
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:11, 2012

1395

Abstract—This paper presents the design and implementation of

CASTE, a Cloud-based automatic software test environment. We first
present the architecture of CASTE, then the main packages and classes
of it are described in detail. CASTE is built upon a private
Infrastructure as a Service platform. Through concentrated resource
management of virtualized testing environment and automatic
execution control of test scripts, we get a better solution to the testing
resource utilization and test automation problem. Experiments on
CASTE give very appealing results.

Keywords—Software testing, test environment, test script, cloud
computing, IaaS, test automation.

I. INTRODUCTION
OFTWARE testing is an important means to ensure
software quality. How good it does directly determines how

good the software quality is.[1] However, as the number of
platforms on which software runs increase and different
software versions coexist, the demand for testing environments
and testing personnel also increases. For example, to test a
software patch or upgrade, the number of testing environments
is the product of the number of running environments the
software supports and the number of coexisting versions of the
software. Obviously it is an expensive invest to build up in
ordinary way such a large number of testing environment.
Worse still, it becomes more and more difficult to maintain and
configure the testing environments.[2-6]

Cloud computing, as a new computing model, has been used
in many domains as its advantage in improving IT resource
utilization and reducing resource investment by virtualization
and on demand provision.[7,8] In our opinion, it is a feasible
solution to tackle the above mentioned problems in software
testing resources investment and management using cloud
computing techniques. In cloud environment, different virtual
testing machines can be created for different running
environments and different running versions. In such a way
physical resource demands can be dramatically reduced. Large
number of testing machines can be replaced by a few of
machines with a lot of virtual testing machines running on
them. By cloud-based automatic testing tool, setting up and
configuring testing environments may be an easy job for
testers.

In this paper we present the design and implementation of a
cloud-based automatic software testing environment, CASTE.

Fuyang Peng, Bo Deng and Chao Qi are with the Software Division at

Beijing Institute of Systems Engineering, Beijing 100101, China (e-mail:
fuyang_peng@ sina.com).

CASTE is built upon a private IaaS(Infrastructure as a Service)
platform. Through concentrated resource management of
virtualized testing environment and automatic execution
control of test scripts, we get a better solution to the testing
resource utilization and test automation problem.

II. DESIGN AND IMPLEMENTATION

A. The Architecture of CASTE
The architecture of the cloud-based automatic software

testing environment (CASTE) we propose is shown in Figure 1.
CASTE runs on the private infrastructure cloud Eucalyptus [9,
10] which runs on a server cluster. CASTE mainly consists of a
test execution controller TEC, a test database TDB and a set of
virtual test environment VMs running on the test unit TU. TEC
is responsible for the management of test resources and the
execution control of test scripts, including obtaining required
virtual machines, deploying test scripts to the appropriate VMs,
driving the execution of the test program, collecting test records
and results, and preparing test report. TDB stores such
information as test data, test status, test log and test results in
XML format. The virtual test environments are disk images
composing of the hardware capacities (CPUs, memory, disk
volumes, network bandwidth, etc.), operating systems,
databases and the software to be tested.

TEC is the core of CASTE. It is implemented in three class
package: the test engine package, the data access package and
the user interface package.

B. Test Engine Package
The test engine package is designed for monitoring and

managing the test resources and for deploying and running the
test tasks. The main classes in it include CController, CListener
and CTestTask.

The CController Class
CController manages the test resources. It controls the test

environments by calling the cloud interface. The main control
functions include: (1) adding, deleting and renaming host
group; (2) connecting, disconnecting and reconnecting to the
host; (3) adding, deleting and renaming virtual machine group;
(4) operating VM power (power on/off, reset); (5) setting the
virtual machines(changing attribute parameter, renaming); (6)
saving and restoring VM images.

The CListener Class
CListener monitors the test resources in real time in order to

make users know in detail what resources are available. By
invoking the cloud environment interface, CListener can
communicate with the virtual machines on the TU and instantly

CASTE: a Cloud-Based Automatic Software
Test Environment

Fuyang Peng, Bo Deng, and Chao Qi

S

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:11, 2012

1396

obtain the attribute information of the VMs. It can listen all test
resource references and it can also listen in real time to a
particular test resource.

