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Abstract—A vast array of biological materials, especially algae 

have received increasing attention for heavy metal removal. Algae 
have been proven to be cheaper, more effective for the removal of 
metallic elements in aqueous solutions. A fresh water algal strain was 
isolated from Zoo Lake, Johannesburg, South Africa and identified as 
Desmodesmus sp. This paper investigates the efficacy of 
Desmodesmus sp.in removing heavy metals contaminating the 
Wonderfonteinspruit Catchment Area (WCA) water bodies. The 
biosorption data fitted the pseudo-second order and Langmuir 
isotherm models. The Langmuir maximum uptakes gave the 
sequence: Mn2+>Ni2+>Fe2+.  The best results for kinetic study was 
obtained in concentration 120 ppm for Fe3+ and Mn2+, whilst for Ni2+ 

was at 20 ppm, which is about the same concentrations found in 
contaminated water in the WCA (Fe3+115 ppm,  Mn2+ 121 ppm and 
Ni2+ 26.5 ppm). 
 

Keywords—Biosorption, Green algae, Heavy metals, 
Remediation. 

I. INTRODUCTION 
HE first goldfields of the Witwatersrand basin were 
discovered in 1886, in a place called Highveld [1]. Only 
a year later, gold mining reached the 

Wonderfonteinspruit Catchment Area (WCA), situated 30 km 
west of Johannesburg. Gold-mining in the WCA inspired 
extensive urbanisation, transforming largely rural and under-
developed areas into densely-populated regions. Westonaria, 
Randfontein and Carletonville are some of the towns which 
owe their very existence to gold mining in the WCA [1]. 
Although mining became the most importance source of direct 
or indirect income in the area, it also brought with it the curse 
of environmental degradation. It is now the major cause of 
environmental devastation after about 120 years of mining.  
The consequence of mine closure was not only observed in 
large-scale land degradation, but also in widespread pollution 
of surface water and groundwater in this area.  Thus, clean-up 
methods must be developed in order to remove heavy metals 
from contaminated water bodies in this area.Methods for 
removing metal ions from aqueous solutions mainly consist of  
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physical, chemical and biological technologies. However, 
chemical precipitation and electrochemical treatment are 
ineffective, especially when metal ion concentration in 
aqueous solution is between 1 and 200 mg/L [2]. This process 
also produces a large quantity of sludge required to be treated 
with great difficulty.  In recent years microbial processes have 
started to be used in the cleanup of radioactive and metallic 
contaminants from soil and water through biotransformation, 
biodegradation and biomineralization [3], [4], [5] and [6].  
Depending on the site and its contaminants, bioremediation 
may be safer and less expensive than alternative conventional 
solutions [7]. Biological remediation techniques, such as the 
use of algae, offer the potential for highly selective removal of 
toxic metals; in addition, they can also be used both in situ and 
ex situ.  The biosorption process involves a solid phase 
(sorbent or biosorbent; biological material) and a liquid phase 
(solvent, normally water) containing a dissolved species to be 
sorbed (sorbate, metal ions). Due to higher affinity of the 
sorbent for the sorbate species, the latter is attracted and bound 
there by different mechanisms. The process continues until 
equilibrium is established between the amount of solid-bound 
sorbate species and its portion remaining in the solution. Metal 
ions in solution bind passively onto algal cells and this occurs 
mainly on functional groups present on the cell walls. Possible 
biosorption mechanisms are: chemisorption, complexation, 
surface adsorption-complexation, ion exchange and 
microprecipitation [8].  Physical sorption is due to weak Van 
der Waals forces, whereas chemical sorption is due to electron 
exchange and formation of chemical bonds.  There are several 
chemical groups that would attract and sequester the metals in 
biomass: acetamido groups of chitin, amino and phosphate 
groups in nucleic acids, amido, sulphhydryl, carboxyl groups 
in proteins and hydroxyls in polysaccharide. However, it does 
not necessarily mean that the presence of some functional 
group guarantees biosorption, perhaps due to steric, 
conformational or other barriers. 

In this work, the biosorption of some (iron, manganese and 
nickel) of the metals contaminating the WCA on live algal 
cells is investigated.  The maximum metal uptake and the 
biomass affinity for a certain metal will be obtained from the 
sorption isotherms: Langmuir and Freundlich. Two different 
models will be used to describe the biosorption kinetics of the 
biomass: the pseudo-first order model proposed by Lagergren 
and the pseudo-second order model proposed by Ho [9] and 
[10].  The algae was sampled from Zoo Lake, Johannesburg, 
South Africa, it was identified by CTA-extraction 
techniqueand characterised using Fourier transform infrared 
spectroscopy (FTIR) to determine possible metal binding 
mechanisms.  

