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Abstract—We consider the biggest challenge in speech 

recognition – noise reduction. Traditionally detected transient noise 
pulses are removed with the corrupted speech using pulse models. In 
this paper we propose to cope with the problem directly in Dynamic 
Time Warping domain. Bidirectional Dynamic Time Warping 
algorithm for the recognition of isolated words impacted by transient 
noise pulses is proposed. It uses simple transient noise pulse detector, 
employs bidirectional computation of dynamic time warping and 
directly manipulates with warping results. Experimental investigation 
with several alternative solutions confirms effectiveness of the 
proposed algorithm in the reduction of impact of noise on recognition 
process – 3.9% increase of the noisy speech recognition is achieved. 
 

Keywords—Transient noise pulses, noise reduction, dynamic 
time warping, speech recognition. 

I. INTRODUCTION 
OISE reduction is one of the biggest challenges in a 
speech recognition task. At laboratory conditions attained 

high speech recognition rate in real-world tasks will be 
downgraded by various types of background noise, other 
speech sources, channel distortion, speech variability [1]–[4]. 

Transient noise pulses are generated in household and office 
environment by various physical processes (knocking or 
closing the doors, switching of nearby electric devices, 
keyboard typing, etc.). The transient noise pulses appear 
randomly and it is impossible to use conventional noise 
reduction methods like spectral subtraction or cepstral mean 
subtraction to eliminate them. 

In this paper we concentrate on transient noise pulses 
elimination task in order to improve downgraded speech 
recognition rate. We propose the bidirectional dynamic time 
warping (DTW) algorithm helping to reduce transient noise 
impact on speech recognition process. The proposed 
bidirectional DTW algorithm evaluates similarity of speech 
utterances in noise uncorrupted segments thus reducing the 
impact of noise on recognition results. 

II. TRANSIENT NOISE PULSE REMOVAL 
Two main approaches can be formulated for the 
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improvement of noisy speech recognition. The first one is the 
enhancement of speech data (testing data) ant the second one 
is the adaptation of the model (training data). 

The speech data can be enhanced in two ways – processing 
the speech signal itself or enhancing the extracted features. 
Microphone array based beam forming amplification [5], 
various filters like median, noise suppression, nonlocal 
neighborhood filters [6], spectral subtraction based 
enhancement approaches [7] are used to reduce the mismatch 
between training and testing acoustical conditions. This can be 
complicated considering the redundancy of the speech signal, 
non-stationarity and variable level of transient noise pulses. 
An alternate approach aims to extract robust features or to 
enhance extracted recognition features thus making speech 
recognition robust to noise. Various perceptually motivated 
feature systems are proposed as to some degree noise robust, 
e. g.: perceptual linear prediction analysis [8], zero-crossings 
with peak amplitude analysis [9], gammatone frequency 
cepstral analysis [10], power-normalized cepstral analysis 
[11]. The aim of the feature enhancement procedure is the 
modification of features into more noise robust form. There 
are various enhancement techniques proposed for robust 
speech recognition, too: cepstral mean normalization, cepstral 
mean subtraction, RASTA filtering, and other techniques like 
minimum-mean-square-error noise reduction [12] or bias-
residual decomposition of features [13]. 

The idea of the model adaptation is to modify acoustic 
models considering the noise environment. This approach has 
the advantage over the speech enhancement approaches but is 
more computationally complicated. The predefined nature of 
the approach causes its incapability to process varying in time 
noise process like transient noise pulses. 

Transient noise pulses appear like sharply rising impulses 
with following transient part which can last a few hundred 
milliseconds. The fading part of the noise is a result of 
resonance processes. As it is non-stationary process the most 
effective way to discard its impact on recognition process is to 
discard the transient pulse noise. The removal of transient 
noise pulses uses the model of the pulse. It can be modeled 
using temporal template model, linear predictive model or 
hidden Markov model [14]. After removal of the corrupted 
segment the missing segment of the signal can be restored 
using linear prediction modeling, interpolation [14], [4]. 
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III. TRANSIENT NOISE PULSE DETECTION 
The removing of frames with corrupted speech will be 

performed in two steps: detection of the transient pulse in a 
speech signal and the removal of corrupted segment. 

Exceptional attribute of the transient pulse is a sharp rise 
which gives abrupt change of the signal properties thus 
making it possible to detect by modeling the speech. 

Our proposed method is based on assumption that speech 
can be modeled using linear prediction whereas the transient 
pulse cannot. Thus the increase of prediction error at the 
moment of transient pulse beginning could be expected. 

The increase of the prediction error can be detected as the 
rise of the prediction error. The change rate of the function is 
defined as the time derivative of the function. In our work we 
expressed the derivative of the prediction error as follows 

 

 ( ) ( ) ( ) ( ) ( ) ( )1 ,
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e n e n
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≈ = = − −

∂ Δ σ
 (1) 

 
here e(n) – prediction error, n – number of frames, σ– error 
calculation interval (σ = 1 in our case). 

Frame with a sharp rise of the prediction error can be 
denoted as the starting frame of the transient pulse (Fig. 1). 

