
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:2, No:2, 2008

90

1

Block Sorting: A New Characterization and a
New Heuristic

Swapnoneel Roy, Ashok Kumar Thakur, and Minhazur Rahman

Abstract—The Block Sorting problem is to sort a given
permutation moving blocks. A block is defined as a substring
of the given permutation, which is also a substring of the
identity permutation. Block Sorting has been proved to be
NP-Hard. Until now two different 2-Approximation algorithms
have been presented for block sorting. These are the best known
algorithms for Block Sorting till date. In this work we present
a different characterization of Block Sorting in terms of a
transposition cycle graph. Then we suggest a heuristic,
which we show to exhibit a 2-approximation performance
guarantee for most permutations.

Keywords—Block Sorting, Optical Character Recognition,
Genome Rearrangements, Sorting Primitives, Approximation
Algorithms

I. INTRODUCTION

THE problem of block sorting has its applications in
optical character recognition besides being a non-

trivial variantion of sorting by transpositions. Certain
text regions are referred to as zones in optical character
recognition by marking them [6]. In the zoning proce-
dure, the zones might not be read in the correct order by
the optical scanner. Thus an efficient technique is needed
here to bring the zones in order. This is where block
sorting comes into play. Moving the the zones in their
correct places corresponds to the block sorting problem.
We are interested in finding out the minimum number of
steps required to bring all the zones in the correct order.

II. PRELIMINARIES

We define a permutation π of length n to be a string
of length n from the set of strings which can be formed
from the set of integers 1,2,...,n. We impose an additional
restriction that every element should occur only once in
a permutation.

Definition 1 (Block). Let π be a permutation on n
elements, written as a string π1π2.....πn A block is a

Swapnoneel Roy is with the India Software Lab IBM India Pvt. Ltd,
email: swapnoneel.roy@in.ibm.com

Ashok Kumar Thakur is with the India Software Lab IBM India Pvt.
Ltd, email: ashok.thakur@in.ibm.com

Minhazur Rahman is with the India Software Lab IBM India Pvt.
Ltd, email: minhazur r@in.ibm.com

maximal substring of π which is also a substring of the
identity permutation idn = 1 2 . . . n [1]. For example,in
the permutation 8 2 5 6 3 9 1 4 7 on 9 elements, there
are eight blocks, and 5 6 is the only block containing
more than a single element.

Definition 2 (Block Move). A block move is the oper-
ation of picking a block and placing it adjacent to its
predecessor or successor block so that it merges with it
to form a larger block. For instance, a block move of 5
in 6 2 3 4 1 5 will result in either 5 6 2 3 4 1 or 6 2 3
4 5 1 [1].

Definition 3 (Block Sorting Problem). The block sorting
problem is to find a shortest series of block moves which,
when applied in succession, sorts a given permutation
π. The length of this shortest series is denoted by bs(π)
and is called the block sorting distance of π.

Thus the block sorting problem is essentially an opti-
mization problem in which the number of block moves
required to sort a permutation is minimized.
Now we mention the nature of input permutations for
the block sorting problem. The input permutations must
satisfy the following conditions:

1) The input sequence cannot contain two identical
numbers. For instance, it cannot contain two 8’s.

2) The input sequence does not contain any negative
number. That is, the input sequence is unsigned.

Definition 4 (Kernel Permutation). A kernel permutation
ker(π) of a permutation π is obtained in the following
manner: The blocks in π are replaced by their ranks in
π. For example, if π = 825639147, ker(π) = 72538146.

In a kernel permutation, all the blocks are of length
1. It has been shown in [1] that bs(π) = bs(ker(π)).
That is, block sorting the kernel permutation will take
the same number of steps as block sorting the original
permutation.
A transposition moves any substring of π of length k
to any other location in π. A block move can thus be
regarded as a transposition in which k = 1. In this way,
the block sorting problem is a non-trivial invariant of the

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:2, No:2, 2008

91

sorting by transposition problem.

