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Abstract—The work is devoted to solving the problem of 

temperature stresses, caused by the heating point of the round plate. 
The plate is made of elastoplastic material, so the Prandtl-Reis model 
is used. A piecewise-linear condition of the Ishlinsky-Ivlev flow is 
taken as the loading surface, in which the yield stress depends on the 
temperature. Piecewise-linear conditions (Treska or Ishlinsky-Ivlev), 
in contrast to the Mises condition, make it possible to obtain solutions 
of the equilibrium equation in an analytical form. In the problem 
under consideration, using the conditions of Tresca, it is impossible 
to obtain a solution. This is due to the fact that the equation of 
equilibrium ceases to be satisfied when the two Tresca conditions are 
fulfilled at once. Using the conditions of plastic flow Ishlinsky-Ivlev 
allows one to solve the problem. At the same time, there are also no 
solutions on the edge of the Ishlinsky-Ivlev hexagon in the plane-
stressed state. Therefore, the authors of the article propose to jump 
from the edge to the edge of the mine edge, which gives an 
opportunity to obtain an analytical solution. At the same time, there is 
also no solution on the edge of the Ishlinsky-Ivlev hexagon in a plane 
stressed state; therefore, in this paper, the authors of the article 
propose to jump from the side to the side of the mine edge, which 
gives an opportunity to receive an analytical solution. The paper 
compares solutions of the problem of plate thermal deformation. One 
of the solutions was obtained under the condition that the elastic 
moduli (Young's modulus, Poisson's ratio) which depend on 
temperature. The yield point is assumed to be parabolically 
temperature dependent. The main results of the comparisons are that 
the region of irreversible deformation is larger in the calculations 
obtained for solving the problem with constant elastic moduli. There 
is no repeated plastic flow in the solution of the problem with elastic 
moduli depending on temperature. The absolute value of the 
irreversible deformations is higher for the solution of the problem in 
which the elastic moduli are constant; there are also insignificant 
differences in the distribution of the residual stresses.  
 

Keywords—Temperature stresses, elasticity, plasticity, Ishlinsky-
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I. INTRODUCTION 

ESIDUAL stresses and deformations occurring in the 
metal structure after welding work play an important role 

in the further operation of this product. Therefore, studies 
aimed at modeling the welding processes in order to predict 
residual stresses and deformations in the zone of the point 
impact of welding are currently relevant.  

One of the model problems of the welding process is the 
problem of the theory of temperature stresses about heating 
point of a plate. Similar problems were discussed repeatedly 
[1]-[6], but in them, the elastic moduli did not depend on 
temperature, although a linear or parabolic error was taken for 
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the yield limit. The dependence of the elastic modulus on 
temperature is fairly well known [7]-[9], but the effect of the 
same on the solution of problems, temperature stresses have 
not been studied to date. Therefore, this paper is based on the 
simplest problem of the temperature of the elastic moduli. 
Thanks to the use of a piece of small plastic potential, namely: 
the conditions of the plastic flow of Ishlinsky-Ivlev, it is 
possible to obtain an analytical solution of the problem with 
constant elastic moduli. Similar decision algorithms are 
described in [10], [11]. 

II. FORMULATION OF THE PROBLEM 

Elastic deformation - Consider the round aluminum plate 
the initial temperature, which is equal to room temperature 0Т . 

In the center of the plate, we arrange a cylindrical coordinate 
system ir  zr ,,  , place a solid heat source with a radius 

0R  in the center of coordinates, and heat the plate according to 

the law: 
 

qtT
Rr


 0
,                                  (1) 

 
where q  is the heating rate, t  is the time, the index after the 

comma indicates the derivative with respect to the 

corresponding coordinate. At some point in time *t , 

conditional   pTtRТ 85.0, *0  , and 10  , 
pТ _ the melting 

point of the plate material, the heating is stopped and the plate 
is left at room temperature. Due to the heat removal from the 
surface of the plate to the environment, the plate will cool 
down. As with heating and cooling, the temperature 
distribution across the plate at each instant is found from the 
heat equation 

 

   TTrTaT
rrt  0,,,  ,                      (2) 

 

where a  is the coefficient of thermal diffusivity,   is the 
coefficient, which depends on the heat transfer, thermal 
conductivity, the density of the material and the thickness of 
the plate. We shall not take into account the heat-conducting 
influence of deformation, that is, we further assume that the 
mechanical problem is disconnected. Now, according to the 
temperature field calculated according to (1), (2) at each 
moment of time, we calculate the mechanical parameters of 
strains and stresses. 

