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Osmosis by the Immersed Interface Method 
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     Abstract—A two-dimensional thin-walled capsule of a flexible 
semi-permeable membrane is adhered onto a rigid planar substrate 
under adhesive forces (derived from a potential function) in the 
presence of osmosis across the membrane. The capsule is immersed 
in a hypotonic and diluted binary solution of a non-electrolyte 
solute. The Stokes flow problem is solved by the immersed interface 
method (IIM) with equal viscosities for the enclosed and 
surrounding fluid of the capsule. The numerical results obtained are 
verified against two simplified theoretical solutions and the 
agreements are good. The osmotic inflation of the adhered capsule is 
studied as a function of the solute concentration field, hydraulic 
conductivity, and the initial capsule shape. Our findings indicate that 
the contact length shrinks in dimension as capsule inflates in the 
hypotonic medium, and the equilibrium contact length does not 
depend on the hydraulic conductivity of the membrane and the 
initial shape of the capsule.  
 
     Keywords—Capsule-substrate adhesion, Fluid mechanics, 
Immersed interface method, Osmosis, Mass transfer. 
 

I.  INTRODUCTION 

APSULES of thin elastic membranes enclosing 
incompressible viscous liquid are commonly employed 

as models for study in many biological and industrial 
systems. The flow induced-deformation of capsules has been 
studied by researchers in past two decades to investigate the 
effects of membrane elasticity, membrane rigidity, membrane 
and fluid viscosities and inertia of the flow field, etc on 
capsule deformation. In extension to study the dynamics of 
capsule adhesion onto a planar or curved substrate is deemed 
important as far as biological and biophysical applications are 
concerned. For example, adhesion of leukocytes (while blood 
cells) to vascular endothelium is a key process in 
inflammatory response ([1]). Previous numerical studies on  
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capsule-substrate adhesion have investigated effects of 
material, geometrical and flow properties on capsule adhesion 
and deformation under shear flows (see [2-5]).   
   If capsule membrane is permeable, the capsule-substrate 
adhesion is also controlled by the surrounding environment 
([6]). Several extensive experimental works on capsule 
adhesion in the presence of osmosis can be seen in the 
literature such as [7] which has shown empirically the effect 
of osmotic pressure on adhesion between a vesicle and a glass 
slide. An experimental method combined with a theoretical 
model to calculate unknown membrane and adhesion 
properties of a capsule-substrate adhesion system with 
osmosis has been provided in [8]. Among other theoretical 
works, some studies on coupled bending-shearing on 
liposome deformation under different osmotic pressures have 
been studied in [9], [10], and the results have shown that 
degree of liposome deformation is larger when the bending is 
dominant and the adhesion contact area increases when 
liposome volume decreases. A good agreement between their 
experimental and theoretical results can be seen in [9]. A 
simple elastic model based on energy balance to compute the 
final equilibrium shape of a spherical capsule adhered to a 
planar substrate in the presence of osmosis has been provided 
in [6], [11], and the relationships between osmotic inflation, 
contact area and contact angle have been studied. The 
possibility of determining the adhesion strength between a 
liquid-filled capsule and a planer substrate via the 
aforementioned elastic model has been demonstrated later on 
([12], [13]). All these theoretical models have been used to 
calculate the final equilibrium shape of the adhered capsule 
for given physical parameters. To the best of authors’ 
knowledge there are hardly any (numerical) studies on 
capsule adhesion in the presence of osmosis.                          
     In the present work, a new numerical model based on the 
immersed interface method (IIM) to simulate capsule 
adhesion onto a planar substrate in the presence of osmosis is 
presented. In the literature, there are numerous works on 
developing efficient computational techniques for simulating 
problems involving fluid flow with immersed impermeable 
deformable boundaries or membranes. Perhaps one of the 
most important developments in the past decades or so is the 
immersed boundary method (IB Method or IBM) by Peskin 
[14] with basically first order accuracy. The IB method is a 
very robust numerical method for solving the full 
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incompressible Navier-Stokes equations with immersed 
impermeable moving boundaries. The IB method has been 
used by subsequent researchers to simulate transient rolling 
adhesion and deformation of cells in the absence of osmosis 
([5], [15], [16]). Partially motivated from the IB method, the 
immersed interface method (IIM) was developed by LeVeque 
and Li [17] with second order accuracy and applied for two-
dimensional models. The IIM has seen more advancement by 
many subsequent researchers for problems involving 
immersed impermeable deformable boundaries ([18-26]). The 
key idea of the method is to find coefficients of a new finite 
difference scheme at irregular grid points by using the 
information of the field variable and its normal derivative 
near the boundary. As the IIM is more accurate for moving 
immersed impermeable boundary problems, it is naturally 
extended to problems involving deformable and permeable 
boundary problems. As reported in [27], the IIM was also 
used to model the mass transfer across a semi-permeable 
deformable capsule suspended in an aqueous solution under 
Stokes flow for a limited case. In that work, while the Stokes 
equations has been solved using the IIM approach mentioned 
in [22], a new time-split method has been employed to solve 
for the mass transport equation near the capsule membrane.  
     In this paper, a two-dimensional numerical model based 
on the IIM is presented to simulate capsule-substrate 
adhesion in the presence of osmosis under a variety of 
conditions for a careful and systematic study of the capsule-
substrate adhesion. The rest of this paper is organized as 
follows. In Section II, the governing equations and numerical 
calculation procedure based on the IIM for a general capsule-
substrate adhesion problem with osmosis (see Fig. 1) are 
described. Section III gives the results and discussions for 
various cases, and Section IV provides the conclusions for the 
present study. 
 

