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Abstract—In this paper we introduce an efficient solution 

method for the Eigen-decomposition of bisymmetric and per 
symmetric matrices of symmetric structures. Here we decompose 
adjacency and Laplacian matrices of symmetric structures to sub-
matrices with low dimension for fast and easy calculation of 
eigenvalues and eigenvectors. Examples are included to show the 
efficiency of the method.  
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I. INTRODUCTION 
ALCULATION of eigenvalues and eigenvectors of a 
matrix is important in any engineering problems [1]. 

Basic and fundamental calculations for stability, vibration and 
buckling analysis of structural systems require to solving 
generalized eigenvalue problem [2, 3]. For calculation of 
eigenvalues and eigenvectors of a matrix the characteristic 
equation of the matrix should be formed and the 
corresponding equation of order n should be solved [4]. 
Recently canonical forms are developed and used for 
Eigensolution of symmetric structured matrices arising in data 
analyzing of symmetric and regular structures [5, 6]. There are 
also classical methods for Eigensolution of structured matrices 
based on LU decomposition, preconditioning, divide and 
counter algorithms and other approximate methods [7, 8, 9]. 
In this paper, a simple and efficient method is presented for 
computing of the eigenvalues and eigenvectors of bisymmetric 
matrices. Here Bisymmetric matrices are decomposed into 
sub-matrices with low dimensions for simple and fast 
computing of eigenvalues and eigenvectors. 

II. BASIC DEFINITIONS OF GRAPH THEORY 
A.  Definitions from Graph Theory 
A graph ),( ENG  consists of a set of elements, )(G , called 

nodes and a set of elements, )(GE , called edges, together 
with a relation of incidence which associates two distinct 
nodes with each edge, known as its ends. Two nodes of a 
graph are called adjacent if these nodes are the end nodes of 
an edge. An edge is called incident with a node if it is an end 
node of the edge.  

 
Author is with Department of Structural engineering, Shabestar branch, 

Islamic Azad University, Shabestar, Iran. (phone: +989144129778; e-mail: 
(nouri@iaushab.ac.ir).  

 

 
The degree of a node is the number of edges incident with 

the node. A sub-graph iG  of a graph G  is a graph for which 

)()( GNiGN ⊆ and )()( GEGE i ⊆ , and each edge of iG  has 

the same ends as in G. A path graph P is a simple connected 
graph with 1)()( += PEPN  that can be drawn in a way that 
all of its nodes and edges lie on a single straight line. A cycle 
graph C is a simply connected graph with )()( CECN =  that 
can be drawn so that all of its nodes and edges lie on a circle. 
A path graph and a cycle graph with n nodes are denoted by 

nP  and nC , respectively.  
 
B. Matrices Associated with a Graph 
Let G be a graph with n nodes. The adjacency matrix A is 

an n×n  matrix in which the entry in row i and column j is 1 
if node in  is adjacent to jn , and is zero otherwise. This 

matrix is symmetric and the row sums of A are the degrees of 
nodes of G. The Laplacian matrix of graph G is defined as: 

 
L = D − A. (1) 

 
Where D is a diagonal matrix in which the i-th diagonal entry 
is equal to the degree of node i [10]. 

III. SIMILARITY TRANSFORMATION OF MATRICES   

A complex scalar iλ  is called an eigenvalue of the square 

matrix nn×A  if a nonzero vector iv  exists such 

that iii vAv λ= . The vector iv  is called an eigenvector of A 

associated with iλ . The set of eigenvalues of A is called the 

spectrum of A. A scalar iλ  is an eigenvalue of A if and only if 

0)det( =− IA iλ . That is true if and only if iλ  is a root of the 
characteristic polynomial. Two matrices A and B are said to 
be similar if there is a nonsingular matrix U such that:  
 

AUUB 1−= (2) 
 

The mapping A → B is called a similarity transformation. It 
can be shown that similarity transformations preserve the 
eigenvalues of matrices: 
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,vAv λ= (3) 
111 −−−

(4) 

 
By substituting AUUB 1−=  and ,1

ii vUy −= we will have:  
 

,ii yBy λ=  (5) 
 

Equation (5) which is a standard representation of Eigen-
problems means that iλ  are also the eigenvalues of the matrix 
B [18].  

IV. BISYMMETRIC AND PER SYMMETRIC MATRIXES 
A. Bisymmetric Matrix 
In mathematics, a bisymmetric matrix is a square matrix 

that is symmetric about both of its main diagonals. More 
precisely, an n×n matrix M is bisymmetric if and only if it 
satisfies tMM =  and M×S = S×M, where S is the n×n 
exchange matrix. 

 

,
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1
1
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⎣

⎡
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B. Persymmetric Matrix 
In mathematics, persymmetric matrix may refer to a square 

matrix which is symmetric in the northeast-to-southwest 
diagonal or a square matrix such that the values on each line 
perpendicular to the main diagonal are the same for a given 
line. If B is persymmetric matrix  

 
SBSB =t  (7) 

 
Where, S is the exchange matrix. 

