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Bifurcation analysis in a two-neuron system with
different time delays

Changjin Xu

Abstract—In this paper, we consider a two-neuron system with
time-delayed connections between neurons. By analyzing the asso-
ciated characteristic transcendental equation, its linear stability is
investigated and Hopf bifurcation is demonstrated. Some explicit
formulae for determining the stability and the direction of the Hopf
bifurcation periodic solutions bifurcating from Hopf bifurcations are
obtained by using the normal form theory and center manifold theory.
Some numerical simulation results are given to support the theoretical
predictions. Finally, main conclusions are given.

Keywords—Two-neuron system; Delay; Stability; Hopf bifurca-
tion.

I. INTRODUCTION

In recent years, the dynamics (including stable, unsta-
ble, persistent and oscillatory behavior) of neural networks
has become very popular since Marcus and Westervelt [13]
proposed a neural network with delay in the 1980s. Great
attention has been paid to the dynamics properties of the neural
networks models which have significant physical background.
Many excellent and interesting results have been obtained, for
example, Gopalsamy and Leng [4] investigated the globally
asymptotical stability of the following two simple neuron
models with discrete or distributed delays:

ẋ(t) = −x(t)+a tanh[x(t)−bx(t−τ)−c], (1)

ẋ(t) = −x(t)+a tanh[x(t)−b

∫ +∞

0

F (s)x(t−s)ds−c], (2)

where a denotes the range of the continuous variable x(.),
while b can be considered as a measure of the inhibitory
influence from the past history, c is a off-set constant, τ is
the time delay, and F (.) is a kernel function.

In 1999, Liao et al. [11,12] studied the stability of Eq.(2)
with a weak kernel and a strong kernel, respectively. In 2001,
Liao et al. [10] discussed the Hopf bifurcation and chaos of
Eq.(1). In 1996, Gopalsamy and Leung [3] studied the Hopf
bifurcation of the following neural network of two neurons
constituting an activator inhibitor assembly modeled by the
delay differential system{

ẋ(t) = −x(t) + a tanh[c1y(t− τ)],
ẏ(t) = −y(t) + a tanh[−c2x(t − τ)],

(3)

where a, c1, c2 and τ are positive constants, y denotes the
activating potential of x, and x is the inhibiting potential.
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In 1998, Gopalsamy et al. [5] considered an analogue
of model (3) containing continuously distributed delays in
following form{

ẋ(t) = −x(t) + a tanh[
∫ t
−∞

k(t− s)y(s)ds],

ẏ(t) = −y(t) + a tanh[
∫ t
−∞

k(t− s)x(s)ds],
(4)

where a is a positive constant and the delay kernel k is
assumed to satisfy the condition: k : [0,+∞) → [0,+∞),
k

∫ ∞

0 k(s)ds = 1;
∫ ∞

0 sk(s)ds < +∞.

In 1986 and 1987, Babcock and Westervelt [1, 2] studied
the rich dynamics including under-damped ringing transients,
stable and unstable limit cycles of the following two-neuron
network model{

ẋ1(t) = −x1(t) + a1 tanh[x2(t− τ1)],
ẋ2(t) = −x2(t) + a2 tanh[x1(t− τ2)],

(5)

In 1997, Olien and Belair [14] investigated stability and
Hopf bifurcation of the following system with two delays{

ẋ1(t) = −x1(t) + a11f(x1(t− τ1)) + a12f(x2(t− τ2)),
ẋ2(t) = −x2(t) + a21f(x1(t− τ1)) + a22f(x2(t− τ2)),

(6)
under the assumptions: τ1 = τ2, a11 = a22 = 0.

In 2001 and 2004, Liao et al. [8,9] investigated Local
Hopf bifurcation of the following two-neuron system with
distributed delays in the time domain and frequency domain,
respectively.{
ẋ∗1(t) = −x∗1(t) + a∗1f [(x∗2(t) − b2

∫ ∞

0 F (r)x∗2(t− r)dr − c1],
ẋ∗2(t) = x∗2(t) + a∗2f [(x∗1(t) − b1

∫ ∞

0
F (r)x∗1(t− r)dr − c2],

(7)
Recently, Fenghua Tu et al. [16] investigated the local and

global stability of the following two-neuron system with time-
delayed connections between neurons:{

ẋ1(t) = −x1(t) + a1g[x2(t) − b2x2(t− τ)],
ẋ2(t) = −x2(t) + a2g[x1(t) − b1x1(t− σ)],

(8)

where “.” denote the derivative with t, a1, a2, b1 and b2 are
arbitrary real numbers, x1(t), x2(t) represent the mean soma
potential of the neuron while a1 and a2 correspond to the
range of the continuous variable x1 and x2, respectively. The
b1 and b2 denote the measure of the inhibitory influence of the
past history. The term x1 and x2 in the argument of the f and
g function denote local feedbacks. For more detail knowledge,
one can see [16].