III. LOWER BOUNDS FOR THE BLOCK SORTING
PROBLEM

Definition 5 (Block Sorting Distance). We define the
block sorting distance bs(π) as the minimum or optimal
number of steps taken to sort π to idn.

Theorem 6. By performing a single block move it is
easy to see that the maximum number of blocks that can
be reduced is 3. The identity permutation contains only 1
block. Thus if the initial permutation contains k blocks,
a trivial lower bound for this problem is (k − 1)/3.

The block sorting problem is a nontrivial variation
of another well known sorting problem, Sorting by
Transpositions, that arises in the study of genome
rearrangement [2]. A transposition is the operation of
picking up any substring of the given permutation and
placing it elsewhere in the permutation. The Sorting
by Transpositions problem is to sort the given permu-
tation with the minimum number of transpositions. A
block move is just a transposition with the additional
restriction that the substring moved should be a block.
In [5], Bafna and Pevzner introduced the notion of a
cycle graph of a permutation, and used the cycle graph
to obtain improved lower bounds for the Sorting by
Transposition problem. Since, a block move is nothing
but a transposition, this lower bounds and some other
properties introduced in [5] also holds in case of Sorting
by Block Moves. We shall use some of these properties
in our analysis for block sorting.
The computational complexity of Sorting by Transposi-
tion is still open, where as Block Sorting has been proved
to be NP-Hard [7]. In the report a new characterization
of Block Sorting has been given using the transposition
cycle graph. Next a simple heuristic is suggested which
is shown to exhibit an approximation guarantee of 2 in
most of the cases. We have used certain proved facts
on Sorting by Transposition which also holds for Block
Sorting to analyze the heuristic designed.

Definition 7 (Cycle Graph). A cycle graph of a per-
mutation π, denoted by G(π), is a directed edge color
graph with vertex set 0, 1, 2,, n, n+1 and edge
set defined as follows: For all 1≤i≤n + 1, grey edges
are directed from i − 1 to i and black edges from πi to
πi−1.

As an example we show the cycle graph for the permu-
tation 1 4 3 2 5 the the following figure.

Definition 8 (Alternating Cycle). An alternating cycle
of a cycle graph is a cycle where each pair of adjacent

0 1 4 3 2 5 6

Fig. 1. A Cycle Graph

edges are of different colors. In addition to that, we call
the alternating cycles with odd number of black edges as
odd cycles and the ones with even number of black edges
as even cycles. As an example we show the alternating
cycles of the graph of Figure 1.

 0 1

 1 4 3 2

 4 3 2 5

 5 6

Fig. 2. Alternating Cycles

Observation 9. • The cycle graph G(π) can be
uniquely decomposed into alternating cycles.

• Each edge participates in exactly one alternating
cycle.

• The cycle graph of the identity permutation
contains the maximum number of cycles and all of
them are odd cycles (having a length 1).

• The number of (odd) cycles of the identity permu-
tation of n elements is n + 1.

The sorting by transposition problem can be viewed
as increasing the number of odd alternating cycles C(π)
in the given permutation π to n + 1. Let the number of
odd cycles reduced by a transposition ρ be ΔC(ρ).

Lemma 10. ΔC(ρ) ∈ {2, 0,−2} [5].

Thus from the above lemma a new lower bound for the
sorting by transposition is obtained as (n+1-Codd(π))/2.
Since the block sorting problem is a variantion of the

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:2, No:2, 2008

92

sorting by transposition problem, all the above observa-
tions holds in the case of block sorting too. Hence we
have the following lower bound bs(π) for block sorting.

Theorem 11. bs(π) ≥ (n+1-Codd(π))/2.

IV. THE HEURISTIC FOR SORTING BY BLOCK MOVES

For any given permutation of n elements, we always
append the elements 0 and n + 1 to the beginning and
end of the permutation respectively.

