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Abstract—This paper presents a generalized formulation for the 

problem of buckling optimization of anisotropic, radially graded, 
thin-walled, long cylinders subject to external hydrostatic pressure. 
The main structure to be analyzed is built of multi-angle fibrous 
laminated composite lay-ups having different volume fractions of the 
constituent materials within the individual plies. This yield to a 
piecewise grading of the material in the radial direction; that is the 
physical and mechanical properties of the composite material are 
allowed to vary radially. The objective function is measured by 
maximizing the critical buckling pressure while preserving the total 
structural mass at a constant value equals to that of a baseline 
reference design.  In the selection of the significant optimization 
variables, the fiber volume fractions adjoin the standard design 
variables including fiber orientation angles and ply thicknesses. The 
mathematical formulation employs the classical lamination theory, 
where an analytical solution that accounts for the effective axial and 
flexural stiffness separately as well as the inclusion of the coupling 
stiffness terms is presented. The proposed model deals with 
dimensionless quantities in order to be valid for thin shells having 
arbitrary thickness-to-radius ratios. The critical buckling pressure 
level curves augmented with the mass equality constraint are given 
for several types of cylinders showing the functional dependence of 
the constrained objective function on the selected design variables. It 
was shown that material grading can have significant contribution to 
the whole optimization process in achieving the required structural 
designs with enhanced stability limits.  

 
Keywords—Buckling instability, structural optimization, 

functionally graded material, laminated cylindrical shells, external 
hydrostatic pressure. 

I. INTRODUCTION 
TRUCTURAL applications of composite materials are 
increasing in several areas where high stiffness/weight 

ratio and long fatigue life are most beneficial [1]. A common 
application is the design of composite cylindrical shells under 
the action of external hydrostatic pressure, which might cause 
collapse by buckling instability [2], [3]. Examples are the 
underground and underwater pipelines, rocket motor casing, 
boiler tubes subjected to external steam pressure, and 
reinforced submarine structures. Previous numerical and 
experimental studies have shown that failure due to structural 
buckling is a major risk factor for thin laminated cylindrical 
shells. Anastasiadis and Simitses [2] studied the buckling of 
long laminated cylindrical shells under external radial pressure 
using higher order deformation theory. Their formulation, 
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however, was restricted to symmetric lay-ups with respect to 
the mid-surface, to eliminate the coupling terms, as well as 
constant-directional pressure. More conservative results for a 
true fluid pressure were given by Rasheed and Yousif [3], [4] 
who applied standard energy formulation to derive the 
kinematics and equilibrium equations and the classical 
lamination theory to express the needed constitutive 
equations. Another refined treatment of the inplane buckling 
of rings was given by Hodges [5]. Formulation was based on a 
non-linear theory for stretching and bending of anisotropic 
beams having constant initial curvature in their plane of 
symmetry with the only restriction of small strain in the 
prebuckling state. 

Recently, the incorporation of material grading in which the 
physical and mechanical properties vary spatially can play an 
important role in the design optimization of a variety of 
structural systems [6]. FGMs have been comprehensively 
researched, and are almost a commercial reality offering great 
promise in several applications. The basic knowledge on the 
use of FGMs and their wide applications can be found in [7]. 
Considering their applications in composite structures, Chen 
and Gibson [8] performed experimental and theoretical 
analyses to determine the in-plane fiber distribution in 
unidirectional reinforced composites. They considered 
distributions represented by polynomial functions, and applied 
Galerkin’s method to calculate the required coefficients from 
the resulting algebraic equations. Chi and Chung [9] studied 
the mechanical behavior of FGM plates under transverse 
loading, where a constant Poisson’s ratio and variable moduli 
of elasticity throughout the plate thickness was assumed. The 
volume fraction of the constituents materials were defined by 
simple power-laws, and closed form solutions using Fourier 
series were given for the case of simply-supported plates. 
Another work [10] considered buckling of simply supported 
three-layer circular cylindrical shell under axial compressive 
load. Classical shell theory was implemented under the 
assumption of very small thickness/radius and very large 
length/radius ratios. A recent paper by Batra and Iaccarino 
[11] dealt with radial deformation of FGM cylinders that 
loaded by hydrostatic pressures from the inner and outer 
surfaces. Closed-form solutions were given for axisymmetric 
plane strain of isotropic and incompressible second-order 
elastic material with moduli varying only in the radial 
direction.  In the field of structural optimization, several 
papers appeared on the topic of buckling and stability 
optimization. Maalawi [12] presented a model for buckling 
optimization of elastic columns under mass equality 
constraint. He showed that the use of piecewise models in 
structural optimization gives excellent results and can be 
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promising for similar applications. Another work by Maalawi 
and El-Chazly [13] dealt with both stability and dynamic 
optimization of multi-element beam type-structures. They 
formulated the associated optimization problems in a standard 
mathematical programming solved by the interior penalty 
function technique. In the field of aeroelasticity, Librescu and 
Maalawi [6] introduced the underlying concepts of using 
material grading in optimizing subsonic wings against 
torsional instability. They developed exact mathematical 
models allowing the material physical and mechanical 
properties to change in the wing spanwise direction, where 
both continuous and piecewise structural models were 
successfully implemented. For fibrous laminated composite 
structures, the optimization of ply angles and thicknesses 
could allow the properties of the laminate to be tailored to a 
specific application. Chattopadhyay and Ferreira [14] 
performed a study to investigate the maximum buckling load 
of a cylinder subject to ply stress constraints using material 
and geometric design variables. A closed form shell equation 
was utilized for the buckling load calculation. 

