Bounds On The Second Stage Spectral Radius Of Graphs

S.K.Ayyaswamy, S.Balachandran and K.Kannan

Abstract

Let G be a graph of order n . The second stage adjacency matrix of G is the symmetric $n \times n$ matrix for which the $i j^{t h}$ entry is 1 if the vertices v_{i} and v_{j} are of distance two; otherwise 0 . The sum of the absolute values of this second stage adjacency matrix is called the second stage energy of G. In this paper we investigate a few properties and determine some upper bounds for the largest eigenvalue.

Keywords-Second stage spectral radius; Irreducible matrix; Derived graph.

I. Introduction

Let G be a connected graph with vertex set $V(G)=$ $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. The second stage adjacency matrix is denoted by $A_{2}(G)$ and the second stage energy by $E_{2}(G)$. As it is symmetrical it will be an adjacency matrix for some graph G^{\prime} which we call the derived graph of G. If Δ^{\prime} is the maximum degree of G^{\prime} then clearly $\Delta^{\prime} \leq \Delta$. Irreducibility of the adjacency matrix is related to the property of connectedness[2]. Hence $A_{2}(G)$ is irreducible if and only if the derived graph G^{\prime} is connected. Proposition 2.1 guarantees plenty of graphs for which their derived graphs are connected, for example, the Peterson graph whose derived graph is a 6-regular graph. In this paper we consider only those graphs for which $A_{2}(G)$ is irreducible.

II. SOME PROPERTIES

The derived graph of any odd cycle $C_{2 m-1}=<$ $v_{1}, v_{2}, \ldots, v_{2 m-1}>$ is the odd cycle $C_{2 m-1}=<$ $v_{1}, v_{3}, v_{5}, \ldots, v_{2 m-1}, v_{2}, \ldots, v_{2 m-2}>$. This motivates to enunciate the following proposition:

Proposition 2.1. Let G be a graph having $C_{2 m-1}=<$ $v_{1}, v_{2}, \ldots, v_{2 m-1}>$ as an induced subgraph for some $m \geq 3$. If (i) $\Delta \leq n-2$ and
(ii) for every $u \in V(G)-V\left(C_{2 m-1}\right)$, there exist at least one $v_{j} \notin N(u), j \in\{1,2,, \ldots, 2 m-1\}$, then the derived graph is connected.

Proof: As mentioned above the induced subgraph $<v_{1}, v_{2}, \ldots, v_{2 m-1}>$ is connected in G^{\prime}. Choose any vertex $u \neq v_{i}$ for all $i=1,2, \ldots, 2 m-1$ and let v_{j} be a vertex in $C_{2 m-1}$ which is not in $N(u)$.
Case 1. $N(u) \cap\left\{v_{1}, v_{2}, \ldots, v_{2 m-1}\right\}=\phi$.

[^0]Let $u=u_{1} u_{2} \ldots u_{r}=v_{i}$ be the shortest path from u to $C_{2 m-1}$ of length r .
Case 1.1. r is even, then we have
$d\left(u=u_{1}, u_{3}\right)=d\left(u_{3}, u_{5}\right)=\ldots=d\left(u_{r-2}, u_{r}=v_{i}\right)=2$ and so the derived graph has the path $u u_{3} u_{5} \ldots u_{r-2} v_{i}$.
Case 1.2. r is odd, then we have $u u_{3} u_{5} \ldots u_{r-1} v_{i+1}$ is a path in the derived graph.
Case 2. $N(u) \cap\left\{v_{1}, v_{2}, \ldots, v_{2 m-1}\right\} \neq \phi$.
Choose a vertex $v_{k} \in N(u) \cap\left\{v_{1}, v_{2}, \ldots, v_{2 m-1}\right\}$ such that v_{k} is nearest to v_{j}. If $k=j \pm 1$, then $d\left(u, v_{j}\right)=2$. Otherwise v_{l} is of distance two from u where $l=k \pm 1$, ie., $d\left(u, v_{l}\right)=2$.

Proposition 2.2. Let G be a r-regular graph with order n such that $n=2 r+1$. Then the derived graph G^{\prime} of G is also r-regular.
Proof: Clearly r is even. Choose any vertex v_{i}. Let v_{k} be a vertex such that $v_{k} \in N\left(v_{i}\right)$.
Claim: $d\left(v_{k}, v_{i}\right)=2$. Otherwise, $v_{k} \notin N\left(v_{j}\right)$ for all $v_{j} \in N\left(v_{i}\right)$. This implies $\operatorname{deg}\left(v_{k}\right) \leq(2 r+1)-(r+2)=r-1$, which is a contradiction since $\operatorname{deg}\left(v_{k}\right)=r$.
Remark: Converse of the above proposition is not true. For example, consider any odd cycle other than C_{5}. It is 2-regular and its derived graph being an odd cycle is also 2-regular. But $n \neq 2 r+1$.