By using the following transformation{
y1(t) = x1(t) − b1x1(t− σ),
y2(t) = x2(t) − b2x2(t− τ),

(9)
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we can transform system (8) to{
ẏ1(t) = −y1(t) + a1g(y2(t)) − a1b1g[y2(t− σ)],
ẏ2(t) = −y2(t) + a2f(y1(t)) − a2b2f [y1(t− τ)].

(10)

In this paper, we will study the stability, local Hopf bifur-
cation for system (10). To the best of our knowledge, it is
the first time to deal with the research of Hopf bifurcation for
model (10) under the assumption σ �= τ .

We would like to point out that it is easy to study the
local stability and Hopf bifurcation of system (10) under the
assumption: σ = τ as many previous similar work. While in
most cases, σ �= τ . Considering the factor, we investigate the
model (10) with σ �= τ as a complementarity.

The remainder of the paper is organized as follows. In
Section 2, we investigate the stability of the equilibrium
and the occurrence of local Hopf bifurcations. In Section 3,
the direction and stability of the local Hopf bifurcation are
established. In Section 4, numerical simulations are carried
out to illustrate the validity of the main results. Some main
conclusions are drawn in Section 5.

II. STABILITY OF THE EQUILIBRIUM AND LOCAL HOPF

BIFURCATIONS

In this section, we shall study the stability of the equilibrium
and the existence of local Hopf bifurcations.

Throughout the paper, we assume that the following condi-
tion

(H1) f(0) = 0, g(0) = 0

holds. It is easy to see that system (10) has an equilibrium
point E0(0, 0).

The linearization of Eq. (10) at (0, 0) is{
ẏ1(t) = −y1(t) + a1g

′

(0)y2(t) − a1b1g
′

(0)y2(t− σ),

ẏ2(t) = −y2(t) + a2f
′

(0)y1(t) − a2b2f
′

(0)y1(t− τ)
(11)

whose characteristic equation is

λ2 +2λ+m1+m2e
−λσ+m3e

−λτ +m4e
−λ(σ+τ) = 0, (12)

where

m1 = 1 − a1a2f
′

(0)g
′

(0),

m2 = a1a2b1f
′

(0)g
′

(0),

m3 = a1a2b2f
′

(0)g
′

(0),

m4 = −a1a2b1b2f
′

(0)g
′

(0).

In order to investigate the distribution of roots of the transcen-
dental equation (12), the following Lemma is useful.

Lemma 2.1. [15] For the transcendental equation

P (λ, e−λτ1 , · · · , e−λτm)

= λn + p
(0)
1 λn−1 + · · · + p

(0)
n−1λ+ p(0)

n

+
[
p
(1)
1 λn−1 + · · · + p

(1)
n−1λ+ p(1)

n

]
e−λτ1 + · · ·

+
[
p
(m)
1 λn−1 + · · · + p

(m)
n−1λ+ p(m)

n

]
e−λτm = 0,

as (τ1, τ2, τ3, · · · , τm) vary, the sum of orders of the zeros
of P (λ, e−λτ1 , · · · , e−λτm) in the open right half plane can
change, and only a zero appears on or crosses the imaginary
axis.

In the sequel, we consider three cases.
Case (a). σ = τ = 0, (12) becomes

λ2 + 2λ+m1 +m2 +m3 +m4 = 0. (13)

A set of necessary and sufficient conditions that all roots of
(12) have a negative real part is given in the following form:

(H2) m1 +m2 +m3 +m4 > 0.

Then the equilibrium point E0(0, 0) is locally asymptotically
stable when the condition (H2) holds.
Case (b). σ = 0, τ > 0, (12) becomes

λ2 + 2λ+m1 +m2 + (m3 +m4)e
−λτ = 0. (14)

For ω > 0, iω be a root of (14), then it follows that{
(m3 +m4) cosωτ = ω2 − (m1 +m2),
(m3 +m4) sinωτ = 2ω

(15)

which leads to

ω4+[4−2(m1+m2)]ω
2+(m1+m2)

2−(m3+m4)
2 = 0. (16)

It is easy to see that if the condition

(H3) m1 +m2 < 2, |m1 +m2| > |m3 +m4|

holds, then Eq.(16) has no positive roots. Hence, all roots of
(16) have negative real parts when τ ∈ [0,+∞) under the
conditions (H2) and (H3).
If (H2) and