II. MODEL FORMULATION 

     A flat semi-permeable closed thin membrane Γ is allowed 
to move from its initial configuration due to unbalanced 
forces under the Stokes flow condition. These unbalanced 
forces may arise from elastic forces or adhesive forces or 
osmotic pressure difference across the membrane. The 
membrane separates the whole fluid domain Ω into two 
domains as Ω- and Ω+, where Ω- is the region enclosed by the 
membrane whereas Ω+ is the region outside of the membrane 
as illustrated in Fig. 1 (the combination of Γ and Ω- is called a 
capsule). Both domains are filled with a non-electrolyte 
diluted binary solution of different solute concentrations. The 
membrane and fluid properties are assumed to be constant.  
The governing equations are thus given as follows:   
 
 
 
  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Capsule-substrate adhesion in the presence of osmosis. 
 
where (x, y, t) is the spatial position and time, respectively, p 
is the fluid pressure (or mechanical pressure), (u, v) is the 
fluid velocity in the x and y directions, respectively, c is the 
solute concentration, µ the dynamic viscosity of fluid, a 
constant throughout Ω, D is the solute diffusivity, a constant 
throughout Ω, and F1, F2 is the singular force that arises from 
the interface in the x and y directions, respectively. The 
subscript (x) represents the derivative taken with respect to 
(x) and so on. The singular forces F1 and F2 can be calculated 
as  
 
 
for l = 1, 2, which represents the x and y directions, 
respectively. ),( yxx  is the spatial position, X (s, t) is the 
membrane configuration Г, s is the length measured along the 
membrane,  fl is the force strength in either x or y direction, 
and Dδ is the two-dimensional Dirac delta function. The 
resultant force strength f is given by 
   
 
 
where Te, Tb and W are the elastic tension, shear tension due 
to bending and adhesion potential between the capsule and 
substrate, respectively. These are given by 
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vectors defined at any point on the membrane and their 
respective directions are the anticlockwise tangential, the 
outward normal and the y direction. The physical parameters 
Ee, Eb and Wad are the membrane shear modulus, bending 
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membrane curvature at any point while Rκ  is the reference 
curvature. ε  is the stretch ratio of the membrane and the 
optimal distance (or zero force distance) between the 
membrane and substrate is dm.     
     For the semi-permeable membrane, some solvent could 
pass across the membrane, and hence the membrane velocity 

),( VUU =  to be calculated is given below as ([27]):  
                                      