Proposition 2.3. The derived graph of circulant graph is a circulant graph.
Proof: Let G be a circulant graph formed by the set $S \subseteq\{1,2, \ldots, n\}$. Then $i \in S$ if and only if $n-i \in S$ [1]. Consider a vertex v_{i}. Let $v_{k} \in D\left(v_{i}\right)$. Then there exists a vertex v_{j} such that v_{j} is adjacent to v_{i} and v_{k}. Then by the definition of circulant graph, v_{n-k} is also adjacent to v_{j} and so $v_{n-k} \in D\left(v_{i}\right)$. Thus, G^{\prime} is formed by a set $S^{\prime} \subseteq\{1,2, \ldots, n\}$ such that $k \in S^{\prime}$ if and only if $n-k \in S^{\prime}$ and hence G^{\prime} is also circulant.

Proposition 2.4. Given any positive integer n of the form p^{r} where p is a prime number and r is a positive integer, there exists a graph G for which the second stage energy is $2(p-1) p^{r-1}$.
Proof: Let G be the complement of the circulant graph H formed by the set $S=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\}$ where α_{i} 's are all numbers less than n and prime to n . Then the derived graph of G is the circulant graph H whose energy is $2(p-1) p^{r-1}$ [1]. Hence $E_{2}(G)=E(H)=2(p-1) p^{r-1}$.

Theorem 2.5. Let $D\left(v_{i}\right)=\left\{v_{j}: d\left(v_{i}, v_{j}\right)=2\right\}$. Then for each fixed
$i=1,2, \ldots, n,\left|D\left(v_{i}\right)\right|=S_{1}-S_{2}$, where

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934
Vol:3, No:11, 2009
$\left.\begin{array}{llll}S_{1} & \sum_{v_{j} \text { adjtov }_{i} \text { and } v_{j} \text { nonpendent }} & \left|N\left(v_{j}\right)\right| & - \\ \sum_{v_{j} \text { adjtoviandv }}^{j} \text { nonpendent } & \mid N\left[v_{i}\right]\end{array} \quad \cap\left(v_{j}\right) \right\rvert\, \quad$ and $S_{2}=\sum_{v_{k} \in D\left(v_{i}\right)}\left(l_{k}-1\right)$, where l_{k} is the number of vertices which are adjacent to both v_{i} and v_{k}.
Proof: If we take any vertex v_{j} adjacent to v_{i}, then all members of $N\left(v_{j}\right)$ need not be in $D\left(v_{i}\right)$; because some neighbours of v_{j} may be neighbours of v_{i} and so v_{j} can contribute only $\left|N\left(v_{j}\right)\right|-\left|N\left[v_{i}\right] \cap N\left(v_{j}\right)\right|$ number of members to $D\left(v_{i}\right)$. Similarly for all other neighbours of v_{i}. Therefore, the total number of members contributed by the neighbours of v_{i} is
$\sum_{v_{j} \text { adjtov }_{i} \text { and }_{j} \text { nonpendent }} \quad\left\{\left|N\left(v_{j}\right)\right|-\left|N\left[v_{i}\right] \cap N\left(v_{j}\right)\right|\right\}$, which can also be written as
$\begin{array}{ll}S_{1}=\sum_{v_{j} \text { adjtoviand } v_{i} \text { nonpendent }} \quad\left|N\left(v_{j}\right)\right| & - \\ \sum_{v_{j} \text { adjtov } v_{i} \text { and } v_{j} \text { nonpendent }}\left|N\left[v_{i}\right] \cap N\left(v_{j}\right)\right| .\end{array}$
Among these S_{1} members, some may appear more than once. For example, a member v_{k} of $D\left(v_{i}\right)$ may have neighbours $v_{1}, v_{2}, \ldots, v_{l_{k}}$ which all are in turn neighbours of v_{i} also. Thus, v_{k} is repeated say l_{k} times in S_{1}. But it should be taken only once. Thus we get the required result.