We consider, deformation ijd  zrji ,,,   in the material 
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To find the stresses, we use the Duhamel-Neumann law, 

which connects an irreversible deformation, e
ije  stresses 

ij  

and the current temperature T  
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where   is the coefficient of linear expansion, all-round 

compression module K  and parameters of Lame  ,   are 

represented by the following dependences in terms of the 
Young's modulus E  and Poisson's coefficient  : 
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Under conditions of a significant change in temperature, it 

has been experimentally confirmed that the elastic moduli 
vary with the temperature change [7]-[9]. Therefore, we take 
as its simplest dependences the changes in the elastic moduli 
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           (4) 

 

Here, the constants 0E , 0  are the Young's modulus and 

Poisson's coefficient at room temperature, рТ  is the melting 

point of the metal. Irreversible deformations accumulate in the 
plate under the conditions of the stresses of the loading surface 
  0ijf   in the space of stresses. In this way, we assume that 

the loading surface is independent of kinematics and the 
history of deformation. As a condition of plasticity, we take 
the condition of the maximum reduced shear stress (Ishlinsky-
Ivlev criterion), then the loading surface takes the form of the 
Ivlev prism in the space of principal stresses [12]. 
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For yield stress  Tk , we assume the following relationship 
 

 
 
Assuming the conditions of the Mises maximum principle, 

we have the relations of the associated law of plastic flow 
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                      (5) 

 
So, to find the stresses and strains in the material of a plate 

subject to annular heating, we will use the relationships 
described above and the laws to which we must add a single 
non-trivial equation of equilibrium 

 

  01
,  

 rrr r                          (6) 

 
Assuming that, at the initial time 0t , there were no 

irreversible deformations in the material, for a plane stress 
state 0z  the Duhamel-Neumann law will be written in the 

form 
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Substituting (7) into the equilibrium equation (6), we obtain 

a differential equation with respect to displacements ru  
 

,0,,   rrrrrr uuu                       (8) 

 
where  ,  ,  ,   are some functions from temperature and 

radius. In the case of the dependence of the elastic moduli on 
the temperature (4), they will be written in the form 
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And then, the equation of equilibrium (8), (9) can be solved 

at each time step only numerically, for example, by a different 
method, using boundary conditions simulating the free 
boundary on Rr   and lack of movement in the center 0r  

 

0
0


rr
u , 0

 Rrr
                        (10) 

 
If we neglect the dependence of the elastic moduli on the 

temperature, then the functions  ,  ,  ,   take the form 
 

1 , 1 r 2 r   1
,5.1   rK      (11) 

 
And from the equilibrium equation (8), (11), we find the 

displacements 
 

   .2
0 TkTk 
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where 

1C  and 
2C  are the integration constants (time 

functions). 
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                    (13) 
 
The displacements and stresses in the absence of the 

dependence of the elastic moduli on the temperature are found 
from (12) and (13) together with the boundary conditions (10). 
In the case of the dependence of elastic moduli on the 
temperature of displacement, as mentioned earlier, from the 
numerical solution of the equilibrium equation written in the 
displacements (8) and the boundary conditions (10), and then 
the stresses are calculated. 

Plastic flow–In the center of the plate 0r , the Ishlinsky-
Ivlev condition is satisfied in both calculations

kr 4   This leads to the formation of an elastoplastic 

boundary  tn , which divides the material of the plate into 

two regions: elastically deformable   Rrtn   and the area 

prone to plastic flow  tnr 0 . In an elastically deformable 

region, the stresses and displacements are calculated from (12) 
and (13) with allowance for.  tnl  . In the plastic flow 

region  tnr 0 , the Duhamel-Neumann law (3) can be 

rewritten with the presence of developing irreversible 

deformations p
re , pe , p

ze , 
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Irreversible deformations in the region of plastic flow are 

related to each other by a consequence of the associated law of 

plastic flow (5) pp
r ee  . From the plastic flow condition 

kr 4   and (14), we express the irreversible 

deformation 
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Taking into account the above, the equilibrium equation 

assumes the form 
 

1 , 1 r , 2 r rk,
12               (16) 

 

Integrating the equation of equilibrium (8), (16) and 
substituting (15) and (14), we obtain expressions determining 
the displacements, stresses and irreversible deformation in the 
region of plastic flow 
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Integration factors 3С  and 4С  (time functions), together 

with the coefficients 1С  and 2С  from the relation (13) and 

(14), are found from the boundary conditions simulating the 

continuity of the radial stress  tn  and displacement on the 

elastoplastic boundary, as well as from the conditions (10). 
If we take into account the dependence of the elastic moduli 

on the temperature, then the functions in the equilibrium 
equation (8) take the form: 

 

  ,  rr ,
1    ,  1

,
2   rr r , rk,2   

(17) 
 
We find the solution of (8), (17) by numerical method, and 

then the stresses (14) and irreversible deformations (15) are 
calculated. Fig. 1 shows the distribution of stresses in the 
material of a plate with a region of plastic flow. 

