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Bidirectional Discriminant Supervised Locality
Preserving Projection for Face Recognition

Yiqin Lin, Wenbo Li

Abstract—Dimensionality reduction and feature extraction are of
crucial importance for achieving high efficiency in manipulating
the high dimensional data. Two-dimensional discriminant locality
preserving projection (2D-DLPP) and two-dimensional discriminant
supervised LPP (2D-DSLPP) are two effective two-dimensional
projection methods for dimensionality reduction and feature
extraction of face image matrices. Since 2D-DLPP and 2D-DSLPP
preserve the local structure information of the original data and
exploit the discriminant information, they usually have good
recognition performance. However, 2D-DLPP and 2D-DSLPP
only employ single-sided projection, and thus the generated low
dimensional data matrices have still many features. In this paper,
by combining the discriminant supervised LPP with the bidirectional
projection, we propose the bidirectional discriminant supervised LPP
(BDSLPP). The left and right projection matrices for BDSLPP can
be computed iteratively. Experimental results show that the proposed
BDSLPP achieves higher recognition accuracy than 2D-DLPP,
2D-DSLPP, and bidirectional discriminant LPP (BDLPP).

Keywords—Face recognition, dimension reduction, locality
preserving projection, discriminant information, bidirectional
projection.

I. INTRODUCTION

THE problem of dimension reduction has received a lot

of attention in areas such as face recognition [20], [24],

micro-array data analysis [1], [12], text classification [19],

information retrieval [21], and pattern recognition [3], [11],

[14], where high dimensional data are required to deal with.

Dimensionality reduction transforms the high dimensional data

into a low dimensional subspace, and effectively reduces data

dimensionality for efficient data processing tasks.

Many dimensionality reduction methods, such as principal

component analysis (PCA) [25], linear discriminant analysis

(LDA) [14], and locality preserving projection (LPP) [16],

[35], [34], [36], have been developed over the past few

decades. PCA aims to find the projection directions by

maximizing variance of features in the low dimensional

subspace. LDA has been one of the popular techniques in

classification. The basic idea of LDA is to calculate the optimal

discriminant vectors so that the ratio of the between-class

scatter and the within-class scatter is maximized. The optimal

discriminant vectors of LDA can be computed by solving a

generalized eigenvalue problem involving scatter matrices. In

contrast to PCA and LDA, locality preserving projection (LPP)

[16] aims to preserve the local structure information of the
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original data, which is more important in many classification

applications where the nearest neighbor classifier is used.

For two-dimensional data such as images, several

bidirectional projection methods, such as the generalized

low-rank approximation method (GLRAM) [30], tensor

subspace analysis (TSA), [17], and discriminant TSA

(DTSA)[26], have been proposed. These methods aim to find

two subspaces for two-sided projection. GLRAM computes

the left and right projections by minimizing the reconstruction

error, and it only preserves the global Euclidean structure of

the image data. However, TSA and DTSA can preserve the

local structure information of the original data.

In this paper, we propose the bidirectional discriminant

supervised LPP (BDSLPP) by combining the discriminant

supervised LPP with the bidirectional projection. Similarly

to other bidirectional projection methods, BDSLPP also

iteratively computes the left and right projection matrices.

Since BDSLPP exploits the bidirectional projection, it yields

higher compression ratio than 2D-DSLPP. Two experiments on

face recognition are conducted to evaluate the effectiveness

of BDSLPP. Experimental results show that the BDSLPP

proposed in this paper achieves higher recognition accuracy

than 2D-DLPP, 2D-DSLPP, and BDLPP.

Throughout this paper, we adopt the following notations: Il
denotes an identity matrix of order l, and ⊗ represents the

Kronecker product of the matrices. ‖ · ‖ denotes the Frobenius

norm for a matrix, i.e., ‖A‖ =
√∑

i

∑
j A

2
ij .

The structure of the paper is as follows. In Section II,

we briefly review 2D-DSLPP. In Section III, we propose

the BDSLPP by combining the discriminant supervised LPP

with the bidirectional projection. Section IV is devoted

to numerical experiments. Some concluding remarks are

provided in Section V.

II. TWO-DIMENSIONAL DISCRIMINANT SUPERVISED LPP

Given a set of N image data

X = {X1, X2, · · · , XN} ,
where Xi ∈ R

L1×L2 .

In two-dimensional methods for dimension reduction and

feature extraction of facial image data, we wish to find a

low-dimensional analogue

Y = {Y1, Y2, · · · , YN} ,
where Yi ∈ R

l1×L2 with l1 ≤ L1. We hope that Y is a faithful

representation of X in some sense. Formally, we are seeking
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a projection matrix U ∈ R
L1×l1 so that

Yi = UTXi, i = 1, 2, · · · , N.