Corollary 2.6. If the second stage adjacency matrix is irreducible, then
$\left|D\left(v_{i}\right)\right| \leq 2 m-2 d_{i}-\delta+\epsilon_{F_{i}}$ where $\epsilon_{F_{i}}$ is the number of pendent vertices adjacent to v_{i}
Proof: We observe that v_{i} is included as many times as $d_{i}-\epsilon_{F_{i}}$
in $\sum_{v_{j} \text { adjtov }_{i} \text { and } v_{j} \text { nonpendent }}\left|N\left[v_{i}\right] \cap N\left(v_{j}\right)\right|$.
Hence $\sum_{v_{j} \text { adjtoviandv } v_{j} \text { nonpendent }}\left|N\left[v_{i}\right] \cap N\left(v_{j}\right)\right| \geq d_{i}-\epsilon_{F_{i}}$. Therefore

$$
\begin{equation*}
D\left(v_{i}\right) \leq S_{1} \leq \sum_{v_{j} \text { adjtoviandv }_{j} \text { nonpendent }}\left|N\left(v_{j}\right)\right|-d_{i}+\epsilon_{F_{i}} \tag{1}
\end{equation*}
$$

Since the second stage adjacency matrix is irreducible, for each vertex v_{i}, there is atleast one vertex v_{k} which is non adjacent to v_{i}. Therefore

$$
\begin{equation*}
\sum_{v_{j} \text { adjtovi }_{i} \text { andv } v_{j} \text { nonpendent }}\left|N\left(v_{j}\right)\right| \leq 2 m-d_{i}-\delta \tag{2}
\end{equation*}
$$

Combining (1) and (2), we get $D\left(v_{i}\right) \leq 2 m-2 d_{i}-\delta+\epsilon_{F_{i}}$.

III. Bounds for the largest eigenvalue

Theorem 3.1. Let G be a graph with minimum degree $\delta \geq 1$ and maximum degree Δ, then
$\rho(G) \leq \sqrt{2 \Delta(m+n-\delta-1)-4 m+\delta(2-\delta)+A}$, where $A=\epsilon_{F}(2 \Delta+\delta+1)$ and ϵ_{F} is the number of pendent vertices of G .

Proof:
Proof: Let $D\left(v_{i}\right)=\left\{v_{j}: d\left(v_{i}, v_{j}\right)=2\right\}$. Let $D_{1}\left(v_{i}\right)=$ $\left\{v_{j}: d\left(v_{i}, v_{j}\right) \neq 2\right\}$ and let $D_{1}^{\prime}\left(v_{i}\right)=D_{1}\left(v_{i}\right)-\left\{v_{i}\right\}$. Let $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$ be the unit eigenvector corresponding to $\rho(G)$. Then $\rho(G) x_{i}=\sum_{j=1}^{n} a_{i j} x_{j}$. By Cauchy- Schwarz inequality,

$$
\begin{aligned}
\rho^{2}(A) x_{i}^{2} & =\left(\sum_{j=1}^{n} a_{i j}\left(a_{i j} x_{j}\right)\right)^{2} . \\
& \leq \sum_{j=1}^{n} a_{i j}^{2} \sum_{j=1}^{n}\left(a_{i j} x_{j}\right)^{2} \\
& \leq\left(2 m-\left(2 d_{i}+\delta-\epsilon_{F_{i}}\right)\right) \sum_{j \in D\left(v_{i}\right)} x_{j}^{2}, \text { by using }
\end{aligned}
$$

corollary 2.6 .