CListener compares the obtained information with the
relevant data in TDB. If there exist differences, first the
CDataAccess class is invoked to update the TDB information,
and then the change is feedback to the client

Through listening to specific test resource, testers can know
in time the status of the resource, e.g., the number of host
servers connected to a user-defined host group, the host server a
certain VM resides in, and usage status of a VM.

The CTestTask Class
CTestTask is designed for the test task deployment and

execution. It executes the automatic test script of the test task
according to the tester’s request in two steps, first assigns the
test script to the appropriate virtual machine(s), then initiates
the execution of the script according to certain strategy. The
methods in the class include SetTask, SetDeployFlag,
SetDriveFlag, TaskDeploy and TaskDrive.Driving the test
script

Fig. 1 The architecture of CASTE

needs the help of the methods in CController to change the
setting of the virtual machines, as shown in Fig. 2. When the
run_script_flag of the virtual machine is set to TRUE, the test
script in the VM-shared folder can be driven to run.

C. Data Access Package
CDataAccess is the most important class in the data access

package. It is responsible for the interaction between the test
engine package and the test database. According to the
characteristics of the data to be stored, we use XML format to
store them. XMLDOM parser is used to parse the XML files.
Detailed description is omitted here due to space limitation.

D. User Interface Package
The main role of the user interface package is to provide a

GUI-based control program to help software testers to
conveniently and uniformly manage the distributed virtual
resources and schedule test tasks to run. Following is its main
functions:

1. To dynamically display the information about available
resources on resource management interface, including
user-defined host groups, hosts, VM groups and the virtual
machines installed on a host.

2. To provide the detailed information of each category of
resources, such as the number of hosts in a host group, the
number of virtual machines in a VM group, the connect status
of the host servers, the hardware and software configuration of
the virtual machines, and the running status of the VMs. The
information can be used to determine which resources can meet
the resource requirement of a test.

3. To define test task (including assign test script to VMs).
When test case is running, VMs’ real time status message
obtained through CListener is assigned to the variables of the
test cases.

4. To output the host server log file and the test case
execution results after the test case finishes execution.

The main classes of the user interface package are
CTestResManager, CTestTaskManager and CTestReport.

Virtual Machines

VM VM VM

VM VMVM

TEC

TU
TU TU

TDB

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:11, 2012

1397

Fig. 2 Control flow in test script execution

The CTestResManager Class
This class is used to centrally manage the distributed virtual

test resources through a control interface.
As we define all the resources in a tree-like structure,

TreeView control is a natural choice for their display, with the
topmost node of it represents the host group,. Users can add
host server into the host group. Users can also add VM group
into it.

To better manage the various resources, we define control for
each test resource. When user clicks the different node types on
the TreeView, the CTestResManager can determine the control
type based on the node attributes and invokes the corresponding
control interface to show the test resource information. The
controls can be classified into two types. The first type is the
control for showing resource attribute information, the second
type is for the uniform management and control of the
distributed resources

Using these two types of controls, software testers can get
the following information: the VM to be used is installed on
which TU, whether the TU is occupied by other tester, whether
it’s in open state, whether the hardware and software
configuration of the VM is appropriate for the test, whether the
VM has got an effective IP address, etc.. Software testers can
also change the power on/off state of the VMs, or save the
snapshot of a running VM.

 After obtaining the basic information of the virtual test
environment and tuning the state of the VMs, software testers
can conveniently select the VM resources to be used in the test
and add them to the test tasks.

The CTestTaskManager Class
This class provides a visual interface for software testers to

define test tasks, such as assigning automatic test scripts to test
VM environment. After test task being defined, software tester
can instruct executing of the defined task or deleting of some
tasks.

When software tester push the Renew a task button, (s)he can
select the VM node on the TreeView control, the selected node
will be added into the VM set automatically.

After the test VM resources are set ready, software tester can
click the Browse button to browse and select the script file.
When VM list and test script all set, add both to the test task. A
test task is stored and an ID is automatically assigned to the
task.

