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Abstract—This work explores blind image deconvolution by 

recursive function approximation based on supervised learning of 
neural networks, under the assumption that a degraded image is linear 
convolution of an original source image through a linear 
shift-invariant (LSI) blurring matrix. Supervised learning of neural 
networks of  radial basis functions (RBF)  is employed to construct an 
embedded recursive function within a blurring image, try to extract 
non-deterministic component of an original source image, and use 
them to estimate hyper parameters of a linear image degradation 
model. Based on the estimated blurring matrix, reconstruction of  an 
original source image from a blurred image is further resolved by an 
annealed Hopfield neural network. By numerical simulations, the 
proposed novel method is shown effective for faithful estimation of an 
unknown blurring matrix and restoration of an original source image. 

Keywords—blind image deconvolution, linear shift-invariant 
(LSI), linear image degradation model, radial basis functions (RBF), 
recursive function, annealed Hopfield neural networks.  

I. INTRODUCTION 
HE general image deconvolution is to reconstruct the 
original image from given degraded observations and a 

blurring matrix. Some authors [1] preferred to address cases for 
semi-blind deconvolution, since the blurring matrix in many 
applications was unknown or partially known. Blind 
deconvolution refers to a task that is expected to reconstruct an 
original source image from only degraded observations. 
Moreover, the degradation is generally nonlinear (due to 
saturation, quantization, etc.) and spatially varying (lens 
imperfections, nonuniform motion, etc.). However in many 
imaging applications, degraded observations could be 
estimated by a linear spatially invariant (LSI) blur, which are 
also known as the point-spread function (PSF). For medical 
imaging and astronomical imaging, the PSF could be unknown 
or partially known. Reviews on major existing approaches for 
blind and semi-blind deconvolution can be found in [2] and [3]. 

Blind deconvolution is related to blind equalization as 
applied to process single channel temporal observations for 
digital communications. The goal of blind equalization is to 
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reconstruct transmitting signals from given single-channel 
observations. The degradation is linear convolution through an 
unknown filter. Typical approaches to blind equalization are to 
develop an inverse filter. Convolving single channel 
observations through an effective inverse filter is expected to 
reconstruct transmitting signals. In [4] the RBF (radial basis 
functions) neural network was employed to emulate non-linear 
dynamics of transmitting signals. Installed at a receiver, it helps 
to predict the inverse filter output and provide targets to adapt 
an inverse filter. In [5] blind deconvolution is approached by 
supervised learning of multilayer neural networks. The authors 
applied learning multilayer neural networks to extract an 
embedded nonlinear recursive function from observations and 
employed it to estimate an unknown transmitting filter. This 
work further extends recursive function approximation for 
blind image deconvolution based on supervised learning of 
multilayer neural networks. 

 In two-dimensional cases, some existing approaches to 
blind image deconvolution consider PSF partially known. The 
method addresses on blur identification based on assumption 
that elements in a blurring matrix are sampled from a 
two-dimensional Gaussian distribution. A given degraded 
image was transformed to frequency domain and factorized by 
minimizing the Kullback-Leibler (KL) divergence [6] for blur 
identification. With partially known PSF some variational 
methodologies to solve the blind deconvolution problem in 
Bayesian formulation have been presented in [7]-[11]. 
    To estimate unknown PSF, this work explores neural 
network based methodologies for blur estimation and source 
restoration. The supervised learning of neural networks are 
applied to retrieve spatially variant nonlinear recursive 
structures from a blurred image, then employing them to 
estimate a globally invariant linear convolutive structure. At 
restoration phase, Hopfield neural networks are employed to 
restore a source image from a blurred image based on an 
estimated blurring matrix. The advantages of our approach for 
estimation of an unknown blurring matrix leaning are mainly 
oriented from powerful supervised learning of multilayer 
neural networks for recursive function approximation. Blind 
image deconvolution addressed here is without given prior 
informations about PSF. Numerical simulations show Hopfield 
neural networks are effective for restoration of binary and gray 
source images based on an estimated blurring matrix. 