Biosorption of Heavy Metals Contaminating 
theWonderfonteinspruit Catchment Area using 

Desmodesmus sp. 
P.P. Diale, E. Muzenda, T.S. Matambo, D. Glasser, D. Hildebrandt, and J. Zimba 
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PCR purification was done using the NucleoFast Purification 
System (Separations).  Sequencing was performed with each 
primer (Gaz F1/Gaz R1) and BigDye Terminator V1.3 
(Applied Biosystems) followed by electrophoresis on the 
3730xl DNA Analyser (Applied Biosystems). 
 

TABLE I 
PRIMER SEQUENCES USED FOR ALGAE IDENTIFICATION 

Primer 
Name 

Region Primer Sequence Reference 

Gaz 
F1 

COI TCAACAAATCATAAAGATA
TTGG 

[11] 

Gaz 
R1 

ACTTCTGGATGTCCAAAAA
AYCA 

ITS 
03F-
800 

ITS CGATGAAGAACGYAGCGA [11] 

ITS 
05R-
700 

TACTTGTTCGCTATCGGTCT
CT 

 
Metal ions concentrations in solution were determined by 

atomic adsorption spectrophotometry (Spectro AA, 55B 
Varian). Adsorbate was aspirated into the spectrophotometer, 
where metal ions present in solution were ionised in an air and 
acetylene flame environment until a corresponding 
concentration was recorded on the screen. The wavelengths 
and slit widths were varied to suit the optimum working range 
required for the particular metal ion. Before every run, the 
equipment was calibrated using known high grade standard 
solutions and the appropriate lamp until a curve was obtained, 
which was in agreement with the calibration curves in the 
AAS working manual. 

FT-IR was the preferred method for infrared spectroscopy 
in this study.  An infrared spectrum represents a fingerprint of 
a sample with absorption peaks which correspond to the 
frequencies of vibrations between the bonds of the atoms 
making up the material.  All materials have a unique 
combination of atoms; therefore no two compounds produce 
the exact same infrared spectrum.  The size of the peaks in the 
spectrum is a direct indication of the amount of material 
present. The functional groups essential for biosorption 
process of fresh water biomass will therefore be characterised 
using FT-IR.   

All vessels used for culturing were autoclaved (HA-300 
MD, HICLAVE, autoclave) at 0.1MPa and 190 ºC, to 
inactivate any microbials. The fresh water algae’s natural 
environment was resembled by using Beijerinck medium for 
culturing as obtained from (Barsanti&Gualtieri, 2006). The 
media was prepared from premixed stock solutions in a 1L 
erlenmeyer flask. CO2 gas was bubbled at the rate of 50 
ml/min into the culturing medium for an hour daily.  The 
bubbling of CO2 is necessary as it is required for 
photosynthesis to occur, also CO2 gas bubbling ensures that 
the CO2/HCO-3 balance is maintained, which is essential for 
algae growth.  Sylvania, Gro-lux (F35W/GRO-T8) lights were 
used for illumination during the culturing process.  Agitation / 
mixing were induced by a MS 300, Boeco Germany, magnatic 
stirring plate.  The successive growth of the algae population 

under batch culture conditions was monitored using a 4802 
UV / VIS Double beam spectrophotometer.  The Beijerinck 
medium was further modified to culture stock algae utilized 
for batch experiments with different metal concentrations.  
Ni2+,Mn+2 andFe3+ salts were omitted in micronutrients used to 
prepare media for stock algae Ni2+, Mn2+ and Fe3+ 
respectively. 
 
2.3 Biosorption isotherm 
 

The experiments were carried out with 0.01 g initial 
biomass, at initial pH values of 2.4 and at different initial 
metal concentrations: 5, 10, 25, 50, 100 and 130 mg/L.  Tests 
were run for 120 minutes on an orbital shaker, enough time to 
reach equilibrium. After 120 minutes elapsed, the possible 
change of metal concentrations in solution was then measured 
using an AAS.  The experimental results were fitted to the 
Langmuir and Freundlich sorption isotherm models. 
Equilibriumisotherm models are usually classified into the 
empirical equations and the mechanistic models.Equilibrium 
isotherm models are usually classified into the empirical 
equations and the mechanistic models. The mechanistic 
models are based on mechanism of metal ion biosorption, 
which are able not only to represent but also to explain and 
predict the experimental behavior [13], [14]. These models 
can provide information of metal uptake capacity and 
difference in metal uptake between various species [15], [13], 
[16]. The competence of these equations to interpret the 
sorption experimental data can be observed from its parameter 
values (n for Freundlich and b for Langmuir), which both 
represent the relative magnitude and diversity of energies 
associated with a particular sorption process in a certain range 
where the initial assumptions are still valid.  