(H4) m1 +m2 < 2, |m1 +m2| < |m3 +m4|

hold, then (15) has a unique positive root ω2
0 . Substituting ω2

0

into (15), we obtain

τn =
1

ω0

{
arcsin

2ω0

m3 +m4
+ 2nπ

}
, n = 0, 1, 2, · · · . (17)

If (H2) and

(H5) m1 +m2 > 2, |m1 +m2| > |m3 +m4|,

[4 − 2(m1 +m2)]
2 > 4[(m1 +m2)

2 − (m3 +m4)
2]

hold, then (16) has two positive roots ω2
+ and ω2

−. Substituting
ω2
± into (15), we obtain

τk =
1

ω±

{
arcsin

2ω±

m3 +m4
+ 2kπ

}
, k = 0, 1, 2, · · · . (18)

Let λ(τ) = α(τ) + iω(τ) be a root of (16) near τ = τn
and α(τn) = 0, ω(τn) = ω0. Due to functional differential
equation theory, for every τn, n = 0, 1, 2, · · · , there exists ε >
0 such that λ(τ) is continuously differentiable in τ for |τ −
τn| < ε. Substituting λ(τ) into (14) and taking derivative with
respect to τ , we have(

dλ

dτ2

)−1

=
2eλτ

m3 +m4
+

2eλτ

λ(m3 +m4)
−
τ

λ
(19)
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which leads to[
d(Reλ(τ))

dτ

]−1

τ=τn

= Re
{ 2eλτ

m3 +m4

}∣∣∣
τ=τn

+Re
{ 2eλτ

λ(m3 +m4)

}∣∣∣
τ=τn

=
2 cosω0τn

m3 +m4
+

2 sinω0τn

(m3 +m4)ω0

=
2

(m3 +m4)2
[ω2

0 − (m1 +m2) + 2] > 0.

Noting that

sign
{d(Reλ)

dτ

}∣∣∣
τ=τn

= sign
{
Re

(
dλ

dτ

) }∣∣∣
τ=τn

= 1,

we have
d(Reλ)

dτ

∣∣∣
τ=τn

> 0.

Similarly, we can obtain

d(Reλ)

dτ

∣∣∣
τ=τ+

k

> 0,
d(Reλ)

dτ

∣∣∣
τ=τ−

k

< 0.

According to above analysis and the Corollary 2.4 in Ruan
and Wei [15], we have the following results.

Lemma 2.2. For σ = 0, assume that (H1) and (H2) are
satisfied. Then the following conclusions hold:
(i) If (H3) holds, then the equilibrium E0(0, 0) of system (10)
is asymptotically stable for all τ ≥ 0.
(ii) If (H4) holds, then the equilibrium E0(0, 0) of system (10)
is asymptotically stable for τ < τ0 and unstable for τ > τ0.
Furthermore, system (1.10) undergoes a Hopf bifurcation at
the equilibrium E0(0, 0) when τ = τ0.
(iii) If (H5) holds, then there is a positive integer m such
that the equilibrium E0(0, 0) is stable when τ ∈ [0, τ+

0 ) ∪
(τ−0 , τ

+
1 )∪· · ·∪(τ−m−1, τ

+
m), and unstable when τ ∈ [τ+

0 , τ
−

0 )∪
(τ+

1 , τ
−

1 )∪· · ·∪(τ+
m, τ

−
m)∪(τ+

m,∞). Furthermore, system (1.1)
undergoes a Hopf bifurcation at the equilibrium E0(0, 0) when
τ = τ±k , k = 0, 1, 2, · · · .

Case (c). σ > 0, τ > 0. We consider Eq.(12) with τ in its
stable interval. Regarding σ as a parameter. Without loss of
generality, we consider system (10) under the assumptions
(H1), (H2) and (H4). Let iω(ω > 0) be a root of (12), then
we can obtain

k1ω
4 + k2ω

3 + k3ω
2 + k4ω + k5 = 0, (20)

where

k1 = (m2 +m4 cosωτ)2 + (m4 sinωτ)2,

k2 = 4m4 sinωτ(m2 +m4 cosωτ)

−4m4 sinωτ(m2 +m4 cosωτ),

k3 = 2m4 sinωτ [(m2 +m4 cosωτ)m3 sinωτ

−m2
4 sin2 ωτ(m1 +m3 cosωτ)]

−2(m2 +m4 cosωτ)[m3m4 sin2 ωτ

+(m2 +m4 cosωτ)(m1 +m3 cosωτ)]