Definition 12 (k-moves). We call the block moves which
increase the number of cycles by k k-moves. Clearly k ∈
{2, 0,−2}.

Now we shall state and prove certain lemmas which
would lead to the designed heuristic.

Lemma 13. (Bafna and Pevzner [5]) If a transposition
ρ acts on a cycle and creates more than one new cycle,
in G(πρ) then ρ is a 2-move.

Lemma 14. (Bafna and Pevzner [5]) If a transposition
ρ acts on edges belonging to exactly two different cycles
then ρ is a 0-move.

Since a block move is nothing other than a transposi-
tion, we can say the following:

Lemma 15. If a block move ρ acts on a cycle and creates
more than one new cycle, in G(πρ) then ρ is a 2-move.

Lemma 16. If a block move ρ acts on edges belonging
to exactly two different cycles then ρ is a 0-move.

Lemma 17. If a block move reduces the number of
blocks by 2, then it also increases the number of cycles
by 2, i.e. it is a 2-move. Further two new odd cycles gets
created here. In other words, the number of odd cycles
gets increased by two here.

Proof: For proving the above lemma, we first look
at the cases which allow a block move which reduce the
number of blocks by 2 (refer to Figure 3 on the next
page). In the first case, we note that x, x + 1, y, y + 1,
z are in the same cycle since there is a gray-black path
from x to z via x+1, y and y+1.The block move to join
y with y+1 creates at least 2 new odd cycles. Thus it is
a transposition which acts on a single cycle and creates
more than one new odd cycles. Hence it is a 2-move.
In the second case, we note that x + 2, x, x + 1 are in
the same cycle since there is a black edge from x + 2
to x, the outgoing gray edge from x is to x + 1 and
the incoming gray edge to x + 2 is from x + 1.Since

Case 1: x y x+1 z y+1

Case 2: x x+2 x+1

Fig. 3. Cases Allowing An Increment of 2

both the incoming and out going edges of x + 1 is in
the same cycle, both its black edges also must lie in the
same cycle. The block movement of x + 1 in between
x and x + 2 creates at least 2 new cycles. Thus it is
a transposition which acts on a single cycle and creates
more than one new cycles. Hence it is a 2-move. We can
note that two of the new cycles created are cycles having
only one black edges. That is, they are odd cycles. Hence
the number of odd alternating cycles increases by two
in this case. By similar arguments, we can show that a
block move which reduces the number of blocks by 3 is
also a 2-move.

Lemma 18. If we have a vertex which repeats in a
cycle, i.e if there are two adjacent black edges in the
permutation graph belonging to the same cycle, we have
a 2-move.

 i+1 i

 Repeated vertex

i

Fig. 4. A Repetition in a Cycle

Proof: If moving the repeated vertex results in the
reduction of the number of blocks by 2 or 3, then the
move is a 2-move (by lemma 6). Else the repeated vertex
say x, can be moved to a position adjacent its successor
to form a block. Clearly, the move acts on a single cycle
and creates a new 1-cycle and some other cycles. Thus
this is also a 2-move by lemma 4. Hence the lemma is
proved.

Call a cycle in a permutation with k black edges
as a k-cycle. A k-cycle in the breakpoint graph is
called short if k ≤ 3; otherwise, it is called long. A
breakpoint graph is called simple if it contains only
short cycles. A permutation π is called simple if tG(π)

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:2, No:2, 2008

93

is simple. A common technique in the genome literature
is to transform a permutation into an equivalent simple
permutation. The transformation involves inserting new
elements in the permutation and splitting up the long
cycles into short cycles. The technique is referred to as
(g, b)− split in the literature. For a detailed description
of the procedure the reader is referred to the papers [6],
[7], and [8]. Some of the results of these papers is used
here.

Lemma 19. (Lin and Xue [7]) Every permutation can
be transformed safely into a simple one.