 

 
Fig. 1 Speech signal and its prediction error rise 

 
Another decision is the number of frames to denote as 

corrupted. Again, we used the approximation of the time 
derivative of the prediction error. The drop of the prediction 
error change rate will mark the end of the distorted speech 
segment. For this purpose we used the predefined threshold 
value to determine the end of the noise segment. 

After the noise segment is detected the second step is 
removal of the segment. We assume that discarding of a few 
corrupted speech frames with the length of 20–80ms can 
reduce the noise impact on recognition rate. Despite the fact 
that speech signal is removed too, we assume that rejection of 
noise distorted data will yield higher impact than loss of 
overlapped speech data. 

Next we formulate the modified dynamic time warping 
algorithm allowing us to reduce the impact of the transient 
pulse noise on word recognition process thus improving the 
recognition robustness. 

IV. DYNAMIC TIME WARPING ALGORITHM MODIFICATION 

A. Dynamic Time Warping Algorithm 
The Dynamic Time Warping (DTW) is a pattern matching 

algorithm for comparison of time sequences and is widely 
used for speech recognition, string and character recognition, 
data mining tasks. Traditionally DTW is implemented using 
Dynamic programming principle [15]. 

The main advantages of DTW algorithm are its simplicity, 
capability to compare sequences of different length, and 
independence of comparison unit. 

The point of DTW algorithm is to match two time 
sequences and to calculate their distance in most coinciding 
points. The calculated distance can be used for making 
decision on similarity of compared sequences. DTW algorithm 
can be presented as the search of the minimal cost path in the 
grid (Fig. 2 (a)). 

Every point of the grid represents the pair of compared 
feature vectors and carries numerical value of distance 
between vectors. During the sequences comparison these 
points are analyzed in a search of path through the grid with 
minimal accumulated distance. Minimal accumulated (overall) 
distance implies maximal similarity of sequences. 

In order keep the search meaningful for time sequences 
there are used some restrictions for search procedure. They 
form so called warping function which controls the search of 
the path. Generally the following restrictions are used [16]: 
• Endpoint conditions – start the search in the point (l, M) 

and terminate the search in point (M, N); 
• Step size is limited to one vertical, horizontal or diagonal 

movement between points; 
• Global constraints restrict the search area (see the grey 

zones in Fig. 2) and exclude meaningless comparison. 
The overall distance of the compared sequences is 

expressed 
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here N and M are lengths of the compared sequences, φ[·] – 
warping function, fn – n-th feature vector of the sequence. 

B. Bidirectional Dynamic Time Warping Algorithm 
Comparing sequences A and B we get the overall distance 

calculated in most coinciding points. Traditionally we start our 
search in the point (1, 1) and finish in (N, M) as the endpoint 
conditions claim. The traced path with minimal distance is the 
only possible as the calculated distance is optimal globally. 
And this path is determined in the last point of search because 
only in the point (N, M) we get the overall minimal distance. 
Only then we can trace the path. 

If requirements of symmetry are fulfilled, i. e., if we use 
symmetrical form of local and global constraints, we should 
get the identical overall distance despite of the search direction 
(Fig. 2 (a)). Therefore, if we start the search of minimal 
distance in the point (N, M) and finish in (1, 1) we will get the 
same minimized overall distance. 

Time
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Comparing A with noisy version of B (the particular 
segment of B is corrupted only) we will get different value of 
overall distance and another path in search grid (Fig. 2 (b)). 

 

The reason for this will be distorted features of the 
corrupted segment and their impact on global path and overall 
distance. 

 

   
(a) noise free unidirectional search      (b) unidirectional search on noisy data     (c) bidirectional search on noisy data   

Fig. 2 Dynamic time warping based search 
 

Aiming to avoid of distorted feature impact on overall 
distance we should remove them from comparison process. 
This could be done in various manners. 

The simplest way is to remove the noise corrupted segment 
of the signal thus discarding distorted features. Formally we 
will fasten the comparison process (reduce the amount of the 
acoustical data) and remove the noise from the distance 
calculation. However, the removal of corrupted speech 
segment with acoustical noise will result in another distortion 
in signal clipping region. And this distortion can condition 
another modification of global path. 

Another analyzed noise removal procedure was the 
discarding of distorted feature effect on global distance. In this 
case the search of global minimum path is performed using the 
whole set of features (distorted even) but the global distance is 
calculated ignoring them. The main assumption for this 
procedure was that distorted features impact all comparison 
processes and their impact more or less comparable for all 
comparison cases. 

Our main proposal is the bidirectional DTW algorithm. The 
idea is to perform DTW-based comparison starting from both 
ends of sequences. The main assumptions for this were: 
• The distortion appears in random sequence place. The 

range of distorted signal is known; 
• Partially calculated global distance does not reveal the 

global distance or path. It reflects similarity of compared 
parts only; 

• Comparison can be performed from both sides of 
sequences. In case of identical sequences comparison will 
give identical result. In case of different sequences we 
will get similarity of starting and ending segments.  