Blind image deconvolution by neural  
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II. A NOVEL NEURAL APPROACH FOR                                                                 
BLIND   IMAGE DECONVOLUTION  

A. Problem statement 

Let M NS ×  and M NX ×  respectively represent an original 
source image and a degraded image (observed image, or 
blurred image) with elements denoted by [ , ]s m n  and 

[ , ].x m n  The blurring matrix ( ) ( )2 1 2 1H τ τ+ × +  with elements 

denoted by [ , ]h i j  is linear and shift-invariant. Under 
assumption that a blurred image is linear convolution of a 
source image through a blurring matrix, induces the following 
equation 

 
[ , ] [ , ]* [ , ] [ , ]

           [ , ] [ , ] [ , ],  for ,
i j

x m n h m n s m n r m n

h i j s m i n j r m n n m
τ τ

τ τ

τ
=− =−

= +

= − − + ≥∑ ∑
(1) 

 
where *  denotes the two-dimensional linear convolution 
operator, [ , ]h m n  denotes the blurring matrix of the degrading 

system and [ , ]r m n  denotes noise. Equation (1) states a linear 
image degradation model. Without provided informations 
about ,H  blind image deconvolution aims to reconstruct S  

for given .X  Therefore, the original image [ , ]s m n  must be 

estimated directly from the degraded image [ , ].x m n  The 
process of the linear image degradation model is depicted in Fig. 
1. 

 
Fig. 1: The process of the linear image degradation model. X is 
generated by linear convolution of an original source image S 
through a LSI blurring matrix. 

B. Nonlinear recursive function embedding 

Let x[ , ]m n  denote collection of elements represented by 

[ , ]x m u n v+ +  with u and v  running from τ−  to τ  

except for 0.u v= =  It covers elements within a 

( ) ( )2 1 2 1τ τ+ × +  window centered at pixel ( , )m n  on 

image .X  Blind image deconvolution is realized by applying 
variant RBF learning methods to construct nonlinear recursion 
embedded within given X. The details of the two methods to 
train a RBF neural network are given in Appendix. The 
nonlinear recursive function is expressed by 

  

           ( )[ , ] x[ , ] [ , ]x m n G m n e m nθ= +                   (2) 

where G  denotes a mapping from ( )22 1 1R τ+ −  to ,R  θ  

denotes collection of its hyper parameters and [ , ]e m n  denotes 

a non-deterministic component. When G  is linear, (2) reduces 
to describe the traditional linear auto-regression model.  
    Let ( )E θ  denote the mean square error of approximating 

[ , ]x m n  by x[ , ]m n  for all m and n. ( )E θ  is minimized 
with respect to θ to determine nonlinear recursion embedded 
within .X  Minimization of ( )E θ  with respect to θ  is the 
goal of supervised learning of RBF neural networks. 

    Let (x )G θ  denote the output of an RBF neural network 

and θ denote collection of centers and variances of radial basis 
functions and posterior weights. Let {(x[ , ], [ , ])}D m n x m n=  
denote paired training data for supervised learning of an RBF 
network. Effective methods for supervised learning of an RBF 
network refer to previous works [15] [16]. If the supervised 
learning method is effective for minimizing ( ),E θ  the 
obtained optimal network parameters, 

min ( )opt E
θ

θ θ=  

will induce an optimal recurrence relation that can be applied to 
extract deterministic components from .X  Let 
 

                      [ , ] (x[ , ] )optx m n G m n θ=                               (3) 

[ , ]x m n  represents a deterministic component of [ , ]x m n . 
This component comes from two possibilities. One is an 
embedded recurrent relation within the original source S  and 
the other is oriented from linear convolution described by (1). 