Little may be found in the literature that deals with buckling 
optimization of FGM cylinders under external hydrostatic 
pressure. The aim of the present study is, therefore, to 
incorporate the effect of changing the fiber volume fraction in 
each lamina aiming at the achievement of enhanced stability 
limits of such shell-type structures. Based on the mathematical 
concepts developed in a recent paper by the author [15], a 
useful optimization tool has been built for designing efficient 
configurations with improved buckling stability. This allows 
the search for optimal volume fractions that maximize the 
buckling pressure without violating the imposed mass 
constraint and manufacturing restrictions as well. Actually, 
substantial improvement in the overall stability level has been 
attained showing the usefulness of the proposed optimization 
model in arriving at the needed optimum designs for a variety 
of thin-walled anisotropic long cylinders having arbitrary 
thickness/radius ratio. 

II. CONSTITUTIVE RELATIONSHIPS 
The structural model used to represent the composite 

laminated shell-type structures under study is schematically 
shown in Fig. 1. The 1, 2 and 3 are the principal directions of 
an orthotropic lamina, defined as follows: 

- Direction (1): Principal fiber direction, also called 
fiber longitudinal direction. 

- Direction (2): In-plane direction perpendicular to 
fibers, transversal direction. 

- Direction (3): Out-of-plane direction perpendicular to 
fibers; normal direction. 

Table I gives the mathematical formulas for determining the 
different elastic moduli for known type, properties and 
volume fractions of the fiber and matrix materials. The factor 
ξ is called the reinforcing efficiency and can be determined 
experimentally for specified types of fiber and matrix 
materials. Experimental results fall within a band of 1<ξ<2. 

Usually, ξ is taken as 100% for theoretical analysis 
procedures, especially in case of glass and carbon composites.  

 
 

Fig. 1 Laminated composite ring/cylindrical shell under external 
pressure  

(u displacement in the axial direction x, v in the tangential direction 
s, w in the radial direction z). 

TABLE I  
COMPOSITE PROPERTIES FORMULAS [16] 

Elastic 
Propert

y 

Mathematical Formula* 

E11 Em Vm+ E1f Vf 

E22 Em (1 +ξηVf)/(1-ηVf);     η=(E2f –Em)/(E2f + ξEm) 
G12 Gm (1 +ξηVf)/(1-ηVf);    η=(G12f –Gm)/(G12f + 

ξGm) 

12ν  ν m Vm+ f12ν  Vf 
*Subscripts “m” and “f” refer to properties of matrix and fiber materials, 
respectively.  Assuming no voids are present, then Vm+Vf =1. 
 

