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Abstract—In this paper, a delayed plankton-nutrient interaction 

model consisting of phytoplankton, zooplankton and dissolved 
nutrient is considered. It is assumed that some species of 
phytoplankton releases toxin (known as toxin producing 
phytoplankton (TPP)) which is harmful for zooplankton growth and 
this toxin releasing process follows a discrete time variation. Using 
delay as bifurcation parameter, the stability of interior equilibrium 
point is investigated and it is shown that time delay can destabilize the 
otherwise stable non-zero equilibrium state by inducing Hopf-
bifurcation when it crosses a certain threshold value. Explicit results 
are derived for stability and direction of the bifurcating periodic 
solution by using normal form theory and center manifold arguments. 
Finally, outcomes of the system are validated through numerical 
simulations. 
 

Keywords—Plankton, Time delay, Hopf-bifurcation, Normal 
form theory, Center manifold theorem. 

I. INTRODUCTION 
LANKTON refer to all single-celled, microscopic organism 
in marine environment that drift with the oceanic currents. 

Phytoplankton in particular is capable of photo-synthesis in the 
presence of sunlight and occupies the first trophic level for all 
aquatic food chains. Hence, they are producers and recyclers of 
most of the energy that flows through the oceanic ecosystem. 
Zooplankton, the herbivores prey on phytoplankton for their 
food and occupies the next trophic level in aquatic food chain. 
The rapid increase and decrease of phytoplankton population is 
a common feature in marine ecology and known as ''bloom''. 
Generally, highly nutrient and favorable conditions play a key 
role in rapid or massive growth of algae and low nutrient 
concentration as well as unfavorable conditions inevitably 
limits their growth. Although, the sudden appearance and 
disappearance of blooms is not well understood; many 
researchers have studied the nutrient-plankton interaction to 
understand the importance of nutrient concentration on the 
growth of plankton [1], [2]. The persistence and co-existence in 
nutrient-plankton interaction have also been discussed by Ruan 
[3], [4].  

The understanding of the dynamic of plankton-nutrient 
system becomes complex when additional effects of toxicity 
(caused due to the release of toxic substances by some 
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phytoplankton species known as harmful phytoplankton) are 
considered. The role of toxin and nutrient on the plankton 
system has been discussed in [5]-[8]. Sarkar et al. in [9] and 
[10] studied the interaction of toxin producing phytoplankton-
zooplankton system and concluded that harmful phytoplankton 
may be used as bio-control agent in the termination of harmful 
planktonic blooms. It is well known that time delay in 
biological systems is a reality and it can have complex impact 
on the dynamic of the system namely loss of stabilty, induced 
oscillations and periodic solutons [11]-[13]. The interaction of 
plankton-nutrient model with delay due to gestation and 
nutrient recycling has also been studied in [14] and [15]. 
Chattopadhyay et al. in [16] proposed and analyzed a 
mathematical model of toxic phytoplankton (Noctilucca 
Scintillans belonging to the group Dinoflagellates of the 
division Dinophyta)-zooplankton (Paracalanus belonging to 
the group Copepoda) interaction and assumed that the 
liberation of toxic substances by the phytoplankton species in 
not an instantaneous process but is mediated by some time lag 
required for maturity of species. Extending the work of [16], 
Bandyopadhyay et al. [17] and Rehim et al. [18] have studied 
the global stability of the toxin producing phytoplankton-
zooplankton system. Sufficient efforts have already been made 
to understand the interaction of phytoplankton-zooplankton 
system with delay in toxin liberation, but the study of nutrient-
plankton interaction with delay in toxin liberation by the 
phytoplankton species is not done so far. In this paper, an open 
system with three interacting components consisting of 
phytoplankton (P), zooplankton (Z) and dissolved nutrient (N) 
is considered. Here, it is assumed that the functional form of 
biomass conversion by the herbivore is of holling-II type and 
the predator is obligate that is they does not take nutrient 
directly. The toxic substance term which causes extra mortality 
in zooplankton is expressed in holling-I type functional form 
[19]. It is also taken into account that the liberation of toxic 
substances by the phytoplankton species follows discrete time 
variation. The main aim of the present study is to see the effect 
of this discrete time delay on the nutrient-plankton system and 
the organisation of our paper is as follows: In subsection A, the 
mathematical model is presented using simultaneous 
differential equations and we analyze the stability of the co-
existence equilibrium in the absence of delay in subsection B. 
After that we have considered the delayed plankton model and 
considering delay as bifurcation parameter the dynamical 
behavior of the system around coexisting equilibrium is 
discussed. In subsection C, we have investigated the direction 
and stability of the bifurcating solution using a technique based 
upon normal form theory and center manifold theorem. Some 
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supports our analytical findings through numerical simulations 
are given in subsection D. Finally, the basic outcomes of our 
mathematical findings and their ecological significance are 
mentioned in Section II. 