We assume that the given data set X is partitioned into C
classes as

X =
{
X

(1)
1 , X

(1)
2 , · · · , X(1)

N1
, X

(2)
1 , X

(2)
2 ,

· · · , X(2)
N2

, · · · , X(C)
1 , X

(C)
2 , · · · , X(C)

NC

}
,

where X
(c)
i means the ith sample in the cth class, Nc is the

number of samples in the cth class, and
∑C

c=1 Nc = N is

satisfied.

The Locality Preserving Projections (LPP) [16] is a

graph-based projective technique. It projects the data so as

to preserve a certain affinity graph constructed from the data.

By extending LPP for 2D data, two-dimensional discriminant

supervised LPP (2D-DSLPP) [27] has been proposed for

dimension reduction and feature extraction of face recognition.

In order to construct the objective function, we need to

define two similarity matrices W,T ∈ R
N×N . The entry of

W,T , is, respectively, defined as follows:

Wij =

{
exp(−‖Xi −Xj‖2/t), Xi, Xj in same class,
0, otherwise,

Tij =

{
exp(−‖Xi −Xj‖2/t), otherwise,
0, Xi, Xj in same class,

where t is a positive parameter which can be determined

empirically.

It is easy to see that W is a block diagonal matrix with C
blocks and the size of the cth block being the number Nc of

samples in the cth class i.e., W = diag(W1,W2, · · · ,WC).
With two similarity matrices W,T , then∑N
i=1

∑N
j=1 Wij‖Yi − Yj‖ can be used to measure the

within-class closeness in the projected data space, while∑N
i=1

∑N
j=1 Tij‖Yi − Yj‖ measures the between-class

separation. Ideally, the optimal transformation U should

minimize the within-class distance and maximize

simultaneously, by which the low dimensional data

Yi = UTXi are easier to be distinguished.

In 2D-DSLPP [27], the optimal transformation matrix U is

determined by the following optimization problem

max
U

∑N
i=1

∑N
j=1 Tij‖Yi − Yj‖2∑N

i=1

∑N
j=1 Wij‖Yi − Yj‖2

. (1)

Define two diagonal matrices DT = diag(α1, α2, · · · , αN )
and DW = diag(β1, β2, · · · , βN ) with

αi =
N∑
j=1

Tij and βi =
N∑
j=1

Wij .

Let LT = DT−T and LW = DW−W be Laplacian matrices.

Then, the above optimization problem (1) can be equivalently

formulated as

max
U

tr(UT (X(LT ⊗ IL2)X
T )U)

tr(UT (X(LW ⊗ IL2
)XT )U)

. (2)

The optimal projection matrix U can be obtained by

computing the l1 eigenvectors of the generalized eigenvalue

problem[
X(LT ⊗ IL2

)XT
]
u = λ

[
X(LW ⊗ IL2

)XT
]
u

corresponding to the largest l1 eigenvalues, see [27].

We outline the procedure of 2D-DSLPP in Algorithm 1,

which is used for computing the optimal transformation matrix

U .

III. BIDIRECTIONAL DISCRIMINANT SUPERVISED LPP

In this section, we will improve the 2D-DSLPP by using

the bidirectional projection technique. In bidirectional methods

for dimension reduction and feature extraction of facial image

data matrices, it aims to find two projection matrices U ∈
R

L1×l1 , V ∈ R
L2×l2 with l1 ≤ L1 and l2 ≤ L2 so that the

original data matrices Xi are transformed into

Yi = UTXiV.

In bidirectional discriminant supervised LPP (BDSLPP), we

seek to find the left and right transformation matrices U, V by

solving the following optimization problem

max
U,V

∑N
i=1

∑N
j=1 Tij‖Yi − Yj‖2∑N

i=1

∑N
j=1 Wij‖Yi − Yj‖2

. (3)

As pointed out in [27], the numerator part of the objective

function in (3) denotes the global variance on the manifold in

low-dimensional subspace, while the denominator part of the

objective function is a measure of nearness of samples from the

same class. Therefore, by maximizing the objective function,

the samples from the same class are transformed into data

points close to each other and samples from different classes

are transformed into data points far from each other.

Let

Y = [Y1, Y2, · · · , YN ], Ỹ = [Y T
1 , Y T

2 , · · · , Y T
N ].

Then, it is easy to verify that

1

2

N∑
i=1

N∑
j=1

Wij‖Yi − Yj‖2 = tr(Y (LW ⊗ Il2)Y
T ),

or

1

2

N∑
i=1

N∑
j=1

Wij‖Yi − Yj‖2 = tr(Ỹ (LW ⊗ Il1)Ỹ
T ).