 
 
 
where θ  is the angle between the normal line to the 
membrane and the x-axis at any point on the membrane and 
Jv is the solvent volume flux across the membrane.  The 
solvent volume flux is calculated using the Kedem-
Katchalsky relation for binary diluted solutions ([28]). This 
equation has been obtained using irreversible 
thermodynamics theory for coupled-flows of solutes and 
solvent as follows: 
 
 
where Jv is the solvent volume flux (m3/m2 s, or m/s), R is the 
universal gas constant (J/mol.K), Tabs is the absolute 
temperature (K), [p] is the mechanical pressure jump (or 
difference) across the membrane (or interface) (N/m2), [c] is 
the solute concentration jump across the membrane (mol/m3), 
Lp is the hydraulic conductivity of the membrane (m2.s/kg). 
The jump of a variable ψ  is defined at any point on the 
membrane and is given by  

).().()]([ nXnXX ζψζψψ −−+= −+  as +→ 0ζ . 
 
     Boundary conditions 
 
     The Dirichlet boundary condition for the velocity (u, v) 
and Neumann boundary condition for both pressure (p) and 
solute concentration (c) are assumed applicable along the 
boundary of the computational domain Ω. The solute molar 
flux at either side of the membrane is equal to zero since the 
membrane is semi-permeable, and it is given by 
      
 
 
where cn is the derivative of c with respect to the normal 
outward direction ( n ) to the membrane.   
     All the equations are non-dimensionalized via the suitable 
reference values for different variables. The reference values 
are defined for length r  (≡ unstretched capsule radius), 
velocity V (≡ 

pL RTabs∆c0), pressure p (≡ µV / r ), time t (≡ 

Vr / ), membrane tension T (≡ Ee) and solute concentration 
c (≡ [c0]/ln( −+

00 / cc )). Here ∆c0 is the initial solute 
concentration difference across the membrane (i.e., 

−+ −=Δ 000 ccc ) and ±
0c is the initial constant solute 

concentration at either side of the membrane.
pL is the 

reference value of the hydraulic conductivity. 
     All the non-dimensional variables are denoted with an 
asterisk (*) mark. Then the governing Eqs. (1)-(4) and (9) can 
be written in non-dimensional form and given below as 
 
 
 
   
  
 
 
 
 
 
where *

Nf  is the force strength in the n  direction. 

0

/
cRT

rE

abs

e

Δ
=δ , 

+

−

=
0

0

c
c

γ , 
D
rVPe = , and they represent, 

respectively, the ratio between the elastic and osmotic 
pressure differences across the membrane, the initial solute 
concentration ratio between the inner and outer domains, and 
the ratio between the convective and diffusive mass transport 
in fluid (Peclet number). 
     Hereafter, the asterisk (*) mark is dropped from the non-
dimensional variables for simplicity. 
 
     A.  Numerical methods 
 
     The whole computational domain ],[],[ 2121 bbaa ×=Ω  is 
discretized into M+1 and N+1 grid points in the x and y 
directions, respectively. The capsule membrane Г is 
represented by Nb points which are called control points. The 
spatial grid size, ./)(/)( 1212 NbbMaah −=−=  
For the given membrane configuration (Xm, Ym), primitive 
variables (pm, um, vm) and solute concentration (cm) at t = tm, 
the variables  pm+1, um+1, vm+1, cm+1 and (Xm+1, Ym+1) are to be 
calculated for t = tm+1. The membrane configuration is 
updated explicitly as 

 
 
where tΔ  is the non-dimensional time step. 
     Following [29], the governing equations of motion Eqs. 
(11)-(13) are decoupled into three equations as Fp ∇=∇ 2 , 
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ypv =∇ 2 . These three Poisson equations are 

discretized according to the IIM and solved using the 
FISHPACK fast solvers ([22]). 
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concentration field at tm+1 is updated according to Eq. (14). 
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while the convective term is treated explicitly to avoid 
restriction on ∆t, hence giving rise to 
 
 
 
 
 

 

where Ci,j )( 2c∇  is the spatial correction term of c2∇  which 
is added only at irregular grid point (i, j) and so on. Qi,j is the 
temporal correction term and it is non-zero if the grid point (i, 
j) is crossed by the membrane at a time between tm and tm+1. 
The derivations using Taylor series expansions and detailed 
discussions about these correction terms can be found in the 
literature and not repeated here ([20], [29], [30]).   
 