Lemma 20. (Hannenhalli and Pevzner [5]) Let π̂ be
a simple permutation that is equivalent to π, then every
sorting of π̂ mimics a sorting of π with the same number
of operations.

The heuristic given in this report first transforms the
given permutation π into an equivalent simple permuta-
tion π̂ in each step, then it finds a sorting sequence for π̂,
and, finally, the sorting of π̂ is mimicked on π. Therefore,
throughout most of the report we will be concerned only
with simple permutations and short cycles.

Definition 21 (Conjoined Cycles). Two cycles are called
conjoined if they meet at some point i.e. they have a ver-
tex in common. The common vertex is called conjoining
vertex for those two cycles.

Lemma 22. If we have two cycles conjoined at two or
more vertices, we have a 0-move followed by a 2-move.

Proof: The different cases are shown in the fol-
lowing figure. In the first move, we move one of the
elements common to both the cycles to a place in one
of the cycles, such that we have a 2-move in the next
step. If we consider simple permutations, we can clearly
observe that there will always be a common block i, such
that in the first move it could be either moved to the left
of block i+2 to havr the configuration i i+2, or can be
moved to a position to have the following configuration:
i x i + 1. Since this move involves only two cycles, by
lemma 3 it is a 0-move. The next move clearly reduces
the number of blocks by at least 2. Thus it is a 2-move.

Figure 6 shows an example. We can further note that,
in case of short cycles, the 2-move always increases the
number of odd cycles by 2.

Lemma 23. If there is a 2-cycle, then there is a 0-move
which reduces the number of even cycles by two, and
simultaneously increases the number of odd cycles by

..................

 X Y X Y

..................

 X Y Y X

..................

 X Y X

X and Y denote cycles here. The black edges labeled X and Y belong to cycles X and Y respectively.

In all of these configurations, a consecutive 0-move and 2-move can be performed.

Fig. 5. Cycles conjoined at two or more vertices

 1 5 9 2 8 4 7 3 6 10

 C1 C2 C1 C3 C2 C1 C3 C2 C1

C1, C2, and C3 denote the three alternating cycles. The edges belonging to the different cycles have

been marked. Cycles C3 and C2 meet twice. Once at 8, and again at 3.

Move: Move the block 3 and place it between 8 and 4.

This results in the following permutation:

 1 5 9 2 8 3 4 7 6 10

 C1 C2 C1 C2 C2 C3 C1 C2 C1

The number of cycles has not changed. Thus the above move is a 0-move. Now since the vertex 8 is

repeated in the cycle C2, we have a 2-move here. We now perform it:

Move: Move 8 in its proper position.

The resulting permutation is shown below:

 1 5 8 9 2 3 4 7 6 10

 C1 C2 C3 C1 C4 C5 C1 C2 C1

Now there are five cycles. Thus the above move was a 2-move. Also note the two new cycles are odd

cycles.

Fig. 6. An Example of a (0,2) move

two.

Proof: This is quite trivial to show. The point here
is that later on it is shown that this 0-move actually is
good.

Lemma 24. If we have three conjoined cycles, we have
a -2-move followed by a couple of 2-moves.

Proof: In cases of each of the arrangements of
Figure 7, we can perform a move to tie these three
cycles together to form a new cycle consisting of number
of edges equal to the sum of the number of edges of
the three individual cycles. This is a -2-move since
the number of cycles here decreases by 2. But it can
be shown that this move can be followed up by two
consequtive 2-moves. The reasoning is, the number of
vertices in the new cycle formed after the -2-move will
be less than twice the number of edges in the cycle
by at least 2. Thus at least two vertices will be there
in the new cycle which repeats in the cycle. Thus by
lemma 7 we have at least two 2-moves here. For a simple

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:2, No:2, 2008

94

........

 X Y Y Z X Z

..................

 X Y Z X

X , Y and, Z denote cycles here. The black edges labeled X, Y and, Z belong to cycles X, Y and, Z

respectively. In all of these configurations, a -2-move followed by two consecutive 2-moves can be

performed.