For a generally orthotropic material, the stress-strain 
relations are: 
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The elements of the K-th lamina stiffness matrix, [Q ], 
depend on the elastic properties and fiber orientation angle. 
Their general mathematical expressions are given in appendix 
(A). Using Kirchoff plate theory [18], the displacements of a 
material point distance z from the middle surface are: 
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where ( ) ( ) ( )sxsxsxuo ,w  and ,v ,, oo are the displacements of a 
generic point (x, s) on the shell middle surface (z=0) in x, s 
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and z directions, respectively. The strain-displacement 
relations in terms of the middle surface strains and shell 
curvatures are given in the following [18]: 
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The middle surface strains and curvatures are: 
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The resultant forces and moments per unit length applied at 
the middle surface are defined by the integrals: 
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where h is the total shell thickness and zk-1 and zk , k=1,2,…n 
are the coordinates of the k-th lamina boundaries measured 
from the middle surface. Substituting for the stresses in terms 
of strains as defined in (1) and (3), we get:  
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hzz kk /ˆ =  is a dimensionless coordinate, and zzh kkk ˆˆˆ 1−−=  
is the dimensionless thickness of the kth lamina.   

III. ANALYTICAL BUCKLING MODEL 
In order to restrict the time of calculation to acceptable 

values for the developed optimization tool, the analytical 
formulation shall be based on the derivations given in [4] and 
[15], which are based on the assumption of small hoop strain 
and rotation of circumferential elements. Such an approach 
provides good sensitivity to lamination parameters, and 
allowing the search for the needed optimal stacking sequences 
and volume fractions, which maximizes the buckling pressure 
in a reasonable computational time. The governing differential 
equations of anisotropic long cylinders subjected to external 
pressure are [18]:  
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where the prime denotes differentiation with respect to 
angular position ϕ, and ./)( Rwv oo ′−=β  Two possible 
solutions for (7) can be obtained; one for the pre-buckled state 
and the other termed as the bifurcation solution obtained by 
perturbing the displacements about the pre-buckling solution. 
For laminated composite long cylindrical shells the only 
significant strain components are the hoop strain ( ε o

ss ) and the 
circumferential curvature ( )κ ss  of the mid-surface. The out-
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The final closed form solution for the critical buckling 

pressure is given by the following mathematical expression 
[4], [15]: 
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It is to be noticed here that the formula given in (9) is only 
valid for thin cylinders with thickness-to-radius ratio (h/R)≤ 
0.1. In case of thin orthotropic cylinders with fibers parallel to 
x-axis and ψ=0 and α<<1, (9) reduces to:   

  )1(4/E )/( 211222
3 νν−= Rhpcr                                          (10) 
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where E22 is the hoop modulus, ν12 Poisson’s ratio for axial 
load andν21=ν12E22/E11. In cases with fibers perpendicular to 
the shell axis, E22 should be replaced by E11. 

IV. OPTIMIZATION PROBLEM STATEMENT 
The associated optimization problem shall seek 

maximization of the critical buckling pressure pcr (i.e. 
minimization of -pcr) while maintaining the total structural 
mass constant at a value equals to that of a reference baseline 
design. Optimization variables include the fiber volume 
fraction (Vfk), thickness (hk) and fiber orientation angle (θk) of 
the individual k-th ply, k=1, 2,…..n (total number of plies). 
Side constraints are always imposed on the design variables 
for geometrical, manufacturing or logical reasons to avoid 
having unrealistic odd shaped optimum designs.  
 

A. Definition of the Baseline Design  
An essential phase in formulating an optimization problem 

is to appropriately define a baseline design to which the 
resulting optimal designs can be compared. The baseline 
design has been selected to be a unidirectional, orthotropic, 
single layer cylinder with the fibers parallel to the shell axis x 
and with equal volume fractions of fiber and matrix materials, 
i.e. Vf=Vm= 50%. Optimized shell designs shall have the same 
total structural mass, properties of the matrix and fiber 
materials, mean radius R and total shell thickness h of the 
baseline design. Therefore, the preassigned parameters, which 
are not subject to change in the optimization process, ought to 
be the type of material of construction, mean radius and total 
thickness of the shell.  
 