Define

PU = [XT
1 U,X

T
2 U, · · · , XT

NU ],

PV = [X1V,X2V, · · · , XNV ].

Then,

Y = UTPV , Ỹ = V TPU .

So, we obtain

1

2

N∑
i=1

N∑
j=1

Wij‖Yi − Yj‖2 = tr(UT (PV (LW ⊗ Il2)P
T
V )U),

(4)
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Algorithm 1: 2D-DSLPP

Input: a set of N sample matrices {Xi}Ni=1 with class label information and the dimension l1
Output:transformation matrix U

1) Form the matrix MT = X(LT ⊗ IL2)X
T ;

2) Form the matrix MW = X(LW ⊗ IL2)X
T ;

3) Compute the l1 eigenvectors {ui}l1i=1 of the pencil (MT ,MW ) corresponding to the largest l1 eigenvalues;

4) Set U = [u1, u2, · · · , ul1 ].

or

1

2

N∑
i=1

N∑
j=1

Wij‖Yi − Yj‖2 = tr(V T (PU (LW ⊗ Il1)P
T
U )V ).

(5)

By (4) or (5), the optimization problem (3) can be

equivlently rewritten as the following optimization problem

max
U,V

tr
(
V TPU (LT ⊗ Il1)P

T
U V

)
tr
(
V TPU (LW ⊗ Il1)P

T
U V

) , (6)

or

max
U,V

tr
(
UTPV (LT ⊗ Il2)P

T
V U

)
tr
(
UTPV (LW ⊗ Il2)P

T
V U

) . (7)

Clearly, from the equivalence between the maximization

problem (3) and the optimization problem (6) or (7), we have

the following results.

Theorem 1: Let U and V be the solution of the

maximization problem (3). Then,

1) For a given U , V consists of the l2 eigenvectors of the

generalized eigenvalue problem[
PU (LT ⊗ Il1)P

T
U

]
v = λ

[
PU (LW ⊗ Il1)P

T
U

]
v

corresponding to the largest l2 eigenvalues.

2) For a given V , U consists of the l1 eigenvectors of the

generalized eigenvalue problem[
PV (LT ⊗ Il2)P

T
V

]
u = λ

[
PV (LW ⊗ Il2)P

T
V

]
u

corresponding to the largest l1 eigenvalues.

From Theorem 1, an iterative algorithm for the computation

of the transformation matrices U and V results. The algorithm

is outlined in Algorithm 2.

IV. EXPERIMENTAL RESULTS

In order to evaluate the performance of the proposed

BDSLPP algorithm, two well-known face image databases,

i.e., ORL1 and Yale2, are used in the experiments. We compare

the BDSLPP algorithm with 2D-DLPP [33], 2D-DSLPP [27],

and BDLPP [26]. In the experiments, the nearest neighbor

classifier is used to classify the transformed results of samples

obtained using different methods.

1http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
2http://cvc.yale.edu/projects/yalefaces/yalefaces.html

TABLE I
RECOGNITION ACCURACY (%) ON ORL DATABASE (MEAN±STD)

2D-DLPP 2D-DSLPP BDLPP BDSLPP
2 Train 76.78±3.02 76.88±3.06 79.22±3.19 80.22±3.14
3 Train 84.61±2.42 84.82±1.86 88.21±2.64 89.54±2.59
4 Train 88.42±1.05 89.00±1.54 91.29±2.56 93.04±1.42
5 Train 90.55±1.89 91.75±1.77 93.30±2.08 95.40±1.80
6 Train 91.75±2.44 92.63±2.49 94.56±2.75 96.06±1.59
7 Train 92.36±2.98 93.08±1.98 95.64±2.19 96.42±2.19
8 Train 93.50±1.75 95.13±1.45 97.16±1.41 97.88±1.32

A. Experiment on the ORL Database of Face Images

The ORL database contains 400 images of 40 individuals.

Each individual has 10 images, which were taken at different

time, different lighting conditions, different facial expressions,

and different accessories (glasses/no glasses). The sample

images of one individual from the ORL database are shown

in Fig 1.

We randomly select i (i = 2, 3, · · · , 7, 8) samples of each

individual for training, and the remaining ones are used for

testing. Based on the training set, the project matrices are

obtained by 2D-DLPP, 2D-DSLPP, BDLPP, and BDSLPP.

Then all the testing samples are projected to generate the

low-dimensional samples, which will be recognized by using

the nearest neighbor classifier. We repeat the process 10 times

and calculate the mean and standard deviation of recognition

rates.