Subtracting [ , ]x m n  from [ , ]x m n  attains an approximation 
to the non-deterministic component in (2). The approximation 
can be expressed by 

[ , ] [ , ] [ , ]e m n x m n x m n= −                               (4) 
The estimated non-deterministic component is partly 
contributed by transmitting noise [ , ]r m n  as described by (1) 

and partly oriented from .S  In other words [ , ]e m n  must 

cover those belonging source S  that could not be 
deterministically approximated by neighboring pixels. By the 

argument, all [ , ]e m n  must contribute to an blurred image X  
through the convolutive structure described in (1). This 
provides a cure to estimate the unknown convolutive structure 
H  faithfully. The process of deriving nonlinear recursion 
embedded within X  is depicted in Fig. 2. 
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Fig. 2: X is generated by linear image convolution of an 
independent source. Its deterministic component is estimated 
by recursive function approximation based on RBF learning.  
The difference between the networks output and the desired 
output approximates the independent source from which X is 
oriented. 

C. Estimation of an unknown blurring matrix 

Non-deterministic components in S  detected by [ , ]e m n  

contribute to X  through an unknown convolutive structure. 
By the argument, the unknown convolutive structure can be 
estimated by minimizing the following mean square error, 

 

( )( )

2

2( ) { [ , ]
1 1

           [ , ] [ , ]}       

M N

m n

i j

C h x m n
M N

h i j e m i n j

τ τ

τ τ

τ τ

τ τ ≥ ≥

=− =−

= −
− + − +

− −

∑∑

∑ ∑
 

where [ , ]e m n  equals [ , ] [ , ].x m n x m n− Since C  

quadratically depends on elements in ,H  its derivative with 

respect to each [ , ]h i j  linearly depends on elements in .H  
Setting 

                                       0
[ , ]
dC

dh p q
=                                (5) 

 
where p  and q  run from τ−  to τ , forms a linear system 
whose solution estimates parameters of the linear image 
degradation model. The proposed novel method for 
reconstruction of the nonlinear recursion embedded within a 
given degraded image and estimation of the linear image 
degradation model is summarized by the following stepwise 
procedure. 

1.   Input { [ , ]}M NX x m n× = . 

2.   Form paired data (x[ , ], [ , ])m n x m n  for all ,m n . 
3.   Train an RBF neural network to minimize ( )E θ  subject 

to given paired data and set the obtained network 

parameter to optθ . 

4. Set [ , ] [ , ] [ , ]e m n x m n x m n= −  for all m  and ,n  

where (x )optx G θ= . 

5. Solve the linear system defined by equation (5) to 
determine all [ , ]h i j . 

 
    With an estimated blurring matrix and a degraded image, the 
restoration of an original source image is explored in the 
upcoming sections. In above procedure, if X  is a large image, 
it can be decomposed to several sub-images. At step 3 each 
sub-image can be processed to attain its local recursive relation. 

At step 5 over the whole image all [ , ]e m n  are employed to 
estimate a global convolutive structure. 

X  is generated by linear convolution of source S  through 
blurring matrix H  and added with error .r  There are two 
cases of source .S  If the pixel of S  is independent of its 
nearby pixels, it is composed of non-deterministic components 
(NDC) only. Otherwise the pixel of S  could have 
contributions of its nearby pixels through shift invariant linear 
convolution. In the occasion, S can be decomposed into 
non-deterministic components (NDC) and deterministic 
components (DC). The linear convolutions of these two types 
of sources are respectively depicted in figures 3 and 4, where 
deterministic components are assumed as results through linear 
or nonlinear convolution structures.  The result of the process 

in fig. 2 denoted by [ , ]e m n  can be employed to approximate 
NDC in .S  

 
Fig. 3: The original source image S is composed of NDC only.  
 

 
Fig. 4: Linear convolution of an original source image S 
through a LIS blurring matrix H where S can be decomposed 
into NDC and DC. 