Hence
$\begin{aligned} & \rho(G)^{2}=\sum_{i=1}^{n} \rho(G)^{2} x_{i}^{2} \\ & \leq \sum_{i=1}^{n}\left(2 m-\left(2 d_{i}+\delta-\epsilon_{F_{i}}\right)\right) \sum_{j \in D\left(v_{i}\right)} x_{j}^{2} \\ &=\sum_{i=1}^{n}\left(2 m-\left(2 d_{i}+\delta-\epsilon_{F_{i}}\right)\right)\left(1-\sum_{j \in D_{1}\left(v_{i}\right)} x_{j}^{2}\right) \\ &=\sum_{i=1}^{n}\left(2 m-\left(2 d_{i}+\delta-\epsilon_{F_{i}}\right)\right)-\sum_{i=1}^{n}\left(2 m-\left(2 d_{i}+\right.\right. \\ &\left.\left.\delta-\epsilon_{F_{i}}\right)\right) \sum_{j \in D_{1}\left(v_{i}\right)} x_{j}^{2} \\ &=2 m n-4 m-n \delta+\epsilon_{F}-\sum_{i=1}^{n}\left(2 m-\left(2 d_{i}+\delta-\epsilon_{F_{i}}\right)\right) \sum_{j \in D_{1}\left(v_{i}\right)} x_{j}^{2}\end{aligned}$
In (3), we estimate, $-\sum_{i=1}^{n}\left(2 m-\left(2 d_{i}+\delta-\right.\right.$ $\left.\left.\epsilon_{F_{i}}\right)\right) \sum_{j \in D_{1}\left(v_{i}\right)} x_{j}^{2}$
$=-\sum_{i=1}^{n} 2 m \sum_{j \in D_{1}\left(v_{i}\right)} x_{j}^{2}+\sum_{i=1}^{n}\left(2 d_{i}+\delta-\epsilon_{F_{i}}\right) \sum_{j \in D_{1}\left(v_{i}\right)} x_{j}^{2}$ (4)
Now, consider
$\sum_{i=1}^{n}\left(2 d_{i}+\delta-\epsilon_{F_{i}}\right) \sum_{j \in D_{1}\left(v_{i}\right)} x_{j}^{2}$
$=\sum_{i=1}^{n}\left(2 d_{i}+\delta-\epsilon_{F_{i}}\right) x_{i}^{2}+\sum_{i=1}^{n}\left(2 d_{i}+\delta-\epsilon_{F_{i}}\right) \sum_{j \in D_{1}^{\prime}\left(v_{i}\right)} x_{j}^{2}$ $=\sum_{i=1}^{n} 2 d_{i} x_{i}^{2}+\sum_{i=1}^{n} \delta x_{i}^{2}-\sum_{i=1}^{n} \epsilon_{F_{i}} x_{i}^{2}+$ $\sum_{i=1}^{n} 2 d_{i} \sum_{j \in D_{1}^{\prime}\left(v_{i}\right)}^{i=1} x_{j}^{2}+\sum_{i=1}^{i=1} \delta \sum_{j \in D_{1}^{\prime}\left(v_{i}\right)}^{\sum_{i=1}^{i=1}} x_{j}^{2}$
$-\sum_{i=1}^{n} \epsilon_{F_{i}} \sum_{j \in D_{1}^{\prime}\left(v_{i}\right)} x_{j}^{2}$
$\leq \sum_{i=1}^{n} 2 d_{i} x_{i}^{2}+\delta \sum_{i=1}^{n} x_{i}^{2}+\sum_{i=1}^{n} 2 d_{i} \sum_{j \in D_{1}^{\prime}\left(v_{i}\right)} x_{j}^{2}+$ $\sum_{i=1}^{n} \delta \sum_{j \in D_{1}^{\prime}\left(v_{i}\right)} x_{j}^{2}$
$\leq 2 \sum_{i=1}^{n} d_{i} x_{i}^{2}+\delta+2 \Delta \sum_{i=1}^{n} \sum_{j \in D_{1}^{\prime}\left(v_{i}\right)} x_{j}^{2}+$ $\delta \sum_{i=1}^{n} \sum_{j \in D_{1}^{\prime}\left(v_{i}\right)} x_{j}^{2}$
$=2 \sum_{i=1}^{n} d_{i} x_{i}^{2}+\delta+2 \Delta \sum_{i=1}^{n}\left(n-\left(d_{i}-\epsilon_{F_{i}}\right)-1\right) x_{i}^{2}+$ $\delta \sum_{i=1}^{n}\left(n-\left(d_{i}-\epsilon_{F_{i}}\right)-1\right) x_{i}^{2}$
$=2 \sum_{i=1}^{n} d_{i} x_{i}^{2}+\delta+2 \Delta \sum_{i=1}^{n}\left(n-d_{i}-1\right) x_{i}^{2}+2 \Delta \sum_{i=1}^{n} \epsilon_{F_{i}} x_{i}^{2}$ $+\delta \sum_{i=1}^{n}\left(n-d_{i}-1\right) x_{i}^{2}+\delta \sum_{i=1}^{n} \epsilon_{F_{i}} x_{i}^{2}$
$\leq 2 \sum_{i=1}^{n} d_{i} x_{i}^{2}+\delta+2 \Delta \sum_{i=1}^{n}\left(n-d_{i}-1\right) x_{i}^{2}+2 \Delta \epsilon_{F} \sum_{i=1}^{n} x_{i}^{2}$ $+\delta \sum_{i=1}^{n}\left(n-d_{i}-1\right) x_{i}^{2}+\delta \epsilon_{F}$
$=2 \sum_{i=1}^{n} d_{i} x_{i}^{2}+\delta+2 \Delta \sum_{i=1}^{n}\left(n-d_{i}-1\right) x_{i}^{2}+2 \Delta \epsilon_{F}+$ $\delta \sum_{i=1}^{n}\left(n-d_{i}-1\right) x_{i}^{2}+\delta \epsilon_{F}$
$=\Delta\left(2 \sum_{i=1}^{n} d_{i} x_{i}^{2}+2 \sum_{i=1}^{n}\left(n-d_{i}-1\right) x_{i}^{2}\right)-(2 \Delta-$
2) $\sum_{i=1}^{n} d_{i} x_{i}^{2}+\delta+2 \Delta \epsilon_{F}$
$+\delta\left(\sum_{i=1}^{n} d_{i} x_{i}^{2}+\sum_{i=1}^{n}\left(n-d_{i}-1\right) x_{i}^{2}\right)-\delta \sum_{i=1}^{n} d_{i} x_{i}^{2}+\delta \epsilon_{F}$
$=\Delta(2 n-2)-(2 \Delta-2) \sum_{i=1}^{n} d_{i} x_{i}^{2}+\delta+2 \Delta \epsilon_{F}+$ $\delta(n-1)-\delta \sum_{i=1}^{n} d_{i} x_{i}^{2}+\delta \epsilon_{F}$
$\leq 2 \Delta(n-1)-2(\Delta-1) \delta+\delta+2 \Delta \epsilon_{F}+\delta(n-1)-\delta \delta+\delta \epsilon_{F}$
$=2 \Delta(n-1)-2 \delta(\Delta-1)+\delta+\delta(n-1)-\delta^{2}+2 \Delta \epsilon_{F}+\delta \epsilon_{F}$
$=2 \Delta(n-1)+\delta(-2(\Delta-1)+1+(n-1)-\delta)+\epsilon_{F}(2 \Delta+\delta)$