     B.  Jump conditions for the IIM 
 
     When using the IIM to solve the governing equations in a 
domain with an immersed membrane, the jumps of the field 
variable and its normal derivative across the membrane are 
needed to calculate previously mentioned correction terms 
near the membrane (i.e., Ci,j and Qi,j) . Thus jumps of 
pressure, velocity, concentration and jumps of their normal 
derivatives are required. These jump conditions for variables 
p, u and v are given as 
 
 
 
 
 
 
 
 
 
 
where β = VEe μ/ , fN and fT are the non-dimensional form of 
the normal and tangential components of the force strength 
f . These jump conditions are derived using the equations of 

motion Eqs. (11)-(13) as seen in [22].  
     Since the solute concentration jump conditions ([c], [cn]) 
are not available explicitly, those jump conditions are 
calculated numerically with use of the Kedem-Katchalsky 
relation (Eq. (15)) (see [31] for detailed implementation as 
only brief discussion is provided here). In this approach, at 
each control point, four points are defined along the normal 

line to the membrane as ,qhX
m
±  where q = 1, 2, and these 

are named as (k, 1), (k, 2), (k, 3) and (k, 4) at the kth control 
point as illustrated in Fig. 2. Then, nearby three grid point 
concentration values are interpolated using the one-sided 
least squares method to calculate the solute concentration 
value at each of above defined points. These interpolated 
concentration values at respective points are denoted by 

3,2,1, ,, kkk ccc and 4,kc . The boundary concentration values at 

the kth control point are ck
- and ck

+ in Γ - and Γ + sides, 
respectively.  
     With discretizing the non-dimensional form of Eq. (10) 
along the normal direction ( n ) in either side of the membrane 
(Γ±), the boundary solute concentration values at the 
immediate sides of the membrane are calculated for t = tm+1 
as  
 
  
 
 
 
 
Hence, the solute concentration jumps across the membrane 
are calculated as 
      

                              k = 1, 2,…,Nb. 
 
By writing the non-dimensional form of Eq. (10) at 
immediate sides of the membrane, it is obtained that                          
                                   
                                                          k = 1, 2,…,Nb. 
 

 
Fig. 2 Sketch for the calculation of the solute concentration values 
along a normal line to the membrane. 
 

III.  NUMERICAL RESULTS AND DISCUSIONS 
 
     Two set of numerical simulations are performed; one for 
capsule adhesion in the absence of osmosis ( pL = 0) and 

another for capsule adhesion in the presence of osmosis ( pL > 

0). In both cases, validations against theoretical results are 
given for the numerical results whenever possible. 
     The values of physical parameters are chosen so that these 
are in the range for typical biological systems. The dimensions 
of the computational domain are 1a  = 1b  = -10 μm and 2a = 

2b = 10 μm. The unstretched initial circular capsule has a 
radius of 4 μm. The planer substrate coincides with y = 1b  line 
(see Fig. 1). The physical parameters of the membrane and 
fluid are chosen as Ee = 43 μN/m, Eb = 1.8x10-13 μJ, μ = 4x10-3 
N.s/m2, Tabs = 300 K and D = 1.5x10-9 m2/s. The universal gas 
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constant is R = 8.314 J/mol.K. The adhesion strength is in the 
range of Wad = 4.11-4.11x10-2 μJ/m2 and it falls in the 
biological range ([32]). All calculations are carried out with M 
= N = Nb = 80. (It should be noted that when values of 
variables are given along with their respective units, those 
values are in the dimensional form.)  
     For the boundary conditions, zero velocity and zero solute 
flux are imposed along the boundary of the computational 

domainΩ  (i.e., u = v = 0 and 0
2121 ,,

=⎟⎟
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Neumann boundary condition for the pressure is calculated 
based on the augmented approach in [29]. In this approach, 
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variables pn1, pn2, pn3…at grid points along the boundary of Ω  
and they are calculated using Eqs. (11)-(13).  
 