III. IMAGE RESTORATION BY HOPFIELD                                          
NEURAL NETWORKS 

For blind equalization, given an estimated convolutive 
structure ,A  the independent source could be retrieved from 
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single channel observations by the following matlab built-in 
function, 

                   [ ] fdeconv( , )Q signal A=  
where ,Q  signal and A  respectively represent the estimated 
independent source, single channel observations and an 
estimated convolutive structure. For blind image deconvolution, 
given an estimated convolutive structure, there exists no public 
matlab function to estimate an original source from a blurred 
image. This section develops two methods to solve this 
problem. Fig. 5 gives an example to illustrate determining S  
for given H  and .X  Row major enumeration attains three 
column vectors for representing matrices ,S  H  and .X  Each 
entry in X  induces a linear equation, which is expressed by 
matlab instructions, matrix inner product and matrix sum over 
all elements, 

( [ , ] ) [ , ]sum s m n H x m n⋅ =                          (6) 

, where [ , ]s m n  denotes a (2 1) (2 1)τ τ+ × +  sub-matrix of 
S  with center at the entry [ , ]s m n . As shown in Fig. 5, 
dummy entries of S are filled with zeros. The source image S is 
extended to 7 7× matrix in Fig. 5 for its restoration based on 
the blurring matrix estimated by (5). 
 

 
Fig. 5: S is extended to have surrounding zeros before for its 
convolution through H to form X. For example, the first 
element of X is generated by the product of upper left 
3 3× sub-matrix of S to H. 
 

There are M×N entries in S and induce M×N linear 
equations, which form a linear system whose solution estimates 
M×N unknowns in .S  If the blurring matrix H  is given, 
image deconvolution is to solve the linear system defined by (6). 
But this method needs an accurate estimation to H  and has 
low tolerance for slightly perturbed .H  With only an 
estimation to H  instead of an actual H  that has been used to 
form ,X  solving the linear system defined by (6) may result in 
disqualified restoration of .H   

An annealed Hopfield neural network (12) and (13) is 
devised to restore an original source image from an estimated 
convolutive structure and a blurred image. Let { 1}mnS ∈ ±  

denote an element in image .S  Let mnX  and ijH  respectively 

denote elements in X  and .H  An estimated original binary 
source image is expected to minimize the following 
approximating error, 

2
,

2
,

( ) [( )

                                     ( ) ]

ij m i n j mn
m n i j

ij m i n j
i j

E S H S X

H S

τ τ

τ τ

τ τ

τ τ

− −
=− =−

− −
=− =−

= −

−

∑∑ ∑ ∑

∑ ∑
 

where { }1mnS ∈ ± . The first term in bracket measures the 

square error between mnX  and its approximation by linear 

convolution of S  through .H  Since mnS  belongs {±1}, 2
mnS  

equal one. All 2
mnS  are subtracted to avoid self-connections in 

an annealed Hopfield neural network. Consider a neural system 
that is composed of M×N stochastic neural variables mnS  
whose joint distribution obeys the following Boltzmann 
distribution 

Pr( ) exp( ( ))S E Sβ∝ −  
where β is a temperature-like parameter. The free energy can be 
expressed by 

                              1( ) ( )F E S H S
β

= −                            (7) 

where the first term denotes the mean energy and ( )H S  
denotes the system entropy, 
                          

{ }
( ) Pr( ) log Pr( )

S

H S S S=−∑                     

By naive mean field approximation, all binary random  
variables in S  are assumed statistically independent. Let 

mnS denote the individual mean of mnS . Then 

1
Pr( 1)

2
1

Pr( 1)
2

mn
mn

mn
mn

S
S

S
S

+
= =

−
=− =

 

By the independence assumption, the system entropy equals the 
sum of all individual entropies, such as 

( ) ( )mn
m n

H S H S≈∑∑  

where 
1 1 1 1

( ) log log
2 2 2 2

mn mn mn mn
mn

S S S S
H S

+ + − −
=− −      (8) 

Furthermore the mean energy can be approximated by 
substituting each mnS  to mnS  in E. The free energy in (7) 

can be rewritten as 
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2 2
, ,[( ) ( ) ]