$$
\begin{equation*}
=2 \Delta(n-1)+\delta(n-2(\Delta-1)-\delta)+\epsilon_{F}(2 \Delta+\delta) \tag{5}
\end{equation*}
$$

In a similar fashion, we have $-\sum_{i=1}^{n} 2 m \sum_{j \in D_{1}\left(v_{i}\right)} x_{j}^{2}$ $=-\sum_{i=1}^{n} 2 m x_{i}^{2}-\sum_{i=1}^{n} 2 m \sum_{j \in D_{1}^{\prime}\left(v_{i}\right)} x_{j}^{2}$
$=-2 m-2 m \sum_{i=1}^{n} \sum_{j \in D_{1}^{\prime}\left(v_{i}\right)} x_{j}^{2}$
$=-2 m-2 m \sum_{i=1}^{n}\left(n-\left(d_{i}-\epsilon_{F_{i}}\right)-1\right) x_{i}^{2}$
$=-2 m-2 m \sum_{i=1}^{n}\left(n-d_{i}-1\right) x_{i}^{2}-2 m \sum_{i=1}^{n} \epsilon_{F_{i}} x_{i}^{2}$

International Journal of Engineering, Mathematical and Physical Sciences
 ISSN: 2517-9934

Vol:3, No:11, 2009

$$
\begin{align*}
& \leq-2 m-2 m \sum_{i=1}^{n}\left(n-d_{i}-1\right) x_{i}^{2} \\
& =-2 m-2 m \sum_{i=1}^{n} n x_{i}^{2}+2 m \sum_{i=1}^{n} d_{i} x_{i}^{2}+2 m \sum_{i=1}^{n} x_{i}^{2} \\
& =-2 m-2 m n+2 m \sum_{i=1}^{n} d_{i} x_{i}^{2}+2 m \\
& \qquad \leq-2 m n+2 m \Delta \tag{6}
\end{align*}
$$

From (3),(4),(5),(6), we get,
$\rho(G)^{2} \leq\left(2 m n-4 m-n \delta+\epsilon_{F}\right)+(2 \Delta(n-1)+\delta(n-2$ $\left.(\Delta-1)-\delta)+\epsilon_{F}(2 \Delta+\delta)\right)-2 m n+2 m \Delta$
$=-4 m-n \delta+\epsilon_{F}+2 \Delta(n-1)+\delta(n-2(\Delta-1)-\delta)+$ $\epsilon_{F}(2 \Delta+\delta)+2 m \Delta$
$=-4 m+\epsilon_{F}+2 \Delta(n-1)-\delta(2(\Delta-1)+\delta)+\epsilon_{F}(2 \Delta+\delta)+2 m \Delta$ $=-4 m+2 m \Delta+2 \Delta(n-1)-\delta(2(\Delta-1)+\delta)+\epsilon_{F}(2 \Delta+\delta+1)$ $=-4 m+2 m \Delta+2 n \Delta-2 \Delta-2 \delta \Delta+2 \delta-\delta^{2}+\epsilon_{F}(2 \Delta+\delta+1)$ $=-4 m+2 \Delta(m+n-\delta-1)+\left(2 \delta-\delta^{2}\right)+\epsilon_{F}(2 \Delta+\delta+1)$

Hence
$\rho(G) \leq \sqrt{2 \Delta(m+n-\delta-1)-4 m+\delta(2-\delta)+A}$, where $A=\epsilon_{F}(2 \Delta+\delta+1)$.