Fig. 7. Three conjoined cycles

0 21 6 4 11 9 15 23 19 26 5 25 8 2 16 1 12 24 22 3 14 18 13 7 20 17 10 27

 1 2 9 2 9 1 2 9 1

An Example of a Bad Permutation. Three conjoining cycles are shown. The elements at which the

cycles intersects are marked red.

Move: Move block 21 to the right of 19.

The resulting permutation is shown:

0 6 4 11 9 15 23 19 21 26 5 25 8 2 16 1 12 24 22 3 14 18 13 7 20 17 10 27

 1 1 1 1 1 1 1 1 1

The move has resulted in the decrement in the number of cycles by 2. But the new cycle formed,

consists of all the edges from the three conjoining cycles, and has three repeating vertices's marked

blue.

Move: Move block 20 between 19 and 21.

The resulting permutation is shown:

0 6 4 11 9 15 23 19 20 21 26 5 25 8 2 16 1 12 24 22 3 14 18 13 7 17 10 27

 1 2 3 1 1 1 1 1 1

The move has resulted in the increment in the number of cycles by 2. But note that still there is a

repeated vertex 25 in cycle 1.

Move: Move 25 to the left of 26.

The resulting permutation is shown:

0 6 4 11 9 15 23 19 20 21 25 26 5 8 2 16 1 12 24 22 3 14 18 13 7 17 10 27

 1 2 3 5 4 1 1 5 1

The move has resulted in the increment in the number of cycles by 2 again. Thus the move sequence

was a (-2, 2, 2) move sequence. In the worst case we can have two odd cycles being decreased and four

even cycles increased by the above move sequence.

 An example of a bad permutation and a (-2, 2, 2) move sequence on it.

Fig. 8. An Example of a (-2,2,2) move sequence on a bad permutation

permutation, note that this kind of permutations contains
only 3-cycles.
We would like to comment here, that such kind of simple
permutations where there are no repeated vertices, no
two cycles intersecting more than once i.e. conjoined at
two or more vertices and, where there are only 3-cycles
are very rare. This permutation however exists and can
be termed as bad cases for block sorting. Further, we
have no idea about the nature of the cycles that ultimately
result after the three moves. That is, in the worst case,
we could have four new even cycles at the cost of two
odd cycles. We have considered this worst case in our
analysis. An example of (-2, 2, 2) move sequence on a
bad permutation has been shown in Figure 8. Here we
have gained two odd cycles and two even cycles at the
cost of two odd cycles in the beginning. But this might

well be just one sequence of moves. There can be several
other ways of performing them.

We now present the heuristic for block sorting.

Algorithm 1
Input: Two permutations π and idn

Output: The approximate block sorting distance bs(π)
between π and idn

Construct the cycle graph G(π) of the permutation π
bs(π) = 0.
If the permutation is not a simple one, convert it into
a simple permutation.
Transform the permutation to its kernel permutation.
while (π �= id) do

if There is a move which reduces the number of
blocks by 2 or 3 then

Perform a 2-move
bs(π) = bs(π) + 1

else if There is a vertex which repeats in a cycle
then

Perform a 2-move
bs(π) = bs(π) + 1

else if There are two cycles conjoined at two or
more vertices then

Perform the (0,2) move sequence
bs(π) = bs(π) + 2

else if There is a 2-cycle then
Perform the 0-move to increase the number of
odd cycles by 2
bs(π) = bs(π) + 1

else
This is a bad case. Perform the (-2,2,2) move
sequence
bs(π) = bs(π) + 3

end if
end while
Output the distance bs(π)

Theorem 25. The above heuristic for block sorting will
sort any arbitrary permutation in at most twice the
number of moves taken by an optimal block sorting
algorithm in most of the cases.