1 1 1 11       ( log log )
2 2 2 2

ij m i n j mn ij m i n j
m n i j i j

mn mn mn mn

m n

F H S X H S

S S S S

τ τ τ τ

τ τ τ τ

β

− − − −
=− =− =− =−

≈ − −

+ + − −
− − −

∑∑ ∑ ∑ ∑ ∑

∑∑

Let hk hkV S= . The derivative of F  with respect to hkV  is 

well defined. Setting 

0
hk

F
V
∂

=
∂

 

leads to the following mean field equation, 

, ,

, ,

tanh( 2 [ ( )

                                           ])

h k

hk ij m i n j mn m h n k
m h n k i j

h k

h m k n m h n k hk
m h n k

V H V X H

H H V

τ τ τ τ

τ τ τ τ

τ τ

τ τ

β
+ +

− − − −
= − = − =− =−

+ +

− − − −
= − = −

= − −

−

∑ ∑ ∑ ∑

∑ ∑

 (9) 

IV. NUMERICAL SIMULATIONS 
The proposed method is tested for blur estimation and source 

restoration. Fig. 6 - 9 shows an original source image, a 
blurring matrix, a blurred image, an estimated blurring matrix 
and a restored source image. Numerical simulations are 
summarized by the following stepwise procedure. 

 
1.   Use matlab built-in function imread.m to load an original 

source image, { [ , ]}.M NS s m n× =  

2.  Ask the user to define a blurring matrix , (2 1) (2 1)H τ τ+ × +  

{ [ , ]}h i j= . 
3. Convolve S  through H  to generate a blurred image, 

{ [ , ]}M NX x m n× = . 

4.  Form paired data {(x[ , ], [ , ])}D m n x m n=  from .X  
5. Apply RBF learning to build an embedded recursive 

function within .X  

6. Calculate [ , ]x m n  for all m  and n  by (3). 

7. Set [ , ] [ , ] [ , ]e m n x m n x m n= −  for all m  and n . 
8. Solve the linear system defined by (5) to determine all 

[ , ]h i j . 
9. Execute the mean field equation (9) under an annealing 

process for source restoration. 
 
The proposed novel method is tested for case of 2τ =  and 

31K = , where K denotes the number of hidden units in an 
RBF network and (2 1) (2 1)τ τ+ × +  denotes the size of the 
blurring matrix. Fig. 7 show numerical results for this example. 
Fig. 8 shows the blurring  matrix estimated by the RBF & 
AdaBoost reg  Software [15] method. 

 
Fig. 6: (a) Original source image. (b) Blurred image is 
generated by linear image degradation model. 

 
Fig. 7: The image and 3D mesh of a blurring matrix H. 

 
Fig. 8: The image and 3D mesh of an estimated blurring 

matrix. 

 
Fig. 9: Restored source image by Hopfield neural networks. 

 
With an exact blurring matrix, source restoration by solving 

(6) is shown effective. But when a given blurring matrix is 
added with noises or slightly perturbed, the general image 
deconvolution will be not effective for restoring an original 
source image as shown in Fig. 10. Numerical simulation show 
annealed Hopfield neural networks effective for source 
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restoration based on an estimated blurring matrix in Fig.9. Fig. 
11 – 14 shows the numerical result of a number plate derived by 
an annealed Hopfield neural network for image deconvolution. 

Based on the blurring matrix estimate by recursive function 
approximation an annealed Hopfield neural network is applied 
to restore an original source image. Fig. 8 - 9 shows numerical 
results of the proposed novel method and Fig. 15 - 16 shows 
numerical results derived by the matlab built-in function, 
deconvblind.m, proposed in [17]. The performances of the two 
methods, are evaluated by the following error rate 
 

1 [ , ] ( [ , ])
2 m n

s m n s m n
MN

λ φ= −∑∑  

where φ  denotes the sign function and { [ , ]}s m n  denotes an 
estimated original image. Table 1 lists error rates derived by 
relevant RBF learning methods for recursive function 
approximation. 

 
Fig. 10 (a)Restored source image with an exact blurring matrix 
by general image deconvolution. (b) Restored source image 
with a blurring matrix added noises or slightly perturbed by 
general image deconvolution. 