+4m2
4 sin2 ωτ + 4(m2 +m4 cosωτ)2,

k4 = −4m4 sinωτ [m3m4 sin2 ωτ(m2 +m4 cosωτ)

(m1 +m3 cosωτ)] − 4(m2 +m4) cosωτ

[m3 sinωτ(m2 +m4 cosωτ)

−m4 sinωτ(m1 +m3 cosωτ)],

k5 = [m3m4 sin2 ωτ + (m2 +m4 cosωτ)(m1 +m3 cosωτ)]2

+[m3 sinωτ(m2 +m4 cosωτ)

−m4 sinωτ(m1 +m3 cosωτ)]2

−[(m2 +m4 cosωτ)2 + (m4 sinωτ)2]2.

Denote

H(ω) = k1ω
4 + k2ω

3 + k3ω
2 + k4ω + k5. (21)

Assume that

(H6) |m1 +m3| < |m2 +m4|.

It is easy to check that H(0) < 0 if (H6) holds and
limω→+∞H(ω) = +∞. We can obtain that (20) has fi-
nite positive roots ω1, ω2, · · · , ωn. For every fixed ωi, i =
1, 2, 3, · · · , k, there exists a sequence {σji |j = 1, 2, 3, · · ·},
such that (20) holds. Let

σ0 = min{σji |i = 1, 2, · · · , k; j = 1, 2, · · ·}. (22)

When σ = σ0, Eq.(12) has a pair of purely imaginary roots
±iω∗ for τ ∈ [0, τ0).

In the following, we assume that

(H7)

[
d(Reλ)

dσ

]
λ=iω∗

�= 0.

Thus, by the general Hopf bifurcation theorem for FDEs in
Hale [6], we have the following result on the stability and
Hopf bifurcation in system (10).

Theorem 2.1. For system (10), assume that
(H1), (H2), (H4), (H6) and (H7) are satisfied, and
τ ∈ [0, τ0), then the equilibrium E0(0, 0) is asymptotically
stable when σ ∈ (0, σ0), and system (1) undergoes a Hopf
bifurcation at the equilibrium E0(0, 0) when σ = σ0.

III. DIRECTION AND STABILITY OF THE HOPF

BIFURCATION

In the previous section, we obtained conditions for Hopf
bifurcation to occur when σ = σ0. In this section, we shall
derive the explicit formulae for determining the direction,
stability, and period of these periodic solutions bifurcating
from the equilibrium E0(0, 0) at these critical value of σ, by
using techniques from normal form and center manifold theory
[7]. Throughout this section, we always assume that system
(10) undergoes Hopf bifurcation at the equilibrium E0(0, 0)
for σ = σ0, and then ±iω∗ is corresponding purely imaginary
roots of the characteristic equation at the equilibrium E0(0, 0).

Without loss of generality, we assume that τ∗ < σ0, where
τ∗ ∈ (0, τ0). For convenience, let ȳi(t) = yi(τt)(i = 1, 2)
and σ = σ0 + μ, where σ0 is defined by (2.14) and μ ∈ R,
drop the bar for the simplification of notations, then system
(10) can be written as an FDE in C = C([−1, 0], R2) as

ẏ(t) = Lμ(yt) + F (μ, yt), (23)
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where y(t) = (y1(t), y2(t))
T ∈ C and yt(θ) = y(t + θ) =

(y1(t+θ), y2(t+θ))
T ∈ C, and Lμ : C → R,F : R×C → R

are given by

Lμφ = (σ0 + μ)B

(
φ1(0)
φ2(0)

)
(24)

+(σ0 + μ)C

⎛
⎝ φ1

(
− τ∗

σ0

)
φ1

(
− τ∗

σ0

)
⎞
⎠

+(σ0 + μ)D

(
φ1(−1)
φ2(−1)

)
(25)

and
F (μ, φ) = (σ0 + μ)(f1, f2)

T , (26)

respectively, where φ(θ) = (φ1(θ), φ2(θ))
T ∈ C,

B =

(
−1 a1g

′

(0)

a2f
′

(0) −1

)
, C =

(
0 0

−a2b2g
′

(0) 0

)
,

D =

(
0 −a1b1g

′

(0)
0 0

)
and

f1 = l1φ2(0)2 + l2φ
3
2(0) + l3φ

2
2(−1) + l4φ

3
2(−1) + h.o.t.,

f2 = k1φ
2
1(0)2 + k2φ

3
1(0) + k3φ

2
1

(
−
τ∗

σ

)
+ k4φ

3
1

(
−
τ∗

σ

)
+h.o.t.,

where

l1 =
a1g

′′

(0)

2!
, l2 =

a1g
′′′

(0)

3!
, l3 = −

a1b1g
′′

(0)

2!
,

l4 = −
a1b1g

′′′

(0)

2!
, k1 =

a2f
′′

(0)

2!
, k2 =

a2f
′′′

(0)

3!
,

k3 = −
a2b2f

′′

(0)

2!
, k4 = −

a2b2f
′′′

(0)

2!
.

