cell. Table I summarizes the 
PyTOPKAPI data input requirements, while Figs. 2, 3, and 4 
depict the process input files necessary for calibration. The 
catchment data are necessary to be adjusted due to several 
inherent errors or implementation before being used as the 
default input parameters [10]. 

IV. RESULTS AND DISCUSSION 

The extrapolated trend result for rainfall, discharge flow 
and evaporation, shows the distribution pattern of the datasets. 
It can be observed that the discharge pattern follow the rainfall 
and evapotranspiration pattern regardless of the different 
magnitudes. It can be deduced that both rainfall and 
evapotranspiration contribute to the discharge magnitude. 

The mean annual runoff generated by the drainage area 
method was 0.386 m³/s; favorable when compared with the 
actual mean runoff that must not exceed the threshold of 0.4 
m³/s [17]. Several factors could lead to the success of DAR 
used to transpose data. These factors are based primarily on 
the fact that the region is relatively small and hydrologically 
homogenous; this is largely because the soil, climate, 
topography, and basin characteristics are broadly similar 
throughout the region, creating a fairly predictable hydrologic 
response. 

Calibration was done by varying these parameters through 
trial and error based on graphical matching between simulated 
and observed stream flow. This was to obtain the final 
parameters values without losing its physical representation. 
Successful model calibration gives better understanding of the 
catchment behaviors. The model calibration was done for a 
10-year period (1999-2008), while validation was done for a 
six-year period (2009-2014), out of the total 16-year period 
data. The choice of 10 years was considered to accommodate 
the span of wet and dry season conditions in the area. This was 
also in agreement with Foglia, Hill [29] and Li, Wang [30] 
which suggest that a calibration data series with a span of at 
least eight years is sufficient to give more consistent optimal 
parameter values in a more consistent simulation. All other 
initial parameters values were suitable and retained. The initial 
mean soil moisture over the catchment was adjusted during the 
calibration process. The optimal value of 55% was retained. 
Simulation was carried out for dataset period of six years 
(2009-2014) using the final parameter values obtained during 
calibration in Table I to validate the model. The agreement 
between the observed and simulated was quantified by 
statistical metrics such as Nash-Sutcliffe modeling efficiency 
(Nash) and coefficient of determination. The calibration and 
validation efficiency statistics summary for the model is 
shown in Table II. 

 
TABLE II 

THE CALIBRATION AND VALIDATION EFFICIENCY STATISTICS 

 Years 
Mean annual 
runoff (m³/s) 

Drainage area ratio 16 0.380 

WR90 report[17] - 0.400 

PYTOPKAPI 16 0.359 

 

Efficiency Calibration(10yrs.) Validation (6 yrs.)

Nash 0.706 0.704 
Coefficient of 
determination 

0.708 0.739 

 
The result of the model simulation and observed synthetic 

flow both for calibration and validation is shown in Fig. 8 and 
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Fig. 9, while a scatter plot between observed and simulated for 
validation is presented in Fig. 10 and Fig. 11. It can be 
deduced from the simulation results that for low, moderate and 
peak flows, the absolute amount and timing of streamflow 

variation are well reproduced. Also, in both the calibration and 
validation period, the results show a rise and decrease in the 
streamflow value following the rainfall pattern, and thus, the 
validity of spatial distribution and behavior is assured. 

 

Fig. 8 Plot of simulated and observed discharge for calibration period 1999/01/01 to 2008/12/31 
 

 

Fig. 9 Scatter plot of simulated and observed daily discharge for the calibration period 
 

In Fig. 8, the observed and calibrated flow, with its rainfall 
event, were well represented. The good graphical agreement 
results in a higher value of the Coefficient of determination 
(R²) of 0.708 and the Nash-Sutcliffe efficiency of 0.706. A 
scatter plot between the observed and simulated for validation 
in Fig. 9 shows a high performance of the model. 

 Fig. 10 shows a good correspondence between the 
simulation and observed data set for the period. The model 
validation performance is shown in Fig. 11 with Coefficient of 

determination (R²) and Nash-Sutcliffe efficiency values of 
0.739 and 0.704, respectively. The above approach gives 
satisfactory results. 

The results indicate that the PyTOPKAPI model is an 
effective catchment management that can be applied to an 
ungauged catchment. Its ability to reproduce high flows will 
be useful in flood alert application. For runoff prediction at 
many ungauged rivers, water planners can now assert a tool 
for flow quantification planning purposes. 

 

 

Fig. 10 Plot of simulated and observed discharge catchment for validation period 2009/01/01 to 2014/12/31
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Fig. 11 Scatter plot of simulated and observed daily discharge for the validation period 
 

V. CONCLUSIONS 

In this study, we examined the possibility of calibrating a 
physically-based hydrological model (PyTOPKAPI) at an 
ungauged basin to simulate accurately and recreate daily 
discharge flow. This was achieved by comparing the estimate 
of mean annual runoff ratio developed for the study area with 
the PyTOPKAPI model mean annual runoff estimates.  

Results of model performance evaluation using- Nash-
Sutcliffe efficiency and coefficients of determination (0.704 
and 0.739, respectively) also indicate a good simulation 
performance in reproducing the synthetic daily observed 
discharge of the Mhlanga catchment. The performance of the 
DAR was assessed by comparing its mean annual flow to the 
referenced mean annual flow of the Mhlanga catchment which 
shows a good agreement.  

The results confirm that catchments which are 
hydrologically similar exhibit similar behaviors. The model 
was found suitable for simulating the hydrologic configuration 
of the study area based on the behavioral characteristics of its 
neighboring catchment, and that the mean annual runoff ratio 
method and PYTOPKAPI is a useful tool in simulating 
hydrological processes in ungauged catchments or in 
catchments with poor or missing datasets. For prediction at 
many ungauged rivers, the water planner can now assert this 
tool for flow quantification planning purposes. 
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