 
Fig. 11: Original source image of a number plate. 

 
Fig. 12: The image and 3D mesh of a blurring matrix H. 

 
Fig. 13: Blurred image of a number plate is generated by linear 
image degradation model. 

 
Fig. 14: Restored source image of a number plate by Hopfield 
neural networks. 
 
 

 
Fig. 15: The image and 3D mesh of an Estimated blurring 
matrix by the matlab built-in function, deconvblind.m. 

 
Fig. 16: Restored source image by the matlab built-in function, 
deconvblind.m. 
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TABLE I 

UNITS FOR MAGNETIC PROPERTIES 
 

Method 
Error rate of the cat 

1 [ , ] ( [ , ])
2 m n

s m n s m n
MN

λ φ= −∑∑
 
 
 
Recursive 
Function 
Approximation 

k-means clustering 
for σ  

0.0975 

k-means clustering 
for 

kσ  
0.1355 

RBF and 
AdaBoost-reg 
Software 

0.0974 

Levenberg-Marqu
ardt method 

0.0980 

Deblurring images using the blind 
deconvolution algorithm 

0.2031 

Error rate derived by relevant RBF learning methods for 
recursive function approximation and the matlab built-in 
function, deconvblind.m. 
 

V. CONCLUSION 
This work has shown the proposed novel method effective 

for faithful blur estimation and source reconstruction. The 
novel method applies supervised learning of RBF networks to 
construct an embedded recursive function within degraded 
observations and use them to extract the non-deterministic 
component of an original source image. The difference 
between degraded observations and the extracted deterministic 
component serves as the non- deterministic component. The 
non-deterministic component is further applied to estimate an 
unknown blur structure. Moreover, an annealed Hopfield 
neural network is applied for image deconvolution and its 
effectiveness is shown for source restoration based on a  noisy 
blurring matrix.  

APPENDIX 
The RBF network function employed in (2) is defined by 

               2

0 2
1

[ , ] (x[ , ] | )

x[ , ]
          exp( )

2

K
k

k
k k

x m n G m n

m n
w w

μ

θ

σ=

=

−
= + −∑

            (10) 

where { } { } { }k k kwθ σ= ∪ ∪μ denotes collection of 
network parameters. 

A. K-means based RBF learning 
K-means clustering [14] aims to determine K means of given 

observations by partitioning them into non-overlapping subsets. 
Let 1{ }n

i i=ξ denote collection of d-dimensional real vectors. 
K-means clustering aims to partition them into k subsets, each 
denoted by ,jΛ  where ,K n< so as to minimize the 

within-cluster sum of squares (WCSS), 
2*

1

arg min
i j

K

i j
j x

Λ
= ∈Λ

Λ = −∑∑ ξ μ  

where jμ  is the mean of elements in .jΛ  K-means clustering 

can be employed to initialize the network parameter θ of 
equation (10). Let {( , )}i i iD = ξ y  denote paired training 
data. Two simple approaches are considered to determine 
network parameters other than determined K means, denoted 
by 1{ }K

j j=μ . 

1.    The first situation considers kσ σ=  for all k, where σ  

is a real value. The means kμ  for all k are determined by 
k-means clustering. A common variance is employed. 
Equation (10) for each iξ  will reduce to a linear system, 

                           0
1

K

i k ik
k

y w w v
=

= +∑                             (11) 

where 
2

2exp( )
2

i k
ik

k

v
σ
−

= −
ξ μ

. There are K unknowns, 

{ }k kw , and n constraints, which constitute a linear system 
well resolved by the technique of pseudo inverse. 
Substituting all determined network parameters to 

                        2

1

1 ( ( | ))
2

N

i
i

E y G
Nσ θ

=

= −∑ ξ              (12) 

attains an error. This error is minimized by selecting the 
best common σ. 