From the discussion in Section 2, we know that if μ = 0, then
system (23) undergoes a Hopf bifurcation at the equilibrium
E0(0, 0) and the associated characteristic equation of system
(23) has a pair of simple imaginary roots ±iω∗σ0.

By the representation theorem, there is a matrix function
with bounded variation components η(θ, μ), θ ∈ [−1, 0] such
that

Lμφ =

∫ 0

−1

dη(θ, μ)φ(θ), for φ ∈ C. (27)

In fact, we can choose

η(θ, μ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(σ0 + μ)(B + C +D), θ = 0,

(σ0 + μ)(C +D), θ ∈
[
− τ∗

σ0
, 0

)
,

(σ0 + μ)D, θ ∈
(
−1,− τ∗

σ0

)
,

0, θ = −1.
(28)

For φ ∈ C([−1, 0], R2), define

A(μ)φ =

{
dφ(θ)
dθ

, −1 ≤ θ < 0,∫ 0

−1 dη(s, μ)φ(s), θ = 0
(29)

and

Rφ =

{
0, −1 ≤ θ < 0,
F (μ, φ), θ = 0.

(30)

Then (23) is equivalent to the abstract differential equation

ẏt = A(μ)yt +R(μ)yt, (31)

where yt(θ) = y(t+ θ), θ ∈ [−1, 0].
For ψ ∈ C([−1, 0], (R2)∗), define

A∗ψ(s) =

{
− dψ(s)

ds
, s ∈ (0, 1],∫ 0

−1 dη
T (t, 0)ψ(−t), s = 0.

For φ ∈ C([−1, 0], R2) and ψ ∈ C([0, 1], (R2)∗), define
the bilinear form

< ψ, φ >= ψ(0)φ(0) −

∫ 0

−1

∫ θ

ξ=0

ψ(ξ − θ)dη(θ)φ(ξ)dξ,

where η(θ) = η(θ, 0), the A = A(0) and A∗ are adjoint
operators. By the discussions in the Section 2, we know that
±iω∗σ0 are eigenvalues of A(0), and they are also eigenvalues
of A∗ corresponding to iω∗σ0 and −iω∗σ0 respectively. By
direct computation, we can obtain

q(θ) = (1, α)T eiω
∗σ0θ, q∗(s) = M(1, α∗, )eiω

∗σ0s,M =
1

K
,

where

α =
a2f

′

(0) − a2b2g
′

(0)e−iω
∗τ∗

1 + iω∗
,

α∗ =
1 − iω∗

a2f
′(0) − a2b2g

′(0)e−iω∗τ∗
,

K = 1 + ᾱα∗ + a2b2g
′

(0)τ∗e−iω
∗τ∗

+ σ0a1b1g
′

(0)ᾱ∗eiω
∗σ0 .

Furthermore, < q∗(s), q(θ) >= 1 and < q∗(s), q̄(θ) >= 0.
Next, we use the same notations as those in Hassard [7]

and we first compute the coordinates to describe the center
manifold C0 at μ = 0. Let yt be the solution of Eq. (23)
when μ = 0.

Define

z(t) =< q∗, ut >,W (t, θ) = yt(θ) − 2Re{z(t)q(θ)}. (32)

on the center manifold C0, and we have

W (t, θ) = W (z(t), z̄(t), θ), (33)

where

W (z(t), z̄(t), θ) = W (z, z̄) = W20
z2

2
+W11zz̄+W02

z̄2

2
+· · · ,

(34)
and z and z̄ are local coordinates for center manifold C0 in
the direction of q∗ and q̄∗. Noting that W is also real if yt is
real, we consider only real solutions. For solutions yt ∈ C0 of
(23),

ż(t) = iω∗σ0z + q̄∗(θ)F (0,W (z, z̄, θ) + 2Re{zq(θ)}

def
= iω∗σ0z + q̄∗(0)F0.

