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 
Abstract—In this study, a spectral element method (SEM) is 

employed to predict the free vibration of a Euler-Bernoulli beam 
resting on a Winkler foundation with elastically restrained ends. The 
formulation of the dynamic stiffness matrix has been established by 
solving the differential equation of motion which was transformed to 
frequency domain. Non-dimensional natural frequencies and shape 
modes are obtained by solving the partial differential equations, 
numerically. Numerical comparisons and examples are performed to 
show the effectiveness of the SEM and to investigate the effects of 
various parameters, such as the springs at the boundaries and the 
elastic foundation parameter on the vibration frequencies. The 
obtained results demonstrate that the present method can also be 
applied to solve the more general problem of the dynamic analysis of 
structures with higher order precision. 

  
Keywords—Elastically supported Euler-Bernoulli beam, free-

vibration, spectral element method, Winkler foundation.  

I. INTRODUCTION 

HE analysis of dynamic interaction between a structure, 
its foundation and the underlying soil is a classical 

discipline in engineering. Therefore, the concept of beam 
resting on elastic foundation proves to be a significant tool for 
modeling and analysis of the highway, railroad, structural, and 
geotechnical engineering problems such as highway 
pavement, railroad tracks, continuously supported pipelines, 
and strip footings. Different types of foundation models such 
as Winkler, Pasternak, Hetenyi, Kerr, Vlasov and Viscoelastic 
are developed and applied in the analysis of structures on 
elastic foundations. Winkler model is the most well-known 
and widely used mechanical model. According to this model, 
the soil medium is modeled by a set of mutually independent 
elastic vertical spring elements that introduces a linear 
algebraic relationship between the normal displacement of the 
structure and the contact pressure. 

There are a large number of papers on vibration of beams 
resting on Winkler elastic foundation have been published. 
Ozgur et al. [1] used an efficient method for the analysis of the 
free vibration behavior of Euler-Bernoulli beams on an elastic 
foundation with elastic restraints. Kacar et al. [2] studied the 
vibration of a Euler-Bernoulli beam resting on a variable 
Winkler elastic foundation using the differential transform 
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method. Zhou [3] studied a general solution to vibrations of 
beams on a variable Winkler elastic foundation. The exact 
solution to free vibration of elastically restrained Timoshenko 
beam on an arbitrary variable elastic foundation using Green 
Function is presented by Ghannadiasl et al [4]. Rao and Naidu 
[5] studied the free vibration and stability behavior of a simply 
supported uniform beam or column with nonlinear elastic end 
restraints against rotation by using the finite element method. 
Kim and Kim [6] studied the vibration of Euler-Bernoulli 
beam with generally restrained boundary conditions using 
Fourier series. Balkaya et al. [7] employed a simulation 
method called the differential transform method to predict the 
vibration of a Euler–Bernoulli and Timoshenko beam 
(pipeline) resting on an elastic soil. Tazabekova et al. [8] 
calculated the free vibration characteristics for a Euler-
Bernoulli beam on a Winkler linear elastic foundation using 
He’s Variational Iteration Method. 

In this paper, the free vibration of a Euler-Bernoulli beam 
resting on an elastic foundation with elastic restrains is studied 
by using the SEM. First, the efficiency of the proposed 
method is demonstrated via different examples. Then, some 
numerical examples are performed to investigate the effects of 
various parameters, such as the springs at the boundaries, the 
elastic foundation parameter to examine how these parameters 
affect the vibration frequencies. 

II. PROBLEM FORMULATION 

 

Fig. 1 The beam on elastic foundation with elastically restrained ends 
 
Consider the problem of a Euler–Bernoulli beam of length 

  and with constant flexural stiffness EI, resting on a 
Winkler-type foundation with elastically restrained ends is 
depicted in Fig. 1. The governing differential equation of this 
problem can be expressed as 
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where 𝜌 is the mass density, 𝐴 is the cross-sectional area of 
the beam, K𝑤 is the elastic coefficient of Winkler foundation, 
KT0, KTL are translational spring constants and KR0, KRL are 

rotational springs constants and  ,v x t is the transverse 

deflection at the axial location x and time t. 
The solution of (1) can be obtained by the separation 

method of variables.  
 

   , . i tv x t V x e            (2) 

 
Equation (1) can be expressed as: 
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defining 
2

4 wA K

EI

  
 where  is the natural circular 

frequency.  
The solution of (3) can be expressed as 
 

   , cos sin cosh sinh iV x x x x x C         (4) 

 

where  1 2 3 4

T

iC C C C C     is the constant vector. 

