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 
Abstract—This paper develops a method for considering the 

critical fatigue stress as a constraint in the Bi-directional 
Evolutionary Structural Optimization (BESO) method. Our aim is to 
reach an optimal design in which high cycle fatigue failure does not 
occur for a specific life time. The critical fatigue stress is calculated 
based on modified Goodman criteria and used as a stress constraint in 
our topology optimization problem. Since fatigue generally does not 
occur for compressive stresses, we use the p-norm approach of the 
stress measurement that considers the highest tensile principal stress 
in each point as stress measure to calculate the sensitivity numbers. 
The BESO method has been extended to minimize volume an object 
subjected to the critical fatigue stress constraint