That is
ż(t) = iω∗σ0z + g(z, z̄),

where

g(z, z̄) = g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z2z̄

2
+ · · · .
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Hence, we have

g(z, z̄) = q̄∗(0)F0(z, z̄) = F (0, yt) =

M̄σ0

[
l1α

2 + l3α
2e−2iω∗σ0 + ᾱ∗(k1 + k3e

−iω∗τ∗

)
]
z2

+M̄σ0

[
2l1|α|

2 + l3|α|
2 + ᾱ∗(k1 + k3)

]
zz̄

+M̄σ0

[
l1ᾱ

2 + l3ᾱ
2e2iω

∗σ0 + ᾱ∗(k1 + k3e
2iω∗τ∗

)
]
z̄2

+M̄σ0

{
l1

[
W

(2)
20 (0)ᾱ+ 2W

(2)
11 (0)α

]
+ 3l3α

2ᾱ

+l3

[
W

(2)
20 (−1)ᾱeiω

∗σ0 + 2W
(2)
11 (−1)αe−iω

∗σ0

]
+3l4α

2e−iω
∗σ0 + ᾱ∗

[
k1

(
W

(1)
20 (0)ᾱ+ 2W

(1)
11 (0)

)
+3k2 + k3

(
W

(1)
20 (−

τ∗

σ0
)eiω

∗τ∗

ᾱ+ 2W
(1)
11 (−

τ∗

σ0
)

e−iω
∗τ∗

ᾱ
)

+3k4e
−iω∗τ∗

ᾱ
]}

z2z̄ + h.o.t..

And we obtain

g20 = 2M̄σ0

[
l1α

2 + l3α
2e−2iω∗σ0 + ᾱ∗(k1 + k3e

−iω∗τ∗

)
]
,

g11 = M̄σ0

[
2l1|α|

2 + 2l3|α|
2 + ᾱ∗(2k1 + 2k3)

]
,

g02 = 2M̄σ0

[
2l1|α|

2 + l3|α|
2 + ᾱ∗(k1 + k3)

]
,

g21 = 2M̄σ0

{
l1

[
W

(2)
20 (0)ᾱ+ 2W

(2)
11 (0)α

]
+ 3l3α

2ᾱ

+l3

[
W

(2)
20 (−1)ᾱeiω

∗σ0 + 2W
(2)
11 (−1)αe−iω

∗σ0

]
+3l4α

2e−iω
∗σ0 + ᾱ∗

[
k1

(
W

(1)
20 (0)ᾱ+ 2W

(1)
11 (0)

)
+3k2 + k3

(
W

(1)
20 (−

τ∗

σ0
)eiω

∗τ∗

ᾱ+ 2W
(1)
11 (−

τ∗

σ0
)

e−iω
∗τ∗

ᾱ
)

+3k4e
−iω∗τ∗

ᾱ
]}

.

For unknown W (i)
20 (θ),W

(i)
11 (θ), (i = 1, 2) in g21, we still need

to compute them.
Form (30), (31), we have

W
′

=

{
AW − 2Re{q̄∗(0)Fq(θ)}, −1 ≤ θ < 0,
AW − 2Re{q̄∗(0)Fq(θ)} + F, θ = 0

= AW +H(z, z̄, θ), (35)

where

H(z, z̄, θ) = H20(θ)
z2

2
+H11(θ)zz̄+H02(θ)

z̄2

2
+ · · · . (36)

Comparing the coefficients, we obtain

(AW − 2iσ0ω
∗)W20 = −H20(θ), (37)

AW11(θ) = −H11(θ), (38)

· · · · · · .

And we know that for θ ∈ [−1, 0),

H(z, z̄, θ) = −q̄∗(0)f0q(θ) − q∗(0)f̄0q̄(θ)

= −g(z, z̄)q(θ) − ḡ(z, z̄)q̄(θ). (39)

Comparing the coefficients of (38) with (35) gives that

H20(θ) = −g20q(θ) − ḡ02q̄(θ). (40)

H11(θ) = −g11q(θ) − ḡ11q̄(θ). (41)

From (36),(39) and the definition of A , we get

Ẇ20(θ) = 2iω∗σ0W20(θ) + g20q(θ) + ¯g02q̄(θ). (42)

Noting that q(θ) = q(0)eiω
∗σ0θ , we have

W20(θ) =
ig20

ω∗σ0
q(0)eiω

∗σ0θ+
iḡ02

3ω∗σ0
q̄(0)e−iω

∗σ0θ+E1e
2iω∗σ0θ,

(43)
where E1 = (E

(1)
1 , E

(2)
1 ) ∈ R2 is a constant vector.

Similarly, from (37), (40) and the definition of A, we have

Ẇ11(θ) = g11q(θ) + ¯g11q̄(θ), (44)

W11(θ) = −
ig11

ω∗σ0
q(0)eiω

∗σ0θ +
iḡ11

ω∗σ0
q̄(0)e−iω

∗σ0θ + E2.