The nodal displacement vector  eq  can be deduced by 

using the kinematic conditions at the ends of the beam.  
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where  1 1 2 2

T

eq v v      is the vector of nodal 

displacements and the matrix D  has the form 
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Corresponding to the general problem (Fig. 1), the nodal 

force vector can be deduced by using boundary conditions of 
the system, which are: 
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In matrix form, the forces at the ends of beam are  
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where 

11 0TF K      ,       
12

3F EI  

 
2

21
F EI      ,     

22 0.αRKF   

 
3

31 .sin .cosTLF EI K      3

32 ..cos sinTLEI KF        
 

3

33 ..sinh coshTLF EI K      
 

3

34 ..cosh sinhTLF EI K      
 

2

41 .cos .sinRLEIF K        
 

2

42 ..sin cosRLF EI K        
 

2

43 ..cosh sinhRLEI KF       
 

2

44 ..sinh coshRLEI KF       
 
Using (5) and (6), the expression between the nodal force 

and the degree of freedom vectors can be deduced 
 

      1
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The spectral stiffness matrix for a finite spectral element of 

non-classical boundary conditions can be evaluated by 
 

   1
KB

e F D
                                     (9)                   

III. NUMERICAL RESULTS 

In this section, illustrative examples were presented to 
examine the present problem. Firstly, to validate the proposed 
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method, the results of a beam on elastic foundation with 
classical boundary conditions are presented and compared 
with available results. Then, examples were exhibited to show 
the effects of Winkler elastic foundation and spring stiffness 
parameters on the dimensionless frequency parameters of the 
beam. In this study, the material properties of the beam set all 
values to unity, such as L=I = E = A = ρ = 1. 

A. Validation of the Proposed Method 

In order to show the efficiency and convergence of the 
proposed method, free vibration of a Euler–Bernoulli beam 
resting on a Winkler soil with classical boundary conditions 
are investigated and compared to [7], [2]. 

It should be noted that, by letting KT0= ∞, KTL = 0, KR0 = ∞, 
and KRL = 0, will automatically degenerate into a cantilever 
beam. Frequencies ωi(rad/s) of a simply supported beam can 
be achieved by using the values KT0= ∞, KTL = ∞, KR0 = 0, and 
KRL = 0. 

 
TABLE I 

NATURAL FREQUENCIES ΩI(RAD/S) OF A SIMPLY SUPPORTED BEAM RESTING 

ON A WINKLER FOUNDATION 

Method ω1 ω2 ω3 

SEM 9.92014 39.49108 88.83207 

DTM 9.92014 39.4911 88. 8321 

DQEM 9.92014 39.4913 89.4002 

Exact solution 9.92014 39.4911 88.8321 

 
Firstly, the Winkler elastic parameter is Kw = 1 and the fact 

that the results shown in Tables I and II are in good 
agreements with study given by Balkaya [7] for beams resting 
on the Winkler elastic foundation under different boundary 
conditions confirms the present formulation. 
   

TABLE II 
NATURAL FREQUENCIES ΩI(RAD/S) OF A CANTILEVER BEAM RESTING ON A 

WINKLER FOUNDATION 

Method ω1 ω2 ω3 

SEM 3.65546 22.05717 61.70532 

DTM 3.65546 22.0572 61.7053 

DQEM 3.65544 22.0572 61.7057 

    
In the second example, dimensionless parameters (

4
4 2A

EI

 
 ) of the simply supported-simply supported 

case at different Kw values are given extensively. The present 
results are compared with various results in [2]. The results are 
given in Table III. 

B. Beam on Elastic Foundation with Elastically Restrained 
Ends 

In this example, the analysis is performed to investigate the 
effects of elastic foundation parameters and spring stiffness 
parameters on the dimensionless frequency parameters of the 
beam. 

The results of analysis for both cases are depicted in Figs. 
2-5 fixing the spring stiffness parameters (KT0, KTL, KR0, KRL) 
and varying the foundation stiffness parameter (Kw). 

 

TABLE III 
FREQUENCY PARAMETERS for S-S BEAM on ELASTIC FOUNDATION 

Kw 1  2  3  

 
10 

SEM 3.21929 6.29324 9.42776 

exact 3.219 6.293 9.427 

[2] 3,219291184 6,293239752 9,427762796 

 
50 

SEM 3.48442 6.33298 9.43967 

exact 3,484 6.333 9.439 

[2] 3,484424567 6,33298318 9,439673875 

 
100 

SEM 3.74836 6.38163 9.45450 

exact 3.748 6.382 9.454 

[2] 3,748364250 6,381633293 9,454499603 

 
500 

SEM 4.94388 6.73581 9.57067 

exact 4.944 6.736 9.571 

[2] 4,943880409 6,735814452 9,570668085 

 
1000 

SEM 5.75562 7.11211 9.71018 

exact 5.756 7.112 9.710 

[2] 5,755620336 7,112107040 9,710176091 

 
2000 

SEM 6.76738 7.72357 9.97242 
9.972 

9,972420206 
exact 6.767 7.724 

[2] 6,767383474 7,723570755 
 

TABLE IV 
THE FIRST THREE FREQUENCY PARAMETERS FOR KT0=KTL=10 , KR0=KRL=105 

AND KW=10,…,2000 

Kw 
0 10T TLK K 

   