V. DECOMPOSITION OF BISYMMETRIC MATRICES 
  Consider the matrix M:  
 

,⎥⎦
⎤

⎢⎣
⎡

=
SASB

BA
M t  (8) 

 
If A=At & SBSB =t , then it is obvious that, M is 
bisymmetric. Because: 
 

M=Mt & M=SMS, (9) 
 

For decomposition of M, it is necessary to introduce exchange 
matrix as: 
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Now we form the matrix P (permutation matrix) as: 

⎥⎦
⎤

⎢⎣
⎡

−
=

SI
IS

P
2

1
, ,

1

1

⎥
⎥

⎦

⎤
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⎢

⎣

⎡
= OI  (11,12) 

P is orthogonal matrix so It is obvious that: 
,IPP =t  (13) 

So the following multiplying doesn’t change the eigenvalues: 

,
0

0
⎥⎦
⎤

⎢⎣
⎡

+
−

=
BSA

BSA
PMP t  (14) 

This means that we can calculate eigenvalues and 
eigenvectors of matrix M with sub-matrices with low 
dimension than M, as: 
 

).()()( BSABSAM −+= eigeigeig U  (15) 

VI. EXAMPLES  

A. Example 1 (Numerical): Consider the following sub-
matrices: 
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⎡
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In this example A is symmetric and B is persymmetric so we 
can calculate the eigenvalues of M using present method by 
eigenvalues of the following sub-matrices:     
 

).()()( BSABSAM −∪+= eigeigeig  
eig(A+BS)=[ 0.6833, 9.1077, 30.2089], 

eig(A-BS)=[ -13.6225, 7.3721, 16.2504]. 
 
So the eigenvalues of matrix M: 
 

eig(M)=[ -13.6225, 0.6833, 7.3721, 9.1077, 16.2504, 
30.2089]. 

B. Example 2 (graph theory): 
Consider the graph (G) as; 

 
Fig. 1 Graph (G) 

 
Adjacency matrix of graph (G) M and its sub-matrices A, B 
can be formed as:  

i i

,U AUU v = U λvi i
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Directly calculation of the eigenvalues of M yields:  
eig(M)= (-1.7912, -1.6180, -1.0000, 0.6180, 1.0000, 2.7912) 
Now we can decompose M to (A+BS) and (A-BS) so 
eigenvalues of M: 
 

),()()( BSABSAM −∪+= eigeigeig  
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eig(A+BS)=(-1.7912, 1.0000, 2.7912), 
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eig(A-BS)=(-1.61803, -1.0000, 0.61803). 
 
 Finally eigenvalues of M can be formed as: 
 

),()()( BSABSAM −∪+= eigeigeig  
eig(M)= (-1.7912, -1.6180, -1.0000, 0.6180, 1.0000, 2.7912). 
 
According the above calculation, we can decompose the graph 
G to sub-graph G1 and G2 in the following form: 
 

 
)()( 21 GGG ∪=  

Fig. 2 Graph (G) and its decomposition and healed form 

C. Example 3 (structural mechanics): 
Consider the truss models G1, G2, G3, G4 and their 
adjacency and Laplacian matrices of the truss model 
as: 
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Fig. 3 Graph model of truss G1 
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Fig. 4 Graph model of truss G2 
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Fig. 5 raph model of truss G3 
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Fig. 6 Graph model of truss G4 

,

11
11111

11
11111

11111
1111

1111
11111

11111
11
11111

11

)( 4

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=GAdj

 

  

,

211
151111

121
115111

115111
11141

14111
111511

111511
121
111151

112

)( 4

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−−−−−

−−
−−−−−

−−−−−
−−−−

−−−−
−−−−−

−−−−−
−−
−−−−−

−−

=GLap

 

 
In all of these examples adjacency and Laplacian matrices 

are persymmetric and sub-matrices hold in the defined 
conditions so we can decompose to smaller sub-matrices for 
easy and fast computing of their eigenvalues.  

VII. CONCLUDING REMARKS 
In this paper, a simple method is presented for calculating 

the eigenvalues of adjacency and Laplacian matrices of 
bisymmetric and persymmetric matrices of structural and 
graph theory models.  

Examples studied here show that the results obtained by the 
present method are exact solution method for the problem. 
The calculated eigenvalues are exact values, and can 
efficiently be used for solution of the models whose structural 
matrices are or can be transformed into the presented form. 
The present method can be used in combinatorial optimization 
problems such as the ordering and partitioning of structural 
models.  

ACKNOWLEDGMENT 
The author is grateful for the support of the Shabestar 

branch, Islamic Azad University. 
 

REFERENCES 
[1] Bathe KJ, Wilson EL. Numerical Methods for Finite Element Analysis. 

Prentice Hall: Englewood Clffis,NJ, 1976. 
[2] Livesley RK. Mathematical Methods for Engineers. Ellis Horwood:  

Chichester, U.K., 1989. 
[3] George J. Simitses, Dewey H. Hodges. Fundamentals of Structural 

Stability.   Elsevier Inc. 2006. 
[4] Jennings A, McKeown JJ. Matrix Computation. Wiley: New York, 1992. 
[5] A. Kaveh and H. Rahami, New canonical forms for analytical solution of 

problems in structural mechanics, Communications in Numerical 
Methods in Engineering, No. 9, 21(2005) 499-513. 

[6] Kaveh A., Nouri M. and Taghizadieh N.: Eigensolution for adjacency 
and Laplacian matrices of large repetitive structural models. Scientia 
Iranica,  16(2009)481-489. 

[7] Nouri M.: Free vibration of large regular repetitive structural structures, 
International Journal of Science and Engineering Investigations, 
Volume 1, Issue 1, 2012, Pages 92-96. 

[8] Cuppen, J.J.M. “A divide and conquer method for the symmetric 
tridiagonal eigenproblem”, Numerische Mathematik, 36, pp. 177–195 
(1981). 

[9] Kaveh A., Nouri M. and Taghizadieh N.: An efficient solution method 
for the free vibration of large repetitive space structures. Advances in 
Structural Engineering, 14(2011)151-161. 

[10] Kaveh, A. Structural Mechanics: Graph and Matrix Methods, 3rd ed. 
Somerset: Research Studies Press, 2004. 

[11] A. Kaveh and K. Koohestani, Combinatorial optimization of special 
graphs for nodal ordering and graph partitioning, Acta Mechanica, Nos. 
(1-2), 207(2009)95-108. 

 