Langmuir model was derived on assumptions that:  (i) 
maximum adsorption corresponds to a saturated monolayer of 
adsorbate molecule on the adsorbent surface; (ii) the 
adsorption sites and reactions have a constant free-energy 
change (∆Go

ads) for all sites; and (iii) there is no transmigration 
of adsorbate in the plane of the surface [17]. With Langmuir 
two parameters will be analysed to evaluate the efficiency of 
the system: qmax, maximum adsorption capacity (mmol/g) and 
b, the energy of adsorption (L/mg). This model has the form as 
shown in Eqs 1 and 2: 
 

  
bCe

Cebqqe
+

=
1

max
              (1) 

 

  
max
1

max bqq
Ce

qe
Ce

+=
  

            (2)

           
Where qe, is the amount adsorbed at equilibrium and qmax, is 
the Langmuir constant, which is equal to the adsorption 
capacity. The parameterbrepresents the Langmuir sorption 
equilibrium constant and Ce is the equilibrium concentration.  
The Freundlich isotherm is based on these assumptions: (i) the 
adsorbent has a heterogeneous surface energy, where different 
sites could have different site energies, as opposed to the 
Langmuir assumption of constant site energy; (ii) the site 
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Fig.3 FTIR spectra of Desmosdesmus sp. 
 
 
3.2 Biosorption isotherms 
 

The biosorption isotherms represent the relationship 
between the amounts of solute adsorbed by a unit mass of 
solid sorbent and the amount of solute remaining in the 
solution at equilibrium.  The parameters determined for the 
biosorption of Fe3+; Mn2+ and Ni2+ on algae cells at different 
initial concentrations are tabulated in Table 2. 
 
 

TABLE II 
CHARACTERISTIC PARAMETERS AND COEFFICIENTS OF THE EXPERIMENTAL 

DATA ACCORDING TO LANGMUIR EQUATION 

Metal Qmax(mg/g) b (1/mg) R2 

Fe3+ 1.523 0.1675 0.9758 

Mn2+ 144 0.086 0.8366 

Ni 2+ 71.94 0.101 0.9445 

 
The values of R2 indicate that the Langmuir model can be best 
used to describe the biosorption of Fe 3+ and Ni2+ on algae 
cells.  The maximum sorption capacity Qmax, is a function of 
many parameters such as pH and temperature, it provides a 
good measure for comparing the efficiency of different 
sorbents in removing a given metal.  Therefore maximum 
biosorption capacities of algae cells for Fe3+, Mn2+, and 
Ni2+were, 1.523 mg/g; 144 mg/g and 71.94 mg/g, respectively.  
According to b (1/mg) parameter the affinity of metals on 
algae cells produced this sequence: Mn2+ > Ni2+> Fe3+. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The sorption equilibrium constant; b, which is a measure of 
heat of adsorption is utilised to calculate dimensionless 
separation parameter RL [20]. Weber and Chakarborti [20] 
expressed characteristics and the feasibility of Langmuir 
isotherm in terms of dimensionless constant separation factor 
RL, which is defined in Eq. 8. 

 

01
1
bC

RL +
=                                 (8) 

 
Where b is the Langmuir constant and C0 is the initial 
concentration of Fe3+ and Ni2+. The value of separation factor, 
RL provides information about nature of adsorption [21]. The 
initial concentration used to calculate this value in this 
experiment was 5 mg/L. In the current study, the average 
value of separation parameter is found to be 6.153 and 0.664; 
for Fe3+ and Ni2+, respectively. Ni2+ represented a favourable 
and reversible adsorption on algal cells, but Fe3+ adsorption on 
algal cells was found to be unfavourable.   
 

TABLE III 
DETERMINATION OF THE SEPARATION FACTOR 

RL value Type isotherm RL (Fe3+) RL (Ni2+) 

RL> 1 Unfavourable 6.153 - 

RL = 1 Linear and reversible - - 

 0 < RL< 1 Favourable and reversible - 0.664 

RL = 1 Irreversible - - 
 

The biosorption isotherm of metals with algal cells was also 
investigated using the Freundlich model. Table 4, summarises 
the parameters obtained from the equation. The 
Freundlichisotherm is among the earliest empirical equations 
employed to predict adsorption equilibrium data. According to 
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