According to these assumptions the comparison of 
sequences A and distorted version of sequence B will consist 
of two steps and will be as follows: 
• Firstly the comparison started from the beginning of the 

sequence to the beginning of the corrupted segmented of 
sequence B (see Fig. 2 (c)). We obtain the partial distance 
between starting segments of the sequences (the starting 
segment of sequence A and the uncorrupted segment of 
sequence B); 

• The second comparison is started at the end of the 
sequences and continued till the end of the distorted 
segment of the sequence B. Thus we obtain the partial 
distance of ending clean segments; 

• The overall similarity of sequences is calculated by sum 
of partial distances 

 

1 2.D D D= +  
 
We entitle this modification of DTW algorithm as 

bidirectional dynamic time warping algorithm. 
In order to get partial distances closer to overall distance of 

one directional DTW algorithm as much as possible we will 
use the same local and global constraints for the comparison 
procedure. 

We state that overall distance D  calculated using 
bidirectional DTW algorithm will represent the similarity of 
sequence A and coincident clean segments of sequence B. And 
this distance can be used for speech pattern classification task. 
We will test our formulated bidirectional comparison 
algorithm in experimental study of noise corrupted speech 
recognition. 

V. EXPERIMENTAL RESULTS 
Experimental analysis of the proposed approach was 

performed. The removal of corrupted speech frames was 
applied for isolated word recognition task. For this purpose 
8 speakers (4 males and 4 females) pronounced 100 different 
words two times. 

The first session records were used for training. The second 
session records were used for testing. Two versions of these 
records were created: clean and noise corrupted. The latter 
was created by adding transient pulse noise artificially. 100–
200 ms length transient pulse segments with random scale 
factor were overlapped with random segments of recorded 
words. The records of closing drawer, pencil knocking the 
table and similar sounds were used for this purpose. The 
signal-to-noise ratio (SNR) of the noise interrupted records 
varied from −6 dB to −12 dB. 

The DTW-based isolated word recognition system was used 
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for experimental research. The 12th order linear prediction 
coding cepstral analysis (LPCC) was used for feature 
extraction [17], [18]. 

The goal of the first experiment was to evaluate the 
recognition rates for clean and noisy speech records. The 
results of the experiment are given in Table I. 

The individual recognition rate of clean speech varied from 
90 % to 99 % giving the average rate of 96.6 %. 

As we can see addition of transient pulse noise reduced the 
recognition rate by 12 % approximately. In some cases rate 
decrease exceeded 20 % for particular speaker. 
 

TABLE I 
RECOGNITION RATES FOR CLEAN AND NOISY SPEECH 

Speaker Clean speech Noisy speech 
Speaker 1 99 % 97 % 
Speaker 2 99 % 95 % 
Speaker 3 98 % 93 % 
Speaker 4 99 % 82 % 
Speaker 5 94 % 83 % 
Speaker 6 97 % 76 % 
Speaker 7 90 % 71 % 
Speaker 8 97 % 78 % 
Average 96.6 % 84.4 % 

 
The second experiment was intended for evaluation of noise 

corrupted speech frames removal impact on recognition rate. 
Three different corrupted speech discarding procedures 

were applied: 
• P1 – removing the noise corrupted segment of the speech 

signal; 
• P2 – discarding the distances of the distorted features 

from the distance calculation process; 
• P3 – bidirectional DTW-based comparison of the words. 

The records of the first session were used as reference 
(training) data; the records of the second session with added 
noise were used as test data. The results are presented in 
Table II. 

 
TABLE II 

RECOGNITION RATES FOR DIFFERENT DISCARDING PROCEDURES 
Speaker P1 P2 P3 

Speaker 1 97 % 96 % 94 % 
Speaker 2 96 % 95 % 93 % 
Speaker 3 93 % 93 % 93 % 
Speaker 4 85 % 84 % 87 % 
Speaker 5 84 % 86 % 89 % 
Speaker 6 77 % 80 % 85 % 
Speaker 7 72 % 73 % 78 % 
Speaker 8 80 % 81 % 87 % 
Average 85.5 % 86 % 88.3 % 

 
As we could expect there is no any big difference between 

the removing noise corrupted speech segment and the 
discarding of distorted features from distance calculation 
process, the difference of rates was smaller than 1%. 

Analysis of the results has shown that the rate of correct 
detection of noise corrupted segment starting moment was 

98.4. The length of detected and discarded noisy segments 
varied from 20ms to 80ms. Considering the average length of 
tested speech utterances the comparison process was 
accelerated up to 10%. 

VI. CONCLUSION 
The bidirectional DTW algorithm was proposed for 

comparison of sequences with noise insertions. The 
comparison is performed with assumption about known region 
of noise in speech and gives similarity of compared clean 
regions of speech utterances. 

The proposed algorithm was tested experimentally. The 
bidirectional DTW-based comparison improved recognition 
rate of noisy speech by 3.9% and overtook other noisy signal 
discarding procedures by 2.3%. 

Experiments revealed that longer segments were discarded 
from records with lower SNR value. Hence there exists 
relationship between the recording quality, the length of 
discarded segment and its impact on recognition process. The 
higher quality we have, the shorter segment we need to discard 
in order to improve recognition process. 
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