Proof: In the proof, the performance of the
heuristic shall be considered in all the above mentioned
cases. Then we shall use a mixed objective function
which gives different weights to odd and even cycles,
to establish the performance guarantee of the heuristic.
This particular technique was used to establish the
performance guarantee of a Sorting by Transposition
algorithm in [5].

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:2, No:2, 2008

95

The Objective Function In the identity permutation
with n numbers, there are n + 1 odd cycles and 0 even
cycles. This heuristic can thus be thought to increase
the number of odd cycles and decrease the number of
even cycles until there are n + 1 odd cycles and 0 even
cycles. Let Codd(π) and Ceven(π) denote the number
of odd and even cycles respectively in permutation π.
Define an objective function

• f(π) = xCodd(π) + Ceven(π)

where x ≥ 1.

Let πi denote the identity permutation. Then,

• f(πi) = xCodd(πi) = x(n + 1)

Now, for an arbitrary permutation, which is not
the identity permutation,

• Codd(π) = C(π) − Ceven(π)

Finally by substitution we have,

• f(π) = xC(π) − (x − 1)Ceven(π)

Since f(π) is maximized by the identity permutation,
block sorting can be considered as a process of
maximizing f(π).

Now we shall consider various cases which might
arise by a block sorting move and observe the changes
in f(π) in those cases. Then we shall use these
observations to analyse the heuristic. Let the change in
f(π) by a move, be denoted by Δf(π).

• Case 1: C(π) increases by two odd cycles.

Here Δf(π) = x(C(π) + 2) − (x − 1)Ceven(π)
− xC(π) + (x − 1)Ceven(π)
Or, Δf(π) = 2x

• Case 2: C(π) increases by two even cycles.

Here Δf(π) = x(C(π) + 2) − (x − 1)(Ceven(π) + 2)
− xC(π) + (x − 1)Ceven(π)
Or, Δf(π) = 2

• Case 3: C(π) remains the same, Ceven(π)
decreases by two.

Here Δf(π) = xC(π) − (x − 1)(Ceven(π) − 2)
− xC(π) + (x − 1)Ceven(π)
Or, Δf(π) = 2x − 2

• Case 4: C(π) is decreased by two odd cycles.

Here Δf(π) = x(C(π) − 2) − (x − 1)Ceven(π)
− xC(π) + (x − 1)Ceven(π)
Or, Δf(π) = −2x

Now consider the cases of the heuristic:

• Case 1: There is a vertex which repeats in a
cycle. Or there is a block move to reduce the number
of blocks by 2 or 3.

Here there is a move which increases C(π) by
two. In the worst case Ceven(π) increases by two. But
still there is a gain of 2 here.

• Case 2: There are two cycles conjoined at
two or more vertices.

Here there is a move which would not change the
number of cycles, followed by a move which increases
C(π) and Codd(π) by two. There can be two sub-cases.
In one case, the first move increases Ceven(π) by
two, in the other it does not. However, in both the
cases C(π) remains the same after the first move. The
average gain in the first case is thus (2x − 2)/2 =
x − 1 per move, while in the second it is just 2x/2 =
x per move. Both the sub-cases shall be considered here.

• Case 3: There is a 2-cycle.

Here the gain out of the 0-move is 2x − 2.

• Case 4: There are three conjoined cycles.

Here we have a move which decreases C(π) by
two followed by two consequtive moves each of which
increases C(π) by two. In the worst case, Codd(π)
decreases by two in the first move and Ceven(π)
increases by two in each of the following moves. Thus
the average gain here is (4 − 2x)/3 per move.

The performance guarantee of the heuristic is given by:
2x

min{2,x−1,x,2x−2,(4−2x)/3}
In the worst case, we have to find min{2, x −

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:2, No:2, 2008

96

1, x, 2x − 2, (4 − 2x)/3}.We have plotted the five
functions (Figure 9). The minimum value of intersection
can be found out from the plot. We find x = 0.8 = 4/5
is the minimum. Since it is the intersection of y = x
and y = (4−2x)/3, the performance ratio can be found
out to be

2x
min{2,x−1,x,2x−2,(4−2x)/3} =

2∗4/5
(4−2∗4/5)/3=

3
2.5/4−1 = 3

3/2 = 2

This proves the above theorem.