     A.  Adhesion in the absence of osmosis 
 
     When the capsule membrane is impermeable (i.e., pL = 0), 

the osmosis is absent and the solvent and solute mass is 
conserved within each domain ( ±Ω ). Hence, the capsule 
enclosed area does not change during the adhesion process. 
For the sake of computational efficiency, the optimal distance 
between the capsule and the planar substrate (dm) is assumed 
to be 2.5 numbers of grid cells and equivalent to 0.625 μm. 
This value is relatively large compared to the values of 
typical biological systems which may fall in the range 10-50 
nm. Similar assumptions can be seen in previous works 
which are on red blood cell aggregations ([33], [34]). It is 
believed that use of a relatively large value for dm should not 
affect the main physics or trend of the adhesion behavior. Fig. 
3 shows the transient of the circular capsule which is initially 
at a distance of dm apart from the substrate. During the 
adhesion process, the capsule enclosed area is conserved with 
an error of less than 0.01%.        
     In this case, the numerical results are validated against two 
theoretical solutions taken from [6], [32]. 
     For the first validation the bending rigidity is neglected 
(Eb = 0) so that adb WEr /1 >>  , where π2/1 TSr =  and ST is 

the total length along the membrane or simply the capsule 
perimeter at the equilibrium. Thus, according to the work 
[32], in this special case the adhesion length Lad can be 
expressed by two characteristic lengths 1r  and 2r , 
where π/2 eqAr =  and Aeq is the capsule enclosed area at the 

equilibrium. Hence, by means of dimensional and scaling 
arguments, Lad is given by 
 
 
Fig. 4 shows the comparison between this theoretical solution 
and the numerically calculated results obtained by changing 
the adhesion strength Wad. For the numerically computed 

results the gradient of the straight line is 0.36 and it is close to 
the theoretical value of 0.33, which supports the validity of 
the present numerical approach. 

 
Fig. 3 Transient variation of capsule shape under adhesion onto the 
planar substrate:  Wad = 4.11 μJ/m2, Lp = 0. 
 

 
Fig. 4 Comparison between the numerical results and the theoretical 
solution of Contat and Misbah (1999). 
 
 
     Next, for the second validation the theoretical solution is 
derived fairly similar to the 3D elastic model reported in [6]. 
The assumptions are the bending is negligible and the 
membrane stress within the straight contact line is zero. 
Further, the equilibrium configuration is assumed to be a 
truncated circle of radius req. Then, the law of energy 
conservation is applied among the potential energy of the 
system, elastic energy stored in the membrane and the 
adhesion energy of the contact line. The derivation of the 
model is omitted here; details are given in [6], [11] for 3D 
spherical capsule adhesion with planar walls. Fig. 5(a) shows 
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the comparison between the theoretically and numerically 
computed capsule shapes at the equilibrium for Wad = 4.11 
μJ/m2. The agreement is reasonable for the capsule shape.  
 

 

 
Fig. 5 Comparison between the numerical results and the results of 
the elastic model: (a) capsule shape at the equilibrium and (b) 
adhesion length and equilibrium radius of the capsule: Wad = 4.11 x 
10-2 – 4.11 μJ/m2, Lp = 0. 
 
The numerical and theoretical results for the adhesion length 
Lad and the equilibrium radius req as a function of the non-
dimensional adhesion strength Wad/Ee are shown in Fig. 5(b). 
When Wad increases, the difference between the numerical 
and theoretical results for Lad decreases while the 
corresponding difference for req increases. One reason is that 
for stronger adhesion the equilibrium capsule geometry 
deviates from the circular shape and hence an average value 
has to be calculated for req. Moreover, the assumption of a 
stress free contact line for the theoretical model may 
contribute to these variations between the numerical and 
theoretical results.   
 