B. Optimization Model 
Coupling the analytical buckling shell model to a standard 

nonlinear mathematical programming procedure can perform 
the search for the required optimized lamination. The design 
variable vector, xd

r , which is subject to change in the 
optimization process, is defined as: 
 
xd
r =(Vfk, hkˆ ,θk)k=1,2,…n                                                      (11)   

 
where the dimensionless thickness of the k-th lamina is 
defined by hhh kk /ˆ = . The total structural mass M is kept equal 
to the baseline design mass M0, so the dimensionless mass 

MMM 0/ˆ =  equals 1. Since the fiber volume fraction of the 
baseline design Vf0 equals 50%, a feasible design must satisfy 

the constraint equation ∑ =
=

n

k
kfk hV

1
5.0ˆ , where Vfk is the fiber 

volume fraction of the k-th lamina. Therefore, the buckling 
optimization problem considered herein might be cast in the 
following standard mathematical programming form: 
 
Minimize            - pcrˆ                                                      

subject to          5.0ˆ
1
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k
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                         1ĥ
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1k
k =∑

=
 

                         VL ≤ Vfk≤ VU  
                         hL ≤  hkˆ ≤  hU,     

                          θL ≤  θk  ≤  θU      k=1, 2, ….n                          (12) 
 
where ppp crocrcr /ˆ =  is the dimensionless critical buckling 
pressure and the subscripts "L" an "U" denote the lower and 
upper bounds imposed on the various design variables. In a 
real-world manufacturing process, the filament-winding 
angles θk must be chosen from a limited range of allowable 
lower (θL) and upper (θU) values according to technology 
references. This optimization problem may be thought as a 
search in a 3n-dimensional space for a point corresponding to 
the minimum value of the objective function and such that it 
lie within the region bounded by subspaces representing the 
constraint functions [19]. The MATLAB Optimization Toolbox 
[20] offers routines named “fmincon” and “fminsearch” 
implementing both constrained and unconstrained 
formulations. The MATLAB facilities are invoked for 
interacting to the routines, which calculates the required 
numerical values of the original objective function and 
constraints. The two equality constraints in (12) can be used to 
discard any two variables of the whole set of design variables 
defined in (11), reducing the dimensionality of the 
optimization problem to (3n-2). 

V. RESULTS AND DISCUSSIONS 
The given approach outlined before shall be applied to 

several cases of study of thin-walled, anisotropic, radially 
graded, long cylinders subjected to external hydrostatic 
pressure. Table II gives the different properties of the chosen 
composite materials, which have favorable characteristics and 
are desirable for the manufacturing of cylindrical shell-type 
structures [4]. Appropriate values for the orthotropic 
properties and critical buckling pressure (pcro) of the baseline 
design are given in Table III. 
 

TABLE II 
COMPOSITE MATERIAL PROPERTIES [1] 
            Fiber                                                 Matrix Property* 

         E-glass   S-glass    Carbon          Epoxy      Vinyl-
ester  
                                        (AS-4)         (3501-6)                   

Young’s moduli 
(GPa) 

Shear moduli 
(GPa) 

 

Poisson’s ratio 
 

Mass density 
(g/cm3) 

 E1f  :  73          86          235       Em :    4.30            3.50 
 E2f  :  73          86          15                    
 
G12f :  30          35          27        Gm :     1.60            1.30 
 
ν12f :  0.23       0.23      0.20        νm :      0.35            0.35 
 
 ρf   :  2.54       2.49      1.81        ρm :      1.27            1.15 

 
The first case study to be examined herein is a long thin-

walled cylindrical shell fabricated from E-glass/epoxy 
composites with the lay-up made of only two plies (n=2) 
having fibers parallel to the x-axis (i.e. θ1=θ2=0). Considering 
the case with no side inequality constraints imposed on the 
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design variables, Fig. 2 shows the developed p̂cr -level 
curves, augmented with the mass equality constraint, in (Vf1-
ĥ1 ) design space.  

 
TABLE III 

BUCKLING PRESSURE OF THE BASELINE DESIGN  
Orthotropic mechanical properties 

(GPa)* 
 

Material Type 
E11 E22  G12   ν12 

pcro x (h/R)3 
  “GPa” 

E-
Glass/Epoxy 

38.65 11.18 4.21 0.29 

S-Glass /Epoxy 45.15 11.404 4.285 0.29 
Carbon/Epoxy 119.65 7.60 4.16 0.275 
E-Glass/VinylEster 38.25 9.325 3.50 0.29 

2.865 
2.913 
1.909 
2.379 

* Volume fractions: Vf =Vm= 50%. Reinforcing efficiency factor ξ=100%. 
 