It will take several steps to run a test task. First the VMs’
images should be restored to the initial state with the help of the
CController. Secondly the VM set assigned to the test task is
monitored and the obtained information is used to set the script
deployment’s parameters. And thirdly drive the test script to
run.

The whole process of running a test task is transparent to
software tester. Software tester don’t need to care about the
restoration of VMs; images, nor to care about VM’s states.

The CTestReport Class
Once a test gets started, the test cases in the test script are

executed in the composed order. CASTE will create and output
the running log information after the test cases in the script
finish running. The CTestReport class will produce the final
test results based on the log information and feedback them to
the software tester.

Each test task has three state: can’t run due to VM failure;
test cases being running; test cases being finished. When a test
case is finished, it will give one of the two results: Pass or Fail.
Software tester can read the execution status of all the test tasks,
can check which test tasks are waiting for executing, are
executing, or are finished executing, can view visually the ratio
of the number of finished test tasks to the number of all test
tasks presented to CASTE .

III. ANALYSIS AND EVALUATION

CASTE has the following advantages:
 Less test environment cost. Using virtualization

technology in cloud computing, one can run multiple
virtual machines for test environments on one host
server, thus reducing hardware purchase cost, system
management cost, and the space occupied by the test
devices.

 Isolation of virtual machines. The isolation of test
virtual machines means crash of one VM will not
affect the use of other VMs. It also means severe bugs
in the software being tested will not affect the physical
hardware and the system software on it.

 Functional snapshot. VM snapshot is a useful means to
save and restore test environment status. It can be used
in such situations as (1) when rapid restoration of a
corrupted test task execution is needed; (2) when a

Set
VM[i].script_flag

as true

Put flag update to
Virtualmachine[VM

[i].name]

Run scr i pt
ser vi ce
st ar t ed?

Set DriveFlag as
true

Send drive
commond

No Capture error
messageYes

Return
[VM[i].name]

Return success flag

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:11, 2012

1398

certain test environment needs to be reused; (3) when a
very complex and skillful test environment needs to be
saved.

 The test environments are stored as VM image files
that can be freely copied or moved. The automatic tool
can test software in 24X7.

To verify the effectiveness of CASTE, we select four test
tasks to experiment. For each test task, both traditional manual
execution method and CASTE-based approach are used. The
aim is to compare the performance of the two in terms of test
time and the number of test persons participated. Results show
that the number of persons participating in testing decreases by
70% and test time reduces by 40%.

REFERENCES
[1] Weinberg, Gerald M. “Quality Software Management: Systems

Thinking”. Vol 1. Dorset House. 2002.
[2] Kaner, Cem. “Improving the Maintainability of Automated Test Suites.”

Presented at Quality Week. 1997.
[3] Brad Long，Paul Strooper. "A Case Study in Testing Distributed Systems”

DOA '01. Proceedings. 3rd International Symposium on. Distributed
Objects and Applications, 2001:20-29.

[4] Hendrickson, Elisabeth. “Making the Right Choice: The Features you
Need in a GUI Test Automation Tool.” Software Testing and Quality
Engineering Magazine (May): 21-25.
http://www.qualitytree.com/feature/mtrc.pdf . 1999.

[5] Linz, Tilo and Matthias Daigl. “How to Automate Testing of Graphical
User Interfaces.” European Systems and Software Initiative Project No.
24306 (June). 1998.

[6] Pettichord, Bret. “Success with Test Automation.” Presented at Quality
Week (May). 2006.

[7] Velte, A. T., et al., Cloud Computing: A Practical Approach, McGraw
Hill, 2010.

[8] Rittinghouse, John W. and Ransome, James F., Cloud Computing -
Implementation, Management, And Security, CRC Press, 2010

[9] Nurmi, D., et al., Eucalyptus: A Technical Report on an Elastic Utility
Computing Architecture Linking Your Programs to Useful Systems. Tech.
Rep. 2008-10, University of California, Santa Barbara, October 2008.

[10] Milojicic D, Wolski R. Eucalyptus: delivering a private cloud [J].
Computer. 2011, 44(4): 102104.