     B.  Adhesion in the presence of osmosis 
 
     Next, the capsule with the semi-permeable membrane (i.e., 

pL > 0) is considered. An initial solute concentration 

difference is applied for the equilibrium capsule which is 
obtained when the osmosis is absent and Wad = 4.11 μJ/m2 
(Fig. 3).  Now, the solvent can pass across the membrane 
while the solute is not allowed to cross the membrane due to 
its semi-permeability. Consequently, the solute mass remains 
unchanged in either domain. Figs. 6(a) and (b) present the 
transient profiles of the membrane configuration and the 
solute concentration on x = 0 plane, respectively. The 
hydraulic conductivity of the membrane is Lp = 1x10-8 
m2.s/kg. The initial solute concentrations in the outer and 
inner domains are 27.8862 mol/m3 and 37.8862 mol/m3, 
respectively. The initial solute concentration field determines 
the capsule enclosed area at the equilibrium. At the 
equilibrium, the solvent flux across the membrane vanishes, 
and hence it is obtained that γδ ln][cf N =  from Eq. (15). 
By solving this non-dimensional equation fairly similar to the 
solution in [27], it is obtained analytically that final 
equilibrium enclosed area as 1.3π  and the final solute 
concentrations at the inner and outer domains as 0.893110 
and 0.893094, respectively. It is seen that the equilibrium 
concentration is almost the same everywhere as δ  is very 
small ( =δ 4.31x10-4). As observed in Fig. 6(a), the initial 
adhered capsule detaches gradually while the enclosed area 
increases from π  to the equilibrium area of 1.2933π , which 
is very close to the analytical value of 1.3π . Fig. 6(b) shows 
that solute concentration jump at the membrane point nearest 
to the substrate which is at y = -2.5 vanishes faster than the 
opposite membrane point, which is the most distant point 
from the substrate, does. This is expected since both 
membrane and substrate are impermeable to solute, and 
hence solute distribution is restricted in the y direction. The 
numerically computed values of the equilibrium solute 
concentrations at the inner and outer domains are about 
0.893626 and 0.893559, respectively, which are very close to 
the respective analytical values given above.    
     One aim of developing the model is to test the effect of 
some parameters on capsule adhesion with osmosis. The 
effect of the initial solute concentration field, hydraulic 
conductivity and the initial capsule geometry are tested. The 
influence of the initial solute concentration field on cell 
adhesion has been reported in previous studies. The adhesion 
strength is still kept at Wad = 4.11 μJ/m2 for all the cases 
below.                             
        Now, the capsule detachment is tested for different 
initial solute concentration fields. The initial solute 
concentration field is changed by adjusting γ  while the initial  

(a) 

(b) 
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Fig. 6 Transient variation of capsule shape and solute concentration: 
(a) capsule shape under adhesion onto the planar substrate and (b) 
solute concentration filed on x = 0 plane:  Wad = 4.11 μJ/m2, Lp = 
1x10-8 m2.s/kg, ∆c0 = 10 mol/m3, γ = 1.3586. 
 
concentration difference 0cΔ  is kept constant at 10 mol/m3. 
The initial membrane geometry is the equilibrium shape 
obtained with no osmosis (Fig. 3). As mentioned earlier, the 
final equilibrium enclosed area (Aeq) is a function of the 
initial solute concentration field (i.e., both γ  and 0cΔ ). 
Therefore, the adhesion length Lad and the equilibrium radius 
req can be expressed as a function of (Aeq-A0)/A0 which is 
shown in Fig. 7. Here, A0 is the initial capsule enclosed area 
which is equal toπ  . The corresponding theoretical variation 
is also given in the same plot. Although the numerical results 
of req have good agreement with their theoretical values, the 
results of Lad deviate from respective theoretical values for 
larger swelling ((Aeq-A0)/A0>0.6) of the capsule. Still, the 

variations of req and Lad qualitatively agree with previous 
studies which showed that adhesion length (or area for 3D 
capsules) decreases as the capsule inflates ([9], [11]).      
 

 
Fig. 7 Comparison between the numerical and theoretical solutions 
of the adhesion length and equilibrium radius of the capsule: Wad = 
4.11 μJ/m2, Lp = 1x10-8 m2.s/kg, ∆c0 = 10 mol/m3, γ = 1.116-2.000. 
 