Intersection of the five functions

-3

-2

-1

0

1

2

3

4

0 1 2 3 4

X

y

y=x y=x-1 y=2x-2 y=(4-2x)/3 y=2

0.8 1.25 1.4

Fig. 9. The various functions determining the performance of the
Heuristic

The steps of the heuristic on the permutation 5 4 3 2
1 is shown in Figure 10.

Given permutation 5 4 3 2 1

After adding 0 and 6 it becomes 0 5 4 3 2 1 6

Kernel permutation: 0 5 4 3 2 1 6

Moves Performed Kernel Permutation Equivalent Block Moves

0 5 4 3 2 1 6 0 5 4 3 2 1 6 5 4 3 2 1

0 5 1 4 3 2 6 0 5 1 4 3 2 6 5 1 4 3 2 (0-move)

0 1 4 3 2 5 6 1 4 3 2 5 1 4 3 2 5 (2-move)

1 4 2 3 5 1 3 2 4 1 4 2 3 5 (0-move)

1 2 3 4 1 1 2 3 4 5 (2-move)

Fig. 10. Moves performed by the heuristic to sort the permutation 5
4 3 2 1

V. CONCLUSION

The heuristic performs even better than that of a
2-approximation in majority of the cases, but it is
not clear whether the performance guarantee can be

improved by this approach. A rigorous case analysis
could do it. In this work some sub-cases have been
ignored, as they lead to too much complications. But we
conjecture that taking them into consideration can lead
to a better performance in the heuristic. Also we do not
have any proof that there cannot be any permutation
which do not fall into any of the cases considered by the
heuristic. We only conjecture that such a permutation if
at all exists must be very large.

REFERENCES

[1] M. Mahajan, R.Rama, V. Raman, and S. Vijaykumar.
Approximate block sorting. International Journal of
Foundation of Computer Science, to appear.

[2] M. Mahajan, R.Rama, and S. Vijaykumar. Towards
constructing optimal block move sequences. In proc.
of the 10th International Computing and Combinatorial
conference, COCOON 2004, LNCS vol.3106, pages 33-42.
Springer-Verlag, Aug 2004.

[3] P. Pevzner. Computational Molecular Biology: An
Algorithmic Approach. MIT Press, Cambridge, MA,
USA, 2000.

[4] V.Bafna and P.Pevzner. Genome rearrangements and sorting
by reversals. SIAM Journal on Computing, 25:272-289, 1996.

[5] V.Bafna and P.Pevzner. Sorting by transpositions. SIAM
Journal on Discrete Mathematics 11(2):224-240, may 1998.

[6] W.W. Bein, L.L. Larmore, L. Morales, and I.H.
Sudborough. A Polymomial Time 2-Approximation for
Block Sorting. Unpublished manuscript, available at
http://www.egr.unlv.edu/ bein/pubs/twoblock.ps.

[7] W.W. Bein, L.L. Larmore, L. Morales, and I.H. Sudborough.
Block sorting is hard. Intl. Jl. of Foundations of Computer
science, 14:425-437, 2003.

[8] G.H Lin and G Xue. Signed genome arrangement by reversals
and transpositions: Models and approximations. Theoretical
Computer Science, 259:513-531, 2001.

Swapnoneel Roy Swapnoneel Roy received his M.S in Computer Sci-
ence and Engineering at the Indian Institute of Technology Madras. He
is a Software Engineer at the Department of Information Management,
IBM India Software Lab. His research interests include Computational
Biology and Bioinformatics, Approximation Algorithms, Database
Systems. He is author of a couple of research papers published at
different conference proceedings.