 
Fig. 2 The optimum tent-like design space containing p̂cr -isomerits 

augmented with the mass equality constraint 0.1M̂ = . Case of two-
layer, E-glass/epoxy cylinder with fibers parallel to cylinder axis 

(θ1=θ2=0). 
 

 
It is seen that such a constrained objective function is well 

behaved in the selected design space having the shape of a 
tent with its ceiling formed by two curved lines, above which 
the mass equality constraint is violated. Their zigzagged 
pattern is due to the obliged turning of many contours, which 
are not allowed to penetrate the tent’s ceiling and violate the 
mass equality constraint. The curve to the left represent a 
100% fiber volume fraction of the outer ply, Vf2, while the 
other curve to the right represents zero volume fraction, that is 
Vf2=0%. Two local minima with p̂cr  near a value of 0.90 can 

be observed: one to the lower left zone near the design point 
(Vfk, ĥk )k=1,2 = (0.15, 0.25), (0.6165, 0.75) while the other lies 
at the upper right zone close to the point (0.625, 0.745), 
(0.135, 0.255). This represents degradation in the stability 
level by about 10.6% below the baseline value. On the other 
hand, the unconstrained absolute optimum value of the 
dimensionless critical buckling pressure was found to be 
1.7874 at the design point (1.0, 0.145), (0.415, 0.855). A more 

realistic optimum design has been obtained by imposing the 
side constraints: 0.25≤ Vfk≤ 0.75, k=1, 2. The attained solution 
is ( pcrˆ )max =1.2105 at the design point (0.75, 0.215), (0.4315, 
0.785), showing that good shell designs with higher stability 
level ought to have a thinner inner layer with higher fiber 
volume fraction and a thicker outer layer with less volume 
fraction.  
 

 
 

Fig. 3 p̂cr - Isomerits in (Vf1-θ) design space under mass equality 

constraint. Case of long cylinder constructed from two balanced, E-
glass/epoxy layers. 

  
To investigate the effect of the ply angle, another case of 

study has been considered for a cylinder constructed from two 
balanced plies (± θ) with equal thicknesses and same material 
properties of E-glass/epoxy composites. This type of stacking 
sequence is widely used in filament wound circular shells 
since such a manufacturing process inherently dictates 
adjacent (± θ) layers. Fig. 3 shows the developed isomerits in 
the (Vf1-θ) design space which are well behaved, monotonic 
and symmetric about the horizontal line of zero ply angles. A 
local minimum can be observed near the design point (Vf1,θ) = 
(0.375, 0.0) with p̂cr =0.9985, indicating a degradation in the 

stability level below the baseline design. It is also seen that the 
absolute maximum occurs at the design points 
(Vf1,θ)=(0.5,± 90o) with ( p̂cr )max=3.45766, which means that 

the dimensional critical pressure, pcr=3.45766x2.865=9.906 
x(h/R)3 GPa. Fig. 4 depicts the final global optimum designs 
of cylinders constructed from adjacent (+ θ) and (- θ) plies for 
the different types of the selected composite materials. All 
shall have the same optimal solution (Vfk, ĥk )k=1,2 = (0.75, 

0.215), (0.4315, 0.785), independent upon the shell thickness-
to radius ratio (h/R), a major contribution of the given 
formulation. Two distinct ranges can be observed; 0o<θ <30o 
and 30o<θ <90o. In the former, the glass fibrous composites 
excels the carbon ones in resisting buckling, while in the 
second range the buckling pressure of carbon composite is 
much exceeding that of the glass types, reaching a remarkable 
value of  32.686 (h/R)3 GPa for hoop wound cylinders. 
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Fig. 4 Variation of the absolute maximum buckling pressure with ply 
angle for balanced (± θo) cylinders with structural mass preserved 

constant. 
 

Other cases of study include optimization of multi-layered 
cylinders made of AS-4 carbon/epoxy composites. Two 
different constructions proposed by Rasheed and yousif [3] 
will be considered herein. The first one is called a lumped-
layup construction with the inner half of its wall composed of 
90o hoop layers and the outer half made of ±20o helically 
wound layers, as shown in Table IV. The second type, given 
in Table V, has different stacking sequence where the ±20o 
layers are sandwiched in between outer and inner 90o hoop 
layers. The attained Optimum solutions in both cases indicate 
substantial increase in the critical buckling pressure as 
compared with the non-optimal solutions presented in [3], [4]. 
It is also seen that good designs shall have thicker hoop 
wound layers with higher volume fraction of the fibers near 
the upper limiting values imposed by the manufacturers. On 
the other hand, the sandwiched helically wound layers are 
seen to be thinner and have less fiber volume fractions. 
 