In our experiments, the parameters l1 and l2 in BDLPP

and BDSLPP are set to be 10, and l1 in 2D-DLPP and

2D-DSLPP are also set to be 10. The parameter t in defining

the similar matrices T and W is set to 1. The mean and

standard deviation of recognition accuracy of 10 runs of tests

of four algorithms are presented in Table I. It shows that for

all methods, the recognition increases with the increase in

training sample size. Moreover, the bidirectional methods have

higher recognition accuracy than the one-directional methods,

and BDSLPP outperforms 2D-DLPP, 2D-DSLPP, and BDLPP.

Since the project matrices U, V in BDLPP and BDSLPP are

iteratively computed. To investigate the effect of the number of

iteration, we present their recognition accuracy curves versus

the number of iteration in Fig 2, 3, and 4. It is shown that

to obtain high recognition accuracy, only one iteration step is

required, and more iteration would lower recognition rate.
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Algorithm 2: BDSLPP

Input: a set of N sample matrices {Xi}Ni=1 with class label information, l1, l2
Output:left and right transformation matrices U and V

1) Initialize U with an identity matrix;

2) Until convergence Do:

2.1 Form the matrix M
(U)
T = PU (LT ⊗ Il1)P

T
U ;

2.2 Form the matrix M
(U)
W = PU (LW ⊗ Il1)P

T
U ;

2.3 Compute the l2 eigenvectors {vi}l2i=1 of the pencil (M
(U)
T ,M

(U)
W ) corresponding to the largest l2 eigenvalues.

2.4 Set V = [v1, v2, · · · , vl2 ];
2.5 Form the matrix M

(V )
T = PV (LT ⊗ Il2)P

T
V ;

2.6 Form the matrix M
(V )
W = PV (LW ⊗ Il2)P

T
V ;

2.7 Compute the l1 eigenvectors {ui}l1i=1 of the pencil (M
(V )
T ,M

(V )
W ) corresponding to the largest l1 eigenvalues;

2.8 Set U = [u1, u2, · · · , ul1 ].

End Do

Fig. 1 Sample images for one individual of the ORL database
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Fig. 2 Recognition accuracy versus the number of iteration for the ORL
database with 2 training samples
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Fig. 3 Recognition accuracy versus the number of iteration for the ORL
database with 3 training samples

B. Experiment on the Yale Database

The Yale face database contains 165 gray-scale images

from 15 individuals where each individual has 11 images.
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Fig. 4 Recognition accuracy versus the number of iteration for the ORL
database with 5 training samples

These facial images have variations in lighting conditions

(left-light, center-light, right-light), facial expressions (normal,

happy, sad, sleepy, surprised, and wink), and with/without

glasses. The 11 sample images of one individual from the

Yale database are shown in Fig 5.

Fig. 5 Sample images for one individual of the Yale database

As in the previous experiments, the parameters l1 and l2 are

set to 10, and t is set to 1. The mean and standard deviation of

recognition accuracy of 10 runs of tests for the Yale database

are presented in Table II. Clearly, BDSLPP performs better

than 2D-DLPP, 2D-DSLPP, and BDLPP for the Yale database.

The recognition accuracy curves versus the number of iteration

are shown in Figs. 6, 7, and 8. Clearly, one iteration step

produces the highest recognition rate.
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TABLE II
RECOGNITION ACCURACY (%) ON YALE DATABASE (MEAN±STD)

2D-DLPP 2D-DSLPP BDLPP BDSLPP
2 Train 41.78±5.04 41.56±4.46 41.41±5.97 42.81±6.10
3 Train 48.25±4.43 47.33±6.12 56.17±3.40 57.17±4.09
4 Train 58.14±3.90 60.52±4.54 63.10±4.00 64.76±4.20
5 Train 64.22±3.40 64.67±3.90 65.78±4.51 66.78±4.63
6 Train 70.00±4.54 70.27±4.99 70.13±5.59 73.33±3.84
7 Train 72.17±3.43 72.50±3.95 74.29±4.65 75.00±2.70
8 Train 75.78±4.38 76.00±5.62 76.89±5.87 77.64±6.27
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Fig. 6 Recognition accuracy versus the number of iteration for the Yale
database with 2 training samples
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Fig. 7 Recognition accuracy versus the number of iteration for the Yale
database with 3 training samples
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Fig. 8 Recognition accuracy versus the number of iteration for the Yale
database with 5 training samples

V. CONCLUSION

In this paper, we propose a bidirectional discriminant

supervised locality preserving projection (BDSLPP) method

for face recognition. The left and right projection matrices

of the proposed method can be iteratively computed.

Experimental results show that BDSLPP has higher

recognition accuracy than 2D-DLPP, 2D-DSLPP, and

BDLPP. Moreover, it is shown that only one iteration step

is required to obtain high recognition accuracy, and more

iteration would lower recognition rate.
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