A. The Mathematical Model 

Let )(tN  denotes the concentration of nutrient at time 't'. 
Let x(t) and y(t) be the concentration of phytoplankton and 
zooplankton population respectively at time 't'. Let 0N  is the 
constant input of nutrient concentration and a is their 
absorption rate. Let b  and 1α  be the nutrient uptake rate for 
the phytoplankton population and conversion rate of nutrient 
for the growth of phytoplankton population, respectively (

1α≤b ). Let β  be the maximal zooplankton ingestion rate 

and 1β  ( ββ ≤1 ) be the maximal zooplankton conversion 

rate. Let 1b  be the mortality rate of the phytoplankton 

population, 2α  be the mortality rate of the zooplankton 
population and let nutrient are recycled at the rate k after the 
dead of phytoplankton population. It is assumed zooplankton 
population decay at the rate of ρ  due to toxin producing 
phytoplankton. The grazing phenomenon is described by the 
holling-II type functional form with γ  as the half saturation 
constant. Let τ  is the time delay which is incorporated with 
the assumption that the liberation of toxin is not instantaneous 
it is mediated by some time lag. The biological significance of 
this time lag lies in the fact this time may be considered the 
time required for the maturity of toxic-phytoplankton to reduce 
the grazing impact of zooplankton. 

With these assumptions our model system is 
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The initial conditions of the system (1) has the form

)(=)( 1 θφθN , )(=)( 2 θφθx , )(=)( 3 θφθy , 0)(1 ≥θφ , 

0)(2 ≥θφ , 0)(3 ≥θφ , ,0][ τθ −∈ , 0(0)1 ≥φ  , 0(0)2 ≥φ  , 
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banach space of continuous functions mapping the interval 
,0][ τ−  into 3

+R  where 1,2,3}=0,:),,{(= 321
3 ixxxxR i ≥+ .  

B. Stability Analysis of the Mathematical Model 
The given system has three equilibria namely: 

(i) The boundary equilibrium ,0,0)(= 0
1 a
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(iii) A positive interior equilibrium ),,(= **** yxNE   
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Proposition: The plankton free equilibria ,0,0)(= 0

1 a
NE  

always exist and stable so long the constant input rate of 
nutrient is less than certain threshold value i.e. 

1

1
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α
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Moreover zooplankton free equilibria i.e. 2E = ,0)
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exist and unstable if the growth rate of phytoplankton biomass 

1α  satisfies the inequality, ),(<
10

1
1 k

b
N
abminα . 

Definition: The Equilibrium  is called asymptotically 
stable (AS) if there exist a K > 0 such that 

 
| | | | | |  

 
which implies that ∞(N(t), x(t), y(t)) = (N*, x*, y*), where 
(N(t), x(t), y(t)) is the solution of the system (1) with given 
initial conditions. 

Definition: The equilibrium E* is absolutely stable if it is AS 
for all delays 0 and is conditionally stable if it is AS for  
in some finite interval. 