TABLE IV 
BUCKLING OPTIMIZATION OF [90O/±20O] LAYUP,  

AS-4 COMPOSITE CYLYNDER  
 
(h/R)                       Pcr,max =9.37x (10h/R)3 MPa 
                                            
                    Reference [3]     Present Optimum    % Gain 
                    
1/50                  0.064                  0.075               17.19% 
1/25                  0.516                  0.596               15.50%    
1/20                  1.013                  1.171               15.60% 
1/15                  2.418                  2.776               14.81% 
 
 
 
 
 
 
 

 
 

Optimum solution 

Two Helical layers: (Vf, ĥ ,θ) = (0.250, 0.225, ±20o)  

Two Hoop layers: (Vf, ĥ ,θ) = (0.705, 0.275, 90o)     

 
 

TABLE V 
BUCKLING OPTIMIZATION OF [90O/±20O/90O] LAYUP,  

AS-4 COMPOSITE CYLYNDER  
 
(h/R)                       Pcr,max =36.634x (10h/R)3 MPa 
                                            
                    Reference [3]     Present Optimum    % Gain 
                    
1/50                  0.231                  0.293               26.84% 
1/25                  1.848                  2.344               26.84%    
1/20                  3.608                  4.579               26.91% 
1/15                  8.552                10.854               26.92% 
 

 
 

Optimum solution 

Two Helical layers: (Vf, ĥ ,θ) = (0.2925, 0.235, ±20o)  

Two Hoop layers: (Vf, ĥ ,θ) = (0.6835, 0.265, 90o)     

VI. CONCLUSION 
An efficient mathematical approach for enhancing the 

buckling stability limits of thin-walled anisotropic long 
cylinders with radial material grading has been developed. 
The formulation of an optimal lamination design against 
buckling has been thoroughly investigated, where useful 
design charts are given for several types of cylinders showing 
the functional dependence of the critical buckling pressure on 
the fiber volume fractions, ply thickness and stacking 
sequence as well. Side constraints are imposed on the design 
variables in order to avoid having odd-shaped optimized 
configurations with unrealistic values of the volume fractions 
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and ply angles. An analytical buckling model has been 
implemented, which provides good sensitivity to lamination 
parameters, and allowing the search for the needed optimal 
design in an acceptable computational time. The proposed 
model deals with dimensionless quantities in order to be 
applicable for handling thin shells having arbitrary thickness-
to-radius ratios, which is a major contribution of this work. 
Results have indicated that the optimized laminations induce 
significant increases, always exceeding several tens of 
percent, of the buckling pressures with respect to the reference 
or baseline design. Types of composites considered included 
E-glass/epoxy, S-glass/epoxy, carbon/epoxy and E-
glass/vinyl-ester. It has been shown that the overall stability 
level of the laminated, radially graded composite shell 
structures under considerations can be substantially improved 
by finding the optimal ply thicknesses and fiber volume 
fractions without violating both the mass equality constraint as 
well as any of the imposed side constraints. The stability 
limits of the optimized shells have been substantially 
enhanced as compared with those of the reference or baseline 
designs. Future aspects shall consider buckling optimization 
of cylindrical shells with material grading in both the 
circumferential and axial directions.  

APPENDIX (A) 
The reduced form of Hooke’s law for an orthotropic 

homogeneous lamina in a plane stress state is [1]: 
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where the square matrix [Q] is defined in terms of material 
properties as follows: 
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E11 and E22  are the young’s  moduli in the 1  and 2  
directions, G12, the  shear  modulus,  and 12ν  the major 
Poisson’s  ratio. The elements of the K-th lamina stiffness 

matrix, [Q ], which is now referred to the reference axes of 
the cylindrical shell (x, s, z), are given by: 
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The terms Ui are solely function of the material properties 
and, hence the volume fractions. They are no longer termed as 
invariant as has been cited by several investigators, and are 
defined by the following expressions [17]: 
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