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Block homotopy perturbation method
for solving fuzzy linear systems

Shu-Xin Miao

Abstract—In this paper, we present an efficient numerical al-
gorithm, namely block homotopy perturbation method, for solving
fuzzy linear systems based on homotopy perturbation method. Some
numerical examples are given to show the efficiency of the algorithm.

Keywords—Homotopy perturbation method, Fuzzy linear systems,
Block linear system, Fuzzy solution, Embedding parameter.

I. INTRODUCTION

MANY engineering problems, such as equilibrium and
steady-state problems, a mechanism using the kineto-

static approach, require the solution of simultaneous algebraic
linear equations. However, many real-world engineering sys-
tems are too complex to be defined in precise terms, therefore,
imprecision is often involved. Fuzzy linear systems, which can
formulate uncertainty in actual environment, play an essential
role in such cases [12], [18], [11] since the concept of fuzzy
number and arithmetic operations with these numbers are
first introduced by Zadeh [24]. It is immensely important
to development mathematical model and numerical procedure
that would appropriately treat general fuzzy linear systems and
solve them.

Friedman et al. [12] proposed a general model for solving
an n × n fuzzy linear system whose coefficient matrix is
a crisp matrix and the right hand column is an arbitrary
fuzzy number vector. Using the embedding method given in
[21], Friedman et al. [12] replace the original fuzzy linear
system by an 2n × 2n crisp linear system. Then solving
n × n fuzzy linear system is equal to solving 2n × 2n
crisp linear system. Followed Friedman et al. [12], the point
Jacobi, Gauss-Seidel, SOR and steepest descent methods and
conjugate gradient methods have been presented for solving
2n × 2n crisp fuzzy linear system, see for example [6], [7],
[19], [3], [1] and references therein. The direct methods based
on LU decomposition have been proposed and analyzed by
Abbasbandy, R. Ezzati and A. Jafarian [2].

However, if there is an diagonal element of the coefficient
matrix being zero, then classic point iterative methods are not
working. The block method has been studied in [20], [17],
including block Jacobi, block Gauss-Seidel and block SOR
methods.

Recently, an analytic approach based on the basic ideas
of homotopy, which is called homotopy perturbation method
(HPM), is provided by He [14] for nonlinear problems. The
HPM, which is a coupling of the traditional perturbation
method and homotopy in topology, deforms continuously to a
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simple problem which is easily solved. In most cases, using
HPM, gives a very rapid convergence of the solution series,
and usually only a few iterations leading to very accurate
solutions. The HPM has been used to solve various types of
nonlinear problems, see [23], [5], [4], [10], [9] and references
therein.

In [15] and [22], the HPM has been used to solve the linear
systems. Especially, the point HMP method for solving n×n
nonsingular fuzzy linear system have been studied in [8] while
the block HMP method for solving full fuzzy linear system
have been considered in [16].

In this paper, we consider the block HMP method for
solving n × n fuzzy linear system, which is efficient and
practical because the procedure only require the nonsingularity
of the coefficient matrix of n × n fuzzy linear system while
the point HMP method require the diagonal entries of the
coefficient matrix are nonzero (see [8]).

The structure of this paper is organized as follows: In Sect.
II, we introduce the notation, the definitions, and preliminary
results that will be used throughout the paper. In Sect. III,
the block HMP method for solving fuzzy linear system is
proposed. The proposed model is illustrated by solving some
examples in Sect. IV and conclusions are drawn in Sect. V.

II. PRELIMINARIES

Zadeh [24] defined a fuzzy number as follows:
Definition 1. A fuzzy number is a fuzzy set like ũ : R →

I = [0, 1], which satisfies
1. ũ is upper semi-continuous,
2. ũ(x) = 0 outside some interval [c, d],
3. There are real numbers a, b such that c ≤ a ≤ b ≤ d and

3.1 ũ(x) is monotonic increasing on [c, a],
3.2 ũ(x) is monotonic decreasing on [b, d],
3.3 ũ(x) = 1 when a ≤ x ≤ b.