(45)
where E2 = (E

(1)
2 , E

(2)
2 ) ∈ R2 is a constant vector

In what follows, we shall seek appropriate E1,E2 in (42),
(43), respectively. It follows from the definition of A and (39),
(40) that∫ 0

−1

dη(θ)W20(θ) = 2iω∗σ0W20(0) −H20(0) (46)

and ∫ 0

−1

dη(θ)W11(θ) = −H11(0), (47)

where η(θ) = η(0, θ).
From (36), we have

H20(0) = −g20q(0) − ¯g02q̄(0) + 2σ0(H1, H2)
T , (48)

H11(0) = −g11q(0) − ¯g11(0)q̄(0) + 2σ0(P1, P2)
T , (49)

where

H1 = l1α
2 + l3α

2e−2iω∗σ0 ,

H2 = k1 + k3e
−iω∗τ∗

,

P1 = l1|α|
2 + l3|α|

2,

P2 = k1 + k3.

Noting that(
iω∗σ0I −

∫ 0

−1

eiω
∗σ0θdη(θ)

)
q(0) = 0,

(
−iω∗σ0I −

∫ 0

−1

e−iω
∗σ0θdη(θ)

)
q̄(0) = 0

and substituting (42) and (46) into (45), we have(
2iω∗σ0I −

∫ 0

−1

e2iω
∗σ0θdη(θ)

)
E1 = 2σ0(H1, H2)

T .

That is(
2iω∗ − 1 a1b1g

′

(0)e−2iω∗σ0 − a1g
′

(0)

a2b2g
′

(0)e−2iω∗σ0 − a2f
′

(0) 2iω∗ + 1

)
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×E1 = 2(H1, H2)
T . It follows that

E
(1)
1 =

Δ11

Δ1
, E

(2)
1 =

Δ12

Δ1
, (50)

where Δ1 = det(
2iω∗ − 1 a1b1g

′

(0)e−2iω∗σ0 − a1g
′

(0)

a2b2g
′

(0)e−2iω∗σ0 − a2f
′

(0) 2iω∗ + 1

)
,

Δ11 = 2 det

(
H1 a1b1g

′

(0)e−2iω∗σ0 − a1g
′

(0)
H2 2iω∗ + 1

)
,

Δ12 = 2 det

(
2iω∗ − 1 H1

a2b2g
′

(0)e−2iω∗σ0 − a2f
′

(0) H2

)
.

Similarly, substituting (43) and (48) into (46), we have(∫ 0

−1

dη(θ)

)
E2 = 2σ0(P1, P2)

T .

That is(
−1 a1g

′

(0) − a1b1g
′

(0)

a2f
′

(0) − a2b2g
′

(0) −1

)
E2

= 2(−P1,−P2)
T . It follows that

E
(1)
2 =

Δ21

Δ2
, E

(2)
2 =

Δ22

Δ2
, (51)

where

Δ2 = det

(
−1 a1g

′

(0) − a1b1g
′

(0)

a2f
′

(0) − a2b2g
′

(0) −1

)
,

Δ21 = 2 det

(
−P1 a1g

′

(0) − a1b1g
′

(0)
−P2 −1

)
,

Δ22 = 2 det

(
−1 −P1

a2f
′

(0) − a2b2g
′

(0) −P2

)
.

From (42),(44),(49),(50), we can calculate g21 and derive the
following values:

c1(0) =
i

2ω∗σ0

(
g20g11 − 2|g11|

2 −
|g02|

2

3

)
+
g21

2
,

μ2 = −
Re{c1(0)}

Re{λ′(σ0)}
,

β2 = 2Re(c1(0)),

T2 = −
Im{c1(0)} + μ2Im{λ

′

(σ0)}

ω∗σ0
.

These formulaes give a description of the Hopf bifurcation
periodic solutions of (23) at σ = σ0 on the center manifold.
From the discussion above, we have the following result:

Theorem 3.1. The periodic solution is supercritical (subcriti-
cal) if μ2 > 0 (μ2 < 0); the bifurcating periodic solutions
are orbitally asymptotically stable with asymptotical phase
(unstable) if β2 < 0 (β2 > 0); the periodic of the bifurcating
periodic solutions increase (decrease) if T2 > 0 (T2 < 0).

IV. NUMERICAL EXAMPLES

In this section, we present some numerical results of system
(10) to verify the analytical predictions obtained in the previ-
ous section. From Section 3, we may determine the direction of
a Hopf bifurcation and the stability of the bifurcation periodic
solutions. Let us consider the following system:{

ẋ1(t) = −x1(t) + 0.75 tanh[x2(t) − 0.4x2(t− τ)],
ẋ2(t) = −x2(t) + 2 tanh[x1(t) − 0.2x1(t− σ)].