 

 

(a)                                      (b) 

Fig. 1 Distribution of stresses in the material of the plate prior to the 
onset of unloading (a) - Elastic moduli are constant, (b) - elastic 

moduli depend on temperature 
 

Unloading -When removing the heat source from the plate, 
the plate material cools. As a result, in the solutions obtained 
under the condition of constancy of the elastic moduli, the rate 
of growth of irreversible deformations decreases and the 
damping of the entire flow region follows. In the other words, 
the region nr 0  in which irreversible deformations 

developed p
re , pe , p

ze , become an elastically deformable 

region with the presence of residual irreversible deformations

rp , p , zp , therefore the Duhamel-Neumann law takes the 
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In accordance with (18), the functions in the equilibrium 

equation will be rewritten (8) 
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Integrating the equilibrium equations (8), (19), there are 

displacements, which after substituting in (18) and thereby 
determining the stresses in the unloading region. 
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The integration coefficients 
1C , 

2C , 
5C , 

6C , are found from 

the boundary conditions simulating the continuity of the radial 
stress and displacement to the boundaries, and from the 
conditions (10). In calculations that take into account the 
relationship between the elastic moduli and temperature, the 
attenuation of the plastic flow occurs in the center of the plate, 

a unloading elastoplastic boundary is formed  tm , which, 

with the spread of temperature, moves along the border  tn . 

In the region of unloading  tmr 0  the function in the 

equation of equilibrium (8) takes the form: 
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The solutions of the equilibrium equation (8) (21) in the 

case of a connection between the elastic moduli and the 
temperature are found numerically. After the obtained results 
are substituted in (18) and the stresses in the material of the 
plate are determined. 

Repeated plastic flow - Repeated plastic flow is possible 
only in calculations with constant elastic moduli. In the 
material of the plate, about the boundary nr   at the 
temperature distribution and cooling, the plastic flow 
condition begins to be satisfied kr 42  . Here two 

divergent boundaries are formed  tw  and,  ts  at that 

   tsntw  . In the regions  twr 0  and   Rrts  . The 

stresses and displacements are found from relations (20) and 
(12), (13). In the plastic flow region    tsrtw  , the 

Duhamel-Neumann law, taking into accounts the developing 

irreversible deformations p
re , pe , p

ze  and the existing ones

rp , p , zp , takes the form 
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Using the corollary of the associated law of plastic flow 

pp
r ee 5.0  and the current plastic flow condition 

kr 42  , we find an irreversible deformation 
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Equation (6), taking (22) and (23) into account, is written in 

the form (8), where the functions are 
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We substitute the solutions (8), (24) in (22) and (23), we 

find expressions for stress calculations and irreversible 
deformations in the region of repeated plastic flow. 
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The integration coefficients 7С  and 8С  (time functions), 

together with the coefficients 1C , 2C , 5C , 6C  from the 

relations (12) and (13), (20), are found from the boundary 
conditions simulating the continuity of radial stress and 
displacement on the elastoplastic boundaries  tw  and  ts , as 

well as from conditions (10). To solve the elastic moduli 
taking into account the dependence on the temperature, there 
is no repeated plastic flow. At some point in time, the 
boundaries  tm  and  tn  are joined and the flow ceases to 

exist, there will be complete unloading. 
Residual stresses - As the plate cools, in calculations with 

constant elastic moduli, the repeated plastic flow will fade. 
Irreversible deformations will cease to grow. In the region of 
repeated plastic flow, irreversible deformations formed in the 
course of this flow are added to the existing irreversible 

deformations p
rrr epp  .  

With complete cooling of the stress in the material, the 
plates will create extremely irreversible deformations. 

The functions  ,  ,  ,   in the equation of equilibrium 

with the presence of irreversible deformations are written in 
the form 
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Integrating the equilibrium equations (8), (25), we 

determine the displacements, which we substitute in (18) with 

allowance for 0 , we find the relations for the stresses. 
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The distribution of the residual stresses is shown in Fig. 2, 
and the distribution of irreversible deformations is shown in 
Fig. 3. 

Results- If the cod condition is used, the solution will not 
be, since two conditions will immediately be fulfilled 

 tkr 2  and  tk2 , which contradicts the 

equation of equilibrium, from which it follows Cr  . The 

piecewise linear plastic potential of Ishlinsky-Ivlev makes it 
possible to solve the problem posed. 

 

 

Fig. 2 Distribution of residual stresses in the material of the plate. (a) 
the solution obtained under the condition that the elastic moduli are 

constant; (b) the solution obtained under the condition that the elastic 
moduli depend on temperature 

 

 

Fig. 3 Distribution of irreversible deformations in the material of the 
plate (a) the solution obtained under the condition that the elastic 

moduli are constant; (b) the solution obtained under the condition that 
the elastic moduli depend on temperature 

 
As a result, one can single out that a repeated plastic flow is 

possible only in calculations with constant elastic moduli and 
an area of irreversible deformation is obtained more. The 
absolute value of the irreversible deformations is higher for 
the solution of the problem in which the elastic moduli are 
constant. There are also differences in the distribution and 
level of irreversible deformations of Fig. 3. 
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