The set of all these fuzzy numbers is denoted by E. An
equivalent parametric of a fuzzy number is given in [13] as

Definition 2. A fuzzy number in parametric form is an
ordered pair of functions (u(r), u(r)), 0 ≤ r ≤ 1, which
satisfy the following requirements:

1. u(r) is a bounded left continuous nondecreasing function
over [0, 1],

2. u(r) is a bounded left continuous nonincreasing function
over [0, 1],

3. u(r) ≤ u(r), 0 ≤ r ≤ 1.
A crisp number α is simply represented by u(r) = u(r) =

α, 0 ≤ r ≤ 1.
The addition and scalar multiplication of fuzzy numbers

can be described as follows, for arbitrary u = (u(r), u(r)),
v = (v(r), v(r)), 0 ≤ r ≤ 1, and real number k,
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1. u+ v = (u(r) + v(r), u(r) + v(r)),

2. ku =

{
(ku(r), ku(r)), k ≥ 0,
(ku(r), ku(r)), k < 0.

Definition 3. The n× n linear system⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a11x1 + a12x2 + · · · + a1nxn = y1,
a21x1 + a22x2 + · · · + a2nxn = y2,

...
an1x1 + an2x2 + · · · + annxn = yn,

(1)

or briefly
Ax = y,

where the coefficient matrix A = (aij), 1 ≤ i, j ≤ n is a
crisp matrix, y = (y1, y2, · · · , yn)T is known with yi ∈ E and
x = (x1, x2, · · · , xn)T is unknown with xi ∈ E, 1 ≤ i ≤ n,
is called a fuzzy linear system (FLS).

Definition 4. A fuzzy number vector X =
(x1, x2, · · · , xn)T given by xj = (xj(r), xj(r)), 1 ≤
j ≤ n, 0 ≤ r ≤ 1, is called a solution of the fuzzy linear
system (1) if⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

n∑
j=1

aijxj =
n∑

j=1

aijxj = y
i
,

i = 1, · · · , n.
n∑

j=1

aijxj =
n∑

j=1

aijxj = yi,

(2)

By (2) and the operation of fuzzy numbers, Friedman et
al. [12] replace the original fuzzy linear systems (1) by an
2n× 2n crisp function linear system

SX = Y or

[
B C
C B

] [
X
−X

]
=

[
Y
−Y

]
, (3)

where S = (skl), 1 ≤ k, l ≤ 2n, skl are determined as follows

aij ≥ 0 ⇒ sij = aij , si+m, j+n = aij ,
aij < 0 ⇒ si, j+n = −aij , si+m, j = aij ,

and any skl which is not determined by the above items is
zero and

X =

[
X
−X

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x
1

...
xn

−x1

...
−xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Y =

[
Y
−Y

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

y
1

...
y

n−y
1

...
−yn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B contains the positive entries of A, C the absolute of the
negative entries of A and A = B−C. Then solving the fuzzy
linear system (1) is equal to solving crisp linear system (3).
The crisp linear system (3) can be uniquely solved for X if and

only if the coefficient matrix S is nonsingular. The following
theorem tell us when S is nonsingular.

Theorem 1. [12] The matrix S is nonsingular if and only
if A = B − C and B + C are both nonsingular.

If the matrix S is nonsingular, then the solution vector X
represent a solution fuzzy vector to the fuzzy system (1) if
and only if (xj(r), xj(r)) is a fuzzy number for all j.

Definition 6. Let X =
{
(xj(r), xj(r))

}
, 1 ≤ j ≤ n

denote the solution of (3). The fuzzy number vector U ={
(uj(r), uj(r)), 1 ≤ j ≤ n

}
defined by

uj(r) = min
{
xj(r), xj(r), xj(1), xj(1)

}
,

uj(r) = max
{
xj(r), xj(r), xj(1), xj(1)

}
is called the fuzzy solution of (3). If (xj(r), xj(r)), 1 ≤ j ≤ n
are all fuzzy numbers then uj(r) = xj(r), uj(r) = xj(r),
1 ≤ j ≤ n and U is called a strong fuzzy solution. Otherwise,
U is called a weak fuzzy solution.