(52)
By using the transformation{

y1(t) = x1(t) − 0.2x1(t− σ),
y2(t) = x2(t) − 0.4x2(t− τ),

(53)

we can transform system (51) to{
ẏ1(t) = −y1(t) + 0.75 tanh(y2(t)) − 0.75 × 0.2 tanh(y2(t− σ)],
ẏ2(t) = −y2(t) + 2 tanh(y1(t)) − 2 × 0.4 tanh(y1(t− τ)),

(54)
which has an equilibrium E0(0, 0). When σ = 0, then we can
easily obtain that (H2) and (H4) are satisfied. Take n = 0
for example, by some computation by means of Matlab 7.0,
we get τ0 ≈ 4.9782. From Lemma 2.2, we know that the
transversal condition is satisfied. Thus the equilibriumE0(0, 0)
is asymptotically stable for τ < τ0 ≈ 4.9782 and unstable for
τ > τ0 ≈ 4.9782 which is shown in Fig.1-3. When τ =
τ0 ≈ 4.9782, Eq.(53) undergoes a Hopf bifurcation at the
equilibrium E0(0, 0), i.e., an small amplitude periodic solution
occurs around E0(0, 0) when σ = 0 and τ is close to τ0 ≈
4.9782 which is shown in Fig.4-6.

Let τ = 3.6 ∈ (0, 4.9782) and choose σ as a parameter.
We have σ0 ≈ 0.6488. Then the equilibrium is asymptotically
when σ ∈ [0, σ0). The Hopf bifurcation value of Eq.(51) is
σ0 ≈ 0.6488. By the algorithm derived in Section 3, we can
obtain

λ
′

(σ0) ≈ 0.7032− 5.0014i, c1(0) ≈ −4.1013− 2.3121i,

μ2 ≈ 0.3422, β2 ≈ −5.2451, T2 ≈ 9.2304.

Furthermore, it follows that μ2 > 0 and β2 < 0. Thus, the
equilibrium E0(0, 0) is stable when σ < σ0 as is illustrated
by the computer simulations (see Fig.7-9). When σ passes
through the critical value σ0, the equilibrium E0(0, 0) loses
its stability and a Hopf bifurcation occurs, i.e., a family of
periodic solutions bifurcations from the equilibrium E0(0, 0).
Since μ2 > 0 and β2 < 0, the direction of the Hopf bifurcation
is σ > σ0, and these bifurcating periodic solutions from
E0(0, 0) at σ0 are stable, which are depicted in Fig.10-12.
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Fig.1-3. Behavior and phase portrait of system (53) with
σ = 0, τ = 4.9 < τ0 ≈ 4.9782. The equilibrium E0(0, 0)
is asymptotically stable. The initial value is (0.2,0.2).
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Fig.4-6. Behavior and phase portrait of system (53) with σ =
0, τ = 5.2 > τ0 ≈ 4.9782. Hopf bifurcation occurs from the
equilibrium E0(0, 0). The initial value is (0.2,0.2).
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Fig.7-9. Behavior and phase portrait of system (53) with τ =
3.6, σ = 0.5 < σ0 ≈ 0.6488. The equilibrium E0(0, 0) is
asymptotically stable. The initial value is (0.2,0.2).
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Fig.10-12. Behavior and phase portrait of system (53) with
τ = 3.6, σ = 0.8 > σ0 ≈ 0.6488. Hopf bifurcation occurs
from the equilibrium E0(0, 0). The initial value is (0.2,0.2).

V. CONCLUSIONS

In this paper, we have investigated local stability of the equi-
librium E0(0, 0) and local Hopf bifurcation of a two-neuron
system with time-delayed connections between neurons. We
have showed that if the conditions (H1), (H2), (H4), (H6)
and (H7) are satisfied, and τ ∈ [0, τ0), then the equilibrium
E0(0, 0) is asymptotically stable when σ ∈ (0, σ0), as the
delay σ increases, the equilibrium E0(0, 0) loses its stability
and a sequence of Hopf bifurcations occur at the equilibrium
E0(0, 0), i.e., a family of periodic orbits bifurcates from the the
equilibrium E0(0, 0). At last, the direction of Hopf bifurcation
and the stability of the bifurcating periodic orbits are discussed
by applying the normal form theory and the center manifold
theorem. Some numerical simulations verifying our theoretical
results is also carried out.
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