     Next, the effect of the hydraulic conductivity (Lp) on 
capsule adhesion in the presence of osmosis is tested. The 
motivation came from the published work in [35] on 
modeling of single plant cell compression. It has reported that 
the effect of the hydraulic conductivity is not significant in 
rapid compression of plant cells at small deformations. On 
the other hand, the effect of the membrane permeability 
properties on capsule adhesion may be important for 
designing drug delivery systems. The outer and inner domain 
solute concentrations are 27.8862 mol/m3 and 37.8862 
mol/m3, respectively. The initial geometry is the equilibrium 
shape shown in Fig. 3. Two different values for Lp are chosen 
as 1x10-8 m2.s/kg and 1x10-9 m2.s/kg. Fig. 8(a) shows that Lp 
has no major influence on the final equilibrium shape. 
However, the swelling rate depends on Lp as the mass flux 
across the membrane is directly related to the osmotic 
swelling. As can be seen in Fig. 8(b), the capsule reaches the 
equilibrium enclosed area faster for larger Lp values.              
     Finally, the numerical computations are carried out for 
two initial geometries (Shape1 and Shape2) for the capsule. 
The physical parameters are Lp = 1x10-8 m2.s/kg and the 
initial concentration field is the same as early on. As used 
previously, the Shape1 is the equilibrium shape obtained with 
no osmosis (Fig 3). The Shape2 is a circular capsule having a 
radius of 4 μm. Both shapes have the same enclosed area of 
π . As shown in Fig. 9 (a), the final equilibrium shape is 
identical for both initial shapes of the capsule. It can be seen 
from Fig 9 (b) that also swelling rate is not influenced by two 
initial shapes. This observation may be expected since the 

(a) 

(b) 
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initial perimeters are approximately equal in length and δ is 
very small; as such the solvent flux across the membrane is 
roughly equal for both cases as the initial concentration field 
is the same.            
 
 

 
 

 
Fig. 8 Effect on the hydraulic conductivity: (a) on the final 
equilibrium shape of the capsule and (b) on capsule swelling: Wad = 
4.11 μJ/m2, Lp = 1x10-9, 1x10-8 m2.s/kg, ∆c0 = 10 mol/m3, γ = 
1.3586. 
 

 
 

 
Fig. 9 Effect of the initial shape: (a) on the final equilibrium shape 
of the capsule and (b) on capsule swelling: Wad = 4.11 μJ/m2, Lp = 
1x10-8 m2.s/kg, ∆c0 = 10 mol/m3, γ = 1.3586. 
 

IV. CONCLUSIONS 
 
     The capsule-substrate adhesion in the presence of osmosis 
is simulated using the immersed interface method (IIM) 
under the Stokes flow condition. All the equations of motion 
are solved using the augmented approach reported in [29] and 
a new approach based on the work in [27] is built to solve the 
solute transport equations with the use of the Kedem-
Katchalsky relation for semi-permeable membranes. The 
adhesion energy between the capsule and the planar substrate 
is represented by a potential function.  
     The model is applied for capsule adhesion with and 
without osmosis. The results are compared with two 
theoretical solutions and they appear reasonable. Some 
deviations between the results given by the numerical and the 
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elastic models can be attributed to the different assumptions 
made for the two models.  
     A parametric study is done to determine the effect of the 
initial solute concentrations, the hydraulic conductivity of the 
membrane and the initial capsule geometry. When the 
capsule adheres to the planar substrate in the binary 
hypotonic medium, the equilibrium adhesion length decrease 
as the solute concentration ratio increases since the capsule 
inflates much. According to the present results, the hydraulic 
conductivity and different initial shapes at constant enclosed 
area have no effect on the equilibrium shape.  
     The applicability of the present model is not limited to the 
current work. A shear flow can be easily imposed on the field 
by specifying a suitable velocity profile at the boundary 
instead of zero velocity in the present work. Also it is 
straightforward to use the current model to simulate adhering 
capsules in haptotaxis and osmophoresis which are two cell 
migration modes in biology ([32], [36]). These applications 
will be discussed in future works.                    
 