Let B be an $n \times n$ matrix and let $S_{i}(B)$ denote the $i^{t} h$ row sum of B, ie., $S_{i}(B)=\sum_{j=1}^{n} B_{i j}$, where $1 \leq i \leq m$.

Lemma 3.2. Let G be a connected n-vertex graph and A_{2} its second stage adjacency matrix, with spectral radius ρ. Let P be any polynomial. If A_{2} is irreducible, then,
$\min _{v \in V(G)} S_{v}\left(P\left(A_{2}\right)\right) \leq P(\rho) \leq \max _{v \in V(G)} S_{v}\left(P\left(A_{2}\right)\right)$
Moreover, if the row sums of $P\left(A_{2}\right)$ are not all equal then both inequalities are strict.

Proof: Since A_{2} is irreducible, the proof is just analogous to that of Lemma 2.2 in [4].

Lemma 3.3. For each fixed $\mathrm{i}=1,2, \ldots, n$,
$S_{v_{i}}\left(A_{2}^{2}\right)=\left|D\left(v_{i}\right)\right|+$
$\sum_{i \neq j} \sum_{k} \mid\left\{v_{k}: d\left(v_{k}, v_{i}\right)=2\right.$ and $\left.d\left(v_{k}, v_{j}\right)=2\right\} \mid$
Proof: $i j^{t} h$ entry in $b_{i j}$ in $A_{2}^{2}=\sum_{i=1}^{n} a_{i k} a_{k j}$
Case 1. Let $i=j$, then $b_{i i}=\sum_{k=1}^{n} a_{i k} a_{k i}$

$$
\begin{equation*}
=\left|D\left(v_{i}\right)\right| \tag{7}
\end{equation*}
$$

Case 2. Let $i \neq j, a_{i k} a_{k j}=1$ if and only if $a_{i k}=1$ and $a_{k j}=1$
$a_{i k} a_{k j}=1$ if and only if $d\left(v_{k}, v_{i}\right)=2$ and $d\left(v_{k}, v_{j}\right)=2$. Therefore

$$
\begin{equation*}
b_{i j}=\sum_{k} \mid\left\{v_{k}: d\left(v_{k}, v_{i}\right)=2 \text { and } d\left(v_{k}, v_{j}\right)=2\right\} \mid \tag{8}
\end{equation*}
$$

$S_{v_{i}}\left(A_{2}^{2}\right)=b_{i i}+\sum_{i \neq j} b_{i j}$

$$
=\left|D\left(v_{i}\right)\right|+B \text { where }
$$

$B=\sum_{i \neq j} \sum_{k} \mid\left\{v_{k}: d\left(v_{k}, v_{i}\right)=2\right.$ and $\left.d\left(v_{k}, v_{j}\right)=2\right\} \mid$, using (7) and (8).

Let G be a simple graph with n vertices and m edges. Let $\delta=\delta(G)$ be the minimum degree of vertices of G and $\rho(G)$ be the spectral be the spectral radius of the adjacency matrix A of G. Then in [6] it is proved that,
$\rho(G) \leq\left(\delta-1+\sqrt{(\delta+1)^{2}+4(2 m-\delta n)}\right) / 2$.
Corresponding to the above result, we have the following theorem for the second stage matrix.

Theorem 3.4. Let G be a simple graph with n vertices and m edges. Let $\Delta=\Delta(G)$ be maximum degree of vertices of G and $\rho(G)$ be the spectral radius of the second stage adjacency matrix A_{2} of G . Then $\rho(G) \leq(1+\sqrt{4(n-1) \Delta}) / 2$. Proof: Since $S_{v_{i}}\left(A_{2}^{2}\right)=$ $\left|D\left(v_{i}\right)\right|+\sum_{i \neq j} \sum_{k}\left|\left\{v_{k}: d\left(v_{k}, v_{i}\right)=2 \operatorname{andd}\left(v_{k}, v_{j}\right)=2\right\}\right|$

$$
S_{v_{i}}\left(A_{2}^{2}\right) \quad-\quad S_{v_{i}}\left(A_{2}\right)
$$

$=$
$\sum_{i \neq j} \sum_{k}\left|\left\{v_{k}: d\left(v_{k}, v_{i}\right)=2 \operatorname{and} d\left(v_{k}, v_{j}\right)=2\right\}\right|$
$\leq(n-1) \Delta$. As this holds for every vertex $v \in V(G)$. Lemma 3.2 implies that $\rho(G)^{2}-\rho(G) \leq$ $(n-1) \Delta$. Solving the quadratic inequality, we obtain $\rho(G) \leq$ $(1+\sqrt{4(n-1) \Delta}) / 2$.