The characteristic equation of the system at E* has the 
following form 

 
0=)(23 λτλλλλ −+++++ eEDCBA  (2)  

 
In the absence of delay 0)=(τ , (2) reduces to, 

 
0=)()(23 DCEBA +++++ λλλ ,  (3) 
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by using Routh-Hurwitz criterion we know that all the roots of 
(3) have negative real parts ,i.e. the positive equilibrium *E  is 
Locally Asymptotically Stable provided that the condition  
 

)( 1H : 0>)()( DCEBA +−+  
 
hold. 

 Remark: The detailed analysis of the model system in the 
absence of delay is discussed in [7].  

Now, we will be interested to determine how delay effects 
the stability of the positive equilibrium by taking τ  as the 
bifurcation parameter. Before this we shall introduce the 
following lemma's. 

Lemma1.[19] For the polynomial equation
0=23 rqzpzz +++ , 

(i). If 0<r , the equation has at least one positive root; 
(ii). If 0≥r  and 03= 2 ≤−Δ qp , then equation has no 

positive root;  
(iii). If 0≥r  and 0>3= 2 qp −Δ , then equation has positive 

roots if 
3

=*
1

Δ+− pz  and 0)( *
1 ≤zh , where 

rqzpzzzh +++ 23=)( . 
Lemma2.  

(i). The positive equilibrium *E  of the system (1) is 

absolutely stable if and only if the equilibrium *E  of the 
corresponding ODE system is asymptotically stable and 
(2) has no purely imaginary roots for any 0>τ   

(ii). The positive equilibrium *E  of the system (1) is 
conditionally stable if and only if all the roots of (2) have 
negative real parts at 0=τ  and there exist some positive 
values τ  such that (2) has pair of purely imaginary roots 

ωi± . 
Theorem1.:Since
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(1) have one or more periodic solutions, where ),,(= yxNX . 

Theorem2. The interior equilibrium *E  is conditionally 
stable if the condition )( 1H  holds for the system (1). 

Proof. Let )()(=)( τωτξτλ i+  be the eigen value of the 

system at *E  and for finding the change of stability we assume 

that for some 0>τ , 0)>(ωιω  is a root of the characteristic 
equation (2), we then have  

 

0=)(23 ιωτωιιωωιω −++++−− eEDCBA  
 
separating the real and imaginary parts, we have  

ωτωωτω sincos=2 EDCA +−      (4) 
 

ωτωτωωω sincos=3 DEB +−−      (3) 
 
eliminating ω  from above equations and setting z=2ω , it can 
be obtained that  
 

0==)( 23 rqzpzzzh +++                                    (6) 
 
where BAp 2= 2 −  , 22 2= EACBq −− , 22= DCr − .  

by lemma 1 there exist at least one positive root 0= ωω  of 
(2) satisfying (4) and (5) which implies (2) has a pair of purely 
imaginary roots of the form 0ιω± . 

Further (4) and (5) gives the corresponding 0>kτ  such that 
(2) has a pair of purely imaginary roots,  
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Under the condition of )( 1H , all the roots of (2) have 
negative real parts when 0=τ . Therefore by lemma 2 the 
positive equilibrium *E  of system (1) is conditionally stable. 
This completes the proof.  

Next to obtain the transversality condition for the Hopf-

bifurcation, we will find the value of 
τ
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d
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thus root of (2) crosses the imaginary axis as τ  continuously 
varies from a number less than kτ  to one greater than kτ . 
Therefore, the transversality condition holds and the conditions 
for Hopf bifurcation [20] are then satisfied at 0= ττ  which is 

the least positive value of kτ  given by (7). Based on the above 
analysis we have the following theorem. 

Theorem 3.Suppose that *E  exist and the condition 1H  
satisfied for the model system (1), then  
(i) if ][0, 0ττ ∈ ,the positive equilibrium point *E  is Locally 

Asymptotically stable;  
(ii). if 0> ττ ,the positive equilibrium point *E  is unstable;  

(iii). system undergoes Hopf-bifurcation at 0= ττ  around *E . 