NOTATIONS 

2121 ,,, bbaa  dimensions of the computational domain Ω, 
m 

A  capsule enclosed area, m2 

c  solute concentration, mol/m3 

c  reference solute concentration, 
)/ln(/][ 000

−+= cccc , mol/m3 
C{ }  spatial correction terms 
dm  zero-force distance, m 
D  solute diffusivity in the fluid, m2/s 
Eb  bending modulus of the membrane, J 
Ee  shear modulus of the membrane, N/m 
f  force strength, 

( ) ,ˆ),(),(),(),(),( y
y
WtsntsTtstsT

s
tsf be ∂

∂
−+

∂
∂

= τ
 

 N/m2  
f1, f2 force strengths in the x and y directions, 

respectively, N/m2 
fN, fT  force strengths in the normal and tangential 

directions, respectively, N/m2 
F1, F2 elastic forces in the x and y directions, 

respectively, N/m3 
h Cartesian grid size in both x and y 

directions, m 
(i, j)  a Cartesian grid point, dimensionless 
Jv solvent volume flux across the membrane, 

]),[]([ cRTpLJ abspv −−=  m3/m2 s or m/s 
k control point on the membrane, 

dimensionless 
Lad  adhesion length, m 
Lp hydraulic conductivity of the membrane, 

m2.s/kg 
pL  reference hydraulic conductivity, m2.s/kg 

M, N numbers of x and y grid points, 
respectively, dimensionless 

Nb numbers of control points along the 
membrane, dimensionless 

n  outward normal unit vector to the 
membrane, dimensionless 

p  fluid pressure, N/m2 

p   reference pressure, rVp /μ= , N/m2 

Pe  Peclet number, DrVPe /= , dimensionless 
Q  temporal correction term 
r  radius of the circular capsule, m 
r  reference length, =r unstretched capsule 

radius, m 
R  universal gas constants, R = 8.314 J/mol.K 
s  length measured along the membrane, m 
ST  equilibrium perimeter of the capsule, m  
t  time, s 
t   reference time, ,/Vrt =  s 
Te elastic tension of the membrane,

 ( ),),( 5.15.1 −−= εεEtsTe  N/m 
Tb shear tension of the membrane,

 ( )[ ],),( Rbb E
s

tsT κκ −
∂
∂

=  N/m 

Tabs  absolute temperature, K 
T   reference membrane tension, T = Ee, N/m 
u,v velocity components at a Cartesian grid 

point in the x and y directions, respectively, 
m/s 

U,V velocity components at a control point in 
the x and y directions, respectively, m/s 

V   reference velocity, ,0cRTLV p Δ=  m/s 
W adhesion potential,  

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

24

2
y

d
y

d
WW mm

ad
, J/m2 

Wad  adhesion strength, J/m2 
x,y  Cartesian coordinate at a grid point (i, j), m 
X,Y  Cartesian coordinate at a control point k, m  
ŷ   unit vector in the y direction, dimensionless 

 
Greek letters 
Г, Ω membrane (interface) and computational 

domain, respectively 

δγβ ,,                 
,/)/(

,/,/

0

00

cRTrE
ccVE

e

e

Δ=
== +−

δ
γμβ  dimensionless 

δD  two dimensional Dirac delta function, 1/m2 

μ  dynamic viscosity of fluid, N.s/m2 

Rκκ ,  instantaneous membrane curvature and 
reference curvature, respectively, 1/m 

ε stretched ratio at a particular point of the 
membrane, dimensionless 

θ the angle between the normal line to the 
membrane and the x axis, rad 

τ  unit vector in the tangential direction to the 
membrane, dimensionless 
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∆c0 osmotic load (i.e., initial solute 
concentration difference across the 
membrane), −+ −=Δ 000 ccc , mol/m3 

∆t  time step width, s 
][ψ  jump ofψ , 

).().()]([ nXnXX ζψζψψ −−+= −+  as 
+→ 0ζ  

Subscripts 
eq  equilibrium   
i,  j  (i, j)th grid point 
k  kth control point 
n derivative with respect to the normal 

direction to the membrane 
o  initial (t = 0) 
x, y derivative with respect to x and y, 

respectively 
Superscripts 
m  mth time step 
*  non-dimensional value 
+, -  outer and inner domains, respectively 
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