For a non regular graph, many upper bounds for the largest eigenvalue of adjacency matrix are found. One such upper bound is
$\lambda_{1} \leq \Delta-\left(1 / 2 n(n \Delta-1) \Delta^{2}\right.$ [5]. In the following theorem we find a similar upper bound for our second stage concept.

Theorem 3.5. If G is connected and not regular, then
$\lambda_{1} \leq \Delta-\left(1 / 4 \Delta^{2} n\left(2 m-3 \delta+\epsilon_{F}\right)\right)$.
Proof: Let x be a positive unit eigenvector of $A_{2}(G)$ corresponding to λ_{1}. We have that $\lambda_{1}=\lambda_{1}\|x\|^{2}$

$$
\begin{aligned}
& =\lambda_{1} \sum_{v_{i} \in V} x_{i}^{2} \\
& =2 \sum_{d\left(v_{i}, v_{j}\right)=2} x_{i} x_{j}
\end{aligned}
$$

Since the maximum degree of G is Δ and G is not regular, we have
$\Delta=\Delta\|x\|^{2}>\sum_{v_{i} \in V}\left|D_{i}\right| x_{i}^{2}$
Thus, $\Delta-\lambda_{1}>\sum_{v_{i} \in V}\left|D_{i}\right| x_{i}^{2}-2 \sum_{d\left(v_{i}, v_{j}\right)=2} x_{i} x_{j}$

$$
\begin{aligned}
& =\sum_{v_{i} \in V} \sum_{v_{j} \in D\left(v_{i}\right)} x_{i}^{2}-2 \sum_{d\left(v_{i}, v_{j}\right)=2} x_{i} x_{j} \\
& =\sum_{d\left(v_{i}, v_{j}\right)=2}\left(x_{i}^{2}+x_{j}^{2}-2 x_{i} x_{j}\right) \\
& =\sum_{d\left(v_{i}, v_{j}\right)=2}\left(x_{i}-x_{j}\right)^{2}
\end{aligned}
$$

From Cauchy-schwarz inequality and $\left|D\left(v_{i}\right)\right| \leq 2 m-$ $2 d_{i}-\delta+\epsilon_{F_{i}}$, it follows that $\sum_{d\left(v_{i}, v_{j}\right)=2}\left(x_{i}-x_{j}\right)^{2} \geq$ $\left(1 /\left|D\left(v_{i}\right)\right|\right)\left(\sum_{d\left(v_{i}, v_{j}\right)=2}\left|x_{i}-x_{j}\right|\right)^{2}$
$\begin{array}{rrrrr}\left.\epsilon_{F_{i}}\right)\left(\sum_{d\left(v_{i}, v_{j}\right)=2}\left|x_{i}-x_{j}\right|\right)^{2} & \left(1 / 2 m-2 d_{i}-\delta\right. & + \\ \geq & (1 / 2 m & - & 3 \delta & +\end{array}$
$\left.\epsilon_{F}\right)\left(\sum_{d\left(v_{i}, v_{j}\right)=2}\left|x_{i}-x_{j}\right|\right)^{2}$
Let u and v be the vertices of derived graph G such that $x_{u}=\max _{v_{i} \in V} x_{i}$ and $x_{v}=\min _{v_{i} \in V} x_{i}$ and let $u=$ $w_{0} w_{1} \ldots w_{k}=v$ be a path between u and v in the derived graph G. Then

$$
\begin{aligned}
\sum_{\left\{v_{i}, v_{j}\right\} \in E}\left|x_{i}-x_{j}\right| & \geq \sum_{l=0}^{k-1} x_{w_{l}}-x_{w_{l+1}} \\
& \geq \sum_{l=0}^{k-1}\left(x_{w_{l}}-x_{w_{l+1}}\right) \\
& =x_{w_{0}}-x_{w_{k}} \\
& =x_{u}-x_{v} .
\end{aligned}
$$