2.   The second situation employs different variances. The 
K-means clustering method is used to determine all .kμ  

Then kσ  is determined by elements that are closest to kμ  

relative to jμ  with  j≠k. Then equation (11) is employed 

to determine all .kw  

B. Levenberg-Marquardt method 
The Levenberg-Marquardt method [16] can be considered as 

a hybrid of the gradient method and the Newton-Gauss method. 
Let iθ  denote the network parameter at the thi  iteration and 

( , ) ( | )i t it y y tε θ θ= −  denote an approximating error. The 
mean square error in (12) can be rewritten as 

                          2

1

1( ) ( , )
2

N

D i i
t

E t
N

θ ε θ
=

= ∑                   (13) 

It follows 

1

( ) 1( ) ( , ) ( , )
i

N
D

i i i
t

dE t t
d Nθ θ

θ
θ ε θ θ

θ =
=

∇ = =− Ψ∑  

Where 
( [ ] | )( , ) .

i

dG x tt
d θ θ

θ
θ

θ =Ψ = Moreover, 

                    
( ) ( )

i

D
i i

dE
d θ θ

θ
θ θ

θ =Δ ∝− =−∇            (14) 

( , )tε θ by linear expansion at iθ θ=  can be represented as 
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( , )( , ) ( , ) ( )

          ( , ) ( ) ( , )

i

T
i i i

T
i i i

d tt t
d

t t

θ θ
ε θ

ε θ ε θ θ θ
θ

ε θ θ θ θ

== + −

= − − Ψ
 

So the mean square error (12) can be written as the quadratic 
form. That is 

2

1

1( ) ( , )
2

N

ii
t

L t
N

θ ε θ
=

= ∑  

where ( ) ( )i DL Eθ θ≈ . The quadratic form by expansion at 

iθ θ=  can be represented as 

1( ) ( ) ( ) ( ) ( ) ( )( )
2

T T
i i i i i i i iL L Rθ θ θ θ θ θ θ θ θ θ= +∇ − + − −  

where 
1

1( ) ( , ) ( , )
N

T
i i i

t

R t t
N

θ θ θ
=

= Ψ Ψ∑  denote Gauss-Newton 

Hessian matrix and the gradient 
1

1( ) ( , ) ( , )
N

i i i
t

t t
N

θ ε θ θ
=

∇ =− Ψ∑ . 

Moreover, the Newton-Gauss method takes the derivative of 
the quadratic form. That is 

( ) ( ) ( )( ) 0i i
i i i

dL R
d
θ

θ θ θ θ
θ

=∇ + − =  

let ( ) ( )i iθ θ θΔ = −  can be rewriting as 

                             ( ) 1( ) ( ) ( )i i iRθ θ θ−
Δ =− ∇                      (15) 

Therefore, the Levenberg-Marquardt method let ( )iθΔ  is 
determined by 

                          ( )( ) ( ) ( )i i iR Iθ λ θ θ+ Δ =−∇                (16) 

where λ  is control factor and I is identity matrix. If 0λ= , 
equation (16) reduce to (15) and it use the Newton-Gauss 
method. Otherwise λ is sufficiently large, ( )iθΔ  is determined 
by (14) and it use the gradient method. Under the assumption, 
control λ by following equation 

( ) ( )
( ) ( )

D i D i i
i

D i i i i

E E
E L

θ θ θ
α

θ θ θ
− +Δ

=
− +Δ

 

where ( )D iE θ  is called current parameter, ( )D i iE θ θ+Δ  is 

called next parameter, ( ) ( )D i D i iE Eθ θ θ− +Δ  represent as 

actual cost reduction and ( ) ( )D i i i iE Lθ θ θ− +Δ  represent 

as predicted cost reduction. If iα  is high, λ is reduced. 
Otherwise λ is increased. So the heuristic adaption could be 
written as 

If 0.75,  0.5
If 0.25,  2

i

i

α λ λ
α λ λ

> ←

< ←
 

The Leveberg-Marquardt method has been applied to learning 
multilayer neural networks, including multilayer perceptrons 
(MLP), RBF (radial basis functions) networks, and their hybrid 
networks. 
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