5

0 10R RLK K 

 1  2  3  

10 2.32961 3.48297 6.33333 

50 2.88684 3.69875 6.37234 

100 3.30597 3.92429 6.42010 

500 4.77405 5.02415 6.76859 

1000 5.65056 5.80705 7.13999 

2000 6.70361 6.79922 7.74538 
 

TABLE V 
THE FIRST THREE FREQUENCY PARAMETERS FOR KT0=KTL=105 , KR0=KRL=10 

AND KW=10,…,2000 

Kw 
5

0 10T TLK K 
   0 10R RLK K 

 1  2  3  

10 4.18893 7.06963 10.05244 

50 4.31881 7.09777 10.06227 

100 4.46626 7.13247 10.07452 

500 5.31480 7.39340 10.17092 

1000 6.00220 7.68499 10.28770 

2000 6.92361 8.18488 10.51000 

     

 

Fig. 2 The effects of different spring parameters on the vibration 
frequencies.KT0=KTL=10 and KR0=KRL=105 
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Fig. 3 The effects of different spring parameters on the vibration 
frequencies. KT0=KTL=105 an KR0=KRL=10 

 

 

Fig. 4 The effects of different spring parameters on the vibration 
frequencies (KT0=KTL=105 an KR0=KRL=105)

  
TABLE VI 

THE FIRST THREE FREQUENCY PARAMETERS FOR KT0=KTL=105, KR0=KRL=105 

AND KW=10,…, 2000 

Kw 
5

0 10T TLK K 
     

5

0 10R RLK K 

 1  2  3  

10 4.75138 7.84851 10.97054 

50 4.84199 7.86911 10.97811 

100 4.94853 7.89464 10.98754 

500 5.62294 8.09047 11.06217 

1000 6.22298 8.31684 11.15337 

2000 7.07083 8.72099 11.32935 

 
TABLE VII 

THE FIRST THREE FREQUENCY PARAMETERS FOR KT0=105, KTL=10 , KR0=105 

,KRL=10 AND KW=10,…,2000 

Kw 
5

0 10TK 
  

5

0 10RK  10TLK 
 

10RLK 

 1  2  3  

10 2.83173 5.34978 8.36455 

50 3.19573 5.41393 8.38158 

100 3.52445 5.49104 8.40273 

500 4.85217 6.01512 8.56644 

1000 5.69824 6.52178 8.75871 

2000 6.73234 7.28018 9.10918 

 
Fig. 2: KT0=KTL=10, KR0=KRL=105 and Kw varying. 

Changing the foundation stiffness parameter (Kw) results in an 
increase in the first, second and third mode. 

Fig. 3: KT0=KTL=105, KR0=KRL= 10 and Kw varying. 
Changing the foundation stiffness parameter (Kw) results in an 
increase in the first mode and second mode whereas third 

mode is not much affected from the existence of the 
foundation stiffness parameter. 
 

 

Fig. 5 The effects of different spring parameters on the vibration 
frequencies (KT0=105, KR0=105, KTL=10, KRL=10). 

 
Figs. 4 and 5: fixing the KT0, KTL, KR0, KRL and Kw 

varying. Changing the foundation stiffness parameter (Kw) 
results in an increase in the first mode and second mode, 
whereas third mode is not much affected from the existence of 
the foundation stiffness parameter. 

IV. CONCLUSION 

This study presents the free vibration of elastically 
restrained Euler-Bernoulli beam on a Winkler-type elastic 
foundation using SEM. Based on the exact solution of the 
differential equation of vibration, the dynamic stiffness matrix 
of the system is formulated in the frequency domain. At first, 
the accuracy and efficiency of the proposed method have been 
evaluated by comparing the obtained results with those 
obtained by other methods in literature for special cases 
boundary conditions simply supported and cantilever beams. 
The results obtained are found to be in close agreement with 
the exact solution. In addition, some numerical examples have 
been presented to show the effect of elastic supports stiffness 
parameters at the beam ends, foundation stiffness parameters 
on the natural frequencies parameters. Also, the natural 
frequency parameter increases as the stiffness of the system 
increases. It should be noted that the increase in the stiffness 
of the translational springs is more effective on the frequency 
parameters of the system than the increase in the stiffness of 
the rotational springs. 
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