We have $\Delta-\lambda_{1}>\left(1 / 2 m-3 \delta+\epsilon_{F}\right)\left(x_{u}-x_{v}\right)^{2}$. It remains to estimate $x_{u}-x_{v}$. Since $\sum_{v_{i} \in V} x_{i}^{2}=1$, we have $x_{u} \geq 1 / \sqrt{n}$ and $x_{v} \leq 1 / \sqrt{n}$. There are three cases to consider.
Case Ia: $x_{u} \geq 1 / \sqrt{n}+c$. Then $x_{v}<1 / \sqrt{n}$ and $\Delta-\lambda_{1}>$ $\left(c^{2} / 2 m-\delta+\epsilon_{F}\right)$
Case $\mathrm{Ib}: x_{v} \leq 1 / \sqrt{n}-c$. Then $x_{u}>1 / \sqrt{n}$ and again $\Delta-$ $\lambda_{1}>\left(c^{2} / 2 m-\delta+\epsilon_{F}\right)$ Case II : $1 / \sqrt{n}-c<x_{v}<x_{u}<$ $1 / \sqrt{n}+c$. Then $x_{i} \in(1 / \sqrt{n}-c, 1 / \sqrt{n}+c)$. Then $x_{i} \in$ $(1 / \sqrt{n}-c, 1 / \sqrt{n}+c)$ holds for each $v_{i} \in V$, and by choosing $s \in V^{\prime}$ with $d_{s}<\Delta^{\prime}-1$, which is regular, we get $\lambda_{1}(1 / \sqrt{n}-c)<\lambda_{1} x_{s}$

$$
=\sum_{\left\{t:\{s, t\} \in E^{\prime}\right\}} x_{t}<\left(\Delta^{\prime}-1\right)(1 / \sqrt{n}+c)
$$

where $\Delta^{\prime}=\max D\left(v_{i}\right), i=1,2, \ldots, n$ and E^{\prime} is the edge set of G^{\prime} which implies,
$\lambda_{1}<\left(\Delta^{\prime}-1\right)(1+c \sqrt{n} / 1-c \sqrt{n})$. In order for the expression on the RHS to be useful, it must be less than Δ^{\prime}, which is satisfied for $\left.c<1 /\left(2 \Delta^{\prime}-1\right) \sqrt{n}\right)$. Put $c=1 / 2 \Delta^{\prime} \sqrt{n}$ in cases Ia and Ib , we get,
$\Delta-\lambda_{1}>1 /\left(2 m-3 \delta+\epsilon_{F}\right) 4\left(\Delta^{\prime}\right)^{2} n$

$$
\lambda_{1}<\Delta-\left(1 /\left(2 m-3 \delta+\epsilon_{F}\right) 4\left(\Delta^{\prime}\right)^{2} n\right)
$$

While in $\lambda_{1}<\left(\Delta^{\prime}-1\right)\left(1+\sqrt{n} / 2 \Delta^{\prime} \sqrt{n} / 1-\sqrt{n} / 2 \Delta^{\prime} \sqrt{n}\right)$

$$
\begin{aligned}
& <\left(\Delta^{\prime}-1\right)\left(2 \Delta^{\prime}+1 / 2 \Delta^{\prime}-1\right) \\
& =\left(2 \Delta^{2}+\Delta^{\prime}-2 \Delta^{\prime}-1 / 2 \Delta^{\prime}-1\right) \\
& =\Delta^{\prime}-\left(1 / 2 \Delta^{\prime}-1\right)
\end{aligned}
$$

This implies $\lambda_{1}<\Delta^{\prime}-\left(1 / 2 \Delta^{\prime}-1\right)$

$$
\begin{aligned}
& <\Delta-\left(1 / 4\left(\Delta^{\prime}\right)^{2}\left(2 m-3 \delta+\epsilon_{F}\right)\right) \\
& <\Delta-\left(1 / 4(\Delta)^{2} n\left(2 m-3 \delta+\epsilon_{F}\right)\right)
\end{aligned}
$$

REFERENCES

[1] R. Balakrishnan, The energy of graph, Linear Algebra Appl. 387(2004) 287-295.
[2] D.Cvetkovic, M. Doob, H. Saches, Spectra of Graphs- Theory and Application, third ed., Johann Ambrosius Barth Verlag, Heidelberg, Leipzig, 1995.
[3] Dasong Cao, Bounds on Eigenvalues and Chromatic Numbers, Linear Algebra and its Applications, 270 (1998), 1-13.
[4] M.N.Ellingham and X.Zha, The spectral radius of graphs on surfaces, J.Combin.Theory Series B 78(2000), 45-56.
[5] D. Stevanovic, The largest eigenvalue of nonregular graphs, J.Combin. Theory B 91(2004) 143-146.
[6] Yuan Hong and Jin-Long Shu, A Sharp Upper Bound of the Spectral Radius of Graphs, Journal of Combinatorial Theory, Series B 81,177183(2001).

[^0]: S.K.Ayyaswamy is with Department of Mathematics, Thanjavur, INDIA e-mail:sjcayya@yahoo.co.in
 S.Balachandran is with Department of Mathematics, Thanjavur, INDIA e-mail:bala_maths@rediffmail.com
 K.Kannan is with Department of Mathematics, Thanjavur, INDIA
 e-mail:kannan@maths.sastra.edu