C. Direction and Stability of the Hobf-Bifurcation 
In this subsection we will determine the stability, direction 

and period of the periodic solutions bifurcating form *E  and 
following along the lines of Hassard et al. [20] we will derive 
the explicit formulae for determining the properties of the 
Hopf-bifurcation at the critical value of kτ  by using the normal 
form theory and the center manifold theorem. 

Let *1 = NNx − , *2 = xxx −  and *3 = yyx − , rewriting 
the system (1) by Taylor series expansion about 

),,( **** yxNE  we have the following system of equations:  
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and the coefficients of non-linear terms are given by,  
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let μττ +k= , )(=)( tutu ii τ  and dropping the bars for 
simplification of notations, system (10) becomes a functional 
differential equation in )1,0],([= 3ℜ−CC  as  
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By Riesz representation theorem, there exists a function 

),( μθς  of bounded variation for 1,0][−∈θ  such that  
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then system (11) is equivalent to  
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where ,0)(=)( θςθς . Then (0)A  and *A  are adjoint 
operators. From the results of last section, we know that 

kτιω0±  are eigen values of (0)A , it implies that they are also 

eigen values of *A .So the corresponding eigen vectors 
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Proof.: As )(θq  is the eigenvector of (0)A  corresponding 

to kτιω0  , then we have  
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Therefore 0>=,< * qq . This completes the proof.  
Next we will compute the coordinates to describe the center 

manifold 0C  at 0=μ .  

Let tu  be the solution of (16) when 0=μ . 
Define  
 

*( ) =< , >, ( , ) = ( ) 2 { ( ) ( )}t tz t q u W t u Re z t qθ θ θ− (18) 
 
on the center manifold 0C , we have  
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z and z  are local coordinates for center manifold 0C  in the 
direction of  and  . We will consider only real solutions as 
W is real if tu  is real. so for solution 0Cut ∈  of (16), 
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thus from (18) and (19), we have  
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Using (13), (20) can be expressed as,  
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where 

*
111011001 = qba +ξ , *

2110
*

101102 = qcqb +ξ , 

*
2200

*
102003 = qcqb +ξ , *

201104 = qcξ  
 
Comparison of coefficients with (19) gives, 
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since )(20 θW  and )(11 θW  are in 21g , we still to compute  it. 
From (16) and (18), we have 
 

*

0

*

0

= ( )

(0) 2 { (0) ( )} [ 1, 0)
    =

(0) 2 { (0) ( )} = 0

    (0) ( , , )

W u t zq zq

A W Re q f q

A W Re q f q s

A W H z z

θ θ

θ

θ

− −

− ∈ −

−

≅ +

⎧
⎨
⎩

   
(23)

 

 
where  
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Substituting (24) above and comparing the coefficients, we 
have  
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from (23) and for 1,0)[−∈θ  
 

* *

0 0( , , ) = (0) ( ) (0) ( )

           = ( , ) ( ) ( , ) ( )

H z z q f q q f q

g z z q g z z q

θ θ θ

θ θ

− −

− −       (26) 
 
Comparing the coefficients with (24) we get  
 

     )()(=)( 022020 θθθ qgqgH −−   (27) 
 
and  

     )()(=)( 111111 θθθ qgqgH −−   (28) 
 
now from the definition of (0)A , (25) and (27), we obtain  
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Solving it and for θτθ ιω kT eqqq 0
21 ),(1,=)( , we have  
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where ),,(= 3
1

2
1

1
11 EEEE  is a constant vector. 

Similarly, (25) and (28) gives,  
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finally, we will seek the values of 1E  and 2E . 

from the definition of (0)A  and (25) , we have  
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where )(0,=)( θςθς . 