III. ANALYSIS OF THE HPM

Consider the crisp linear system (3) and let

L(U) = SU − Y, F (U) = QU − Y,

where Q is nonsingular. We define homotopy H(U, p) by

H(U, 0) = F (U), H(U, 1) = L(U).

We may choose a convex homotopy

H(U, p) = (1 − p)F (U) + pL(U) = 0, (4)

and continuously trace an implicitly defined curve from a
starting point H(U, 0) to a solution H(U, 1). The embedding
parameter p monotonically increases from zero to one as
the trivial problem F (U) = 0 is continuously deformed to
the original problem L(U) = 0. The embedding parameter
p ∈ [0, 1] can be considered as an expanding parameter [14]

U = U0 + pU1 + p2U2 + · · · , (5)

when p → 1, (4) corresponds to L(U) = 0 and (5) becomes
the approximate solution of (3), i.e.,

X = lim
p→1

(U0 + pU1 + p2U2 + · · ·) =

∞∑
k=0

Uk.

Substituting (5) into (4) and equating the terms with identical
powers of p, we have

p0 : QU
0
− Y = 0,

pk : QUk + (S − Q)Uk−1 = 0, k = 1, 2, · · · .
This implies that

U0 = Q−1Y,
Uk = (I − Q−1S)Uk−1, k = 1, 2, · · · ,

where I is an indent matrix with order 2n. Moreover, we can
rewrite Uk in terms of the vector Y as

Uk = (I − Q−1S)kQ−1Y, k = 1, 2, · · · .
Hence, the solution of (3) can be of the form

X = U0 + U1 + U2 + · · ·
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or

X = [Q−1 + (I − Q−1S)Q−1 + (I − Q−1S)2Q−1 + · · ·]Y

=
∞∑

k=0

(I − Q−1S)kQ−1Y. (6)

In practice, all terms of series (6) cannot be determined and
so we use an approximation of the solution by the following
truncated series:

X =

m−1∑
k=0

(I − Q−1S)kQ−1Y.

The following theorem gives the convergent result of the
above series.

Theorem 2. The sequence

U = [
m−1∑
k=0

(I − Q−1S)kQ−1Y

is convergent if

‖(I − Q−1S)k‖ < 1,

where ‖ · ‖ denotes any norm of a matrix.
To find the solution of linear system (3), we should choose

a nonsingular matrix Q. From Theorem 2, the matrix Q can
be selected as

Q =

[
B − C 0

0 B − C

]

or

Q =

[
B + C 0

0 B + C

]

or other block forms, see for example [17].
If the matrix Q is selected as

Q =

[
B − C 0

0 B − C

]
,

then we have

I − Q−1S =

[
I − (B − C)−1B −(B − C)−1C
−(B − C)−1C I − (B − C)−1B

]
,

where I is an indent matrix with order n.

IV. NUMERICAL EXAMPLES

For a given parameter r ∈ [0, 1], we consider the following
two examples.

Example 1. Consider the 3 × 3 fuzzy system⎧⎨
⎩

2x1 + 3x2 − x3 = (−1 + 4r, 6 − 3r),
3x1 − x2 + 2x3 = (4 + 2r, 12 − 6r),
x1 + 2x2 + 3x3 = (4 + 5r, 13 − 4r).

The exact solution is⎧⎨
⎩

x1 = (x
1
(r), x1(r)) = (1, 2 − r),

x2 = (x
2
(r), x2(r)) = (r, 1),

x3 = (x
3
(r), x3(r)) = (1 + r, 3 − r),

which is a strong fuzzy solution.

The extended linear system is the form of (3), where

S =

⎛
⎜⎜⎜⎜⎜⎜⎝

2 3 0 0 0 1
3 0 2 0 1 0
1 2 3 0 0 0
0 0 1 2 3 0
0 1 0 3 0 2
0 0 0 1 2 3

⎞
⎟⎟⎟⎟⎟⎟⎠
,

Y =

⎛
⎜⎜⎜⎜⎜⎜⎝

−1 + 4r
4 + 2r
4 + 5r
−6 + 3r
−12 + 6r
−13 + 4r

⎞
⎟⎟⎟⎟⎟⎟⎠

and

X =

⎛
⎜⎜⎜⎜⎜⎜⎝

x
1
(r)

x
2
(r)

x
3
(r)

−x1(r)
−x2(r)
−x3(r)

⎞
⎟⎟⎟⎟⎟⎟⎠
.

By HPM and using nine iterations, we obtain the approxi-
mation to the solution of this extended system as

X =

⎛
⎜⎜⎜⎜⎜⎜⎝

1.00000 + 0.00000r
0.00000 + 1.00000r
1.00000 + 1.00000r
−2.00000 + 1.0000r
−1.00000 + 0.00000r
−3.00000 + 1.00000r

⎞
⎟⎟⎟⎟⎟⎟⎠
.

Therefore, the approximation fuzzy solution of this example
is ⎧⎨

⎩
x1 = (x

1
(r), x1(r)) = (1, 2 − r),

x2 = (x
2
(r), x2(r)) = (r, 1),

x3 = (x
3
(r), x3(r)) = (1 + r, 3 − r).

Example 2. Consider the 3 × 3 fuzzy system⎧⎨
⎩

−2x2 + 5x3 = (−3, − 2 − r),
x1 + 2x2 = (r, 2 − r),
3x1 − x3 = (1 + r, 3 − r).

The exact solution is⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x1 = (x
1
(r), x1(r))

= (−0.18750 + 0.31250r, 0.87500 − 0.37500r),
x2 = (x

2
(r), x2(r))

= (−0.09375 + 0.34375r, 0.56250 − 0.31250r),
x3 = (x

3
(r), x3(r))

= (−0.37500 − 0.12500r, 0.43750 − 0.06250r).

In fact x3 is not a fuzzy number, therefore the fuzzy solution
is⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u1 = (u
1
(r), u1(r))

= (−0.18750 + 0.31250r, 0.87500 − 0.37500r),
u2 = (u

2
(r), u2(r))

= (−0.09375 + 0.34375r, 0.56250 − 0.31250r),
u3 = (u

3
(r), u3(r))

= (−0.50000, − 0.37500 − 0.12500r),

which is a weak fuzzy solution.
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The extended linear system is the form of (3), where

S =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 5 0 2 0
1 2 0 0 0 0
3 0 0 0 0 1
0 2 0 0 0 5
0 0 0 1 2 0
0 0 1 3 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠
,

Y =

⎛
⎜⎜⎜⎜⎜⎜⎝

−3
r

1 + r
2 + r
−2 + r
−3 + r

⎞
⎟⎟⎟⎟⎟⎟⎠

and

X =

⎛
⎜⎜⎜⎜⎜⎜⎝

x
1
(r)

x
2
(r)

x
3
(r)

−x1(r)
−x2(r)
−x3(r)

⎞
⎟⎟⎟⎟⎟⎟⎠
.

By HPM and using six iterations, we obtain the approxima-
tion to the solution of this extended system as

X =

⎛
⎜⎜⎜⎜⎜⎜⎝

−0.18750 + 0.31250r
−0.09375 + 0.34375r
−0.37500 − 0.12500r
−0.87500 + 0.37500r
−0.56250 + 0.31250r
−0.43750 + 0.06250r

⎞
⎟⎟⎟⎟⎟⎟⎠
.

Therefore, the approximation weak fuzzy solution of this
example is
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x1 = (x
1
(r), x1(r))

= (−0.18750 + 0.31250r, 0.87500 − 0.37500r),
x2 = (x

2
(r), x2(r))

= (−0.09375 + 0.34375r, 0.56250 − 0.31250r),
x3 = (x

3
(r), x3(r))

= (−0.37500 − 0.12500r, 0.43750 − 0.06250r).

V. CONCLUSION

In this paper, we consider the block HPM for finding an
approximation solution of fuzzy linear systems. The block
HMP method is efficient and practical because the procedure
only require the nonsingularity of the coefficient matrix of
n×n fuzzy linear system while the point HMP method require
the diagonal entries of the coefficient matrix are nonzero (see
[8]). The numerical results show that the block HPM converges
to the exact solution of fuzzy linear systems.
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