For 0=θ  and using (20), (23) and (26) 
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Now from (13) 
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From (18), we have 
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Thus we can obtain  
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Substituting (29) and (35) into (31), we find, 
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and we can easily obtain the following  
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Similarly substituting (30) and (36) into (32), we get  
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(1)
2 010 001 23 001 100 001 21

(2)
2 100 001 23

(3)
2 100 010 100 010 23 100

001 100 21 100 22

1= ( ( ) )

1= ( )

1= ( ) (

             )( ))

E a b b c c
N

E a b
N

E a b b a c
N
c b a

Γ − + Γ

− Γ

− Γ + +

Γ − Γ

 

 
and )(= 001100010100 ccbaN +−   
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(30) and further 21g  can be computed from (22). 
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where ijg  are given by (22). 

 

 

Fig. 1 (a), (b) and (c) convergence of trajectories towards at  = 6.3 
    

 Theorem5. Due to Hassard et al. [20], we gives the 
properties of the Hopf bifurcation at the critical value of 

0= ττ  as follows: 

(i) If 0)0(<>2μ ; Hopf bifurcation is supercritical 
(subcritical).  

(ii) If 0)0(><2β ; the bifurcating periodic solutions are 
stable (unstable.) 

(iii) If 0)0(<>2T ; period of the bifurcating periodic solution 
increases(decreases).  

D. Numerical Simulation 
In this subsection, we will provide a numerical example to 

dignify our theoretical findings. We have considered the given 
system by choosing a set of parameters 3=0N , 2.8=a , 

1.75=b , 0.3=1k , 0.55=1b , 1.50=1α , 1.25=β , 

1.21=1β , 1=γ , 0.25=2α , 0.095=ρ . i.e. 
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0.3(0.55)1.752.83=

τ
                        (37)
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using the package of DDE 23  in Matlab, we have integrated 
the system (37) with initial data 1.0=)(tN , 0.28=)(tx , 

0.90=)(ty  and observe that the local asymptotic stability 
condition )( 1H  in the absence of time delay is evidently 
satisfied. The system trajectories approaches to positive interior 
equilibrium at 6)2953,0.858(0.9193,0.*E  in the form of a 
stable focus as shown in Fig. 1. Further we find a purely 
imaginary root 0ιω  of (2) with 0.4613=0ω  and after some 
algebraic calculations one can find the minimum value of the 
delay parameter τ ′'  for the model system (1) for which the 
stability behavior changes and the this critical value is given by 

6.7140 =τ  such that, the co-existence equilibrium *E  remain 

stable for 6.7140 ≤≤ τ  (see Figs. 1 (a)-(c)) and is unstable 
for 6.714≥τ  (see Figs. 2 (a)-(c)). Finally the stability 
determining quantities for Hopf-bifurcating periodic solutions 
are given by 
 

ieec 0017.76260023.1737=(0)1 +++ , 
 

0042.6060=2 +− eμ , 634.7315=2β  and 39.8943=2 −T
Using Theorem 5, we can conclude that the Hopf bifurcation is 
subcritical in nature as well as the bifurcating periodic 
solutions are unstable and decreases as τ  increases through its 
critical value 0τ . 

 

 

 

Fig. 2 (a), (b) and (c) Hopf-bifurcation at  = 6.9. 

II. CONCLUSION 
In the present paper, a delayed plankton-nutrient interaction 

model system is analyzed with the assumption that the toxin 
liberation by the phytoplankton species follows a discrete time 
variation. Firstly the stability of the given system in the 
absence of delay is discussed and it is shown that interior 
equilibrium remained stable under certain conditions. Next we 
have considered the plankton-nutrient interaction in the 
presence of delay and it is observed that the system does not 
possess any periodic orbit for [0,6.714)∈τ . But when time 
delay τ  crosses a threshold value 6.714=0τ  the system 
enters into a Hopf-bifurcation and a periodic orbit around 
equilibrium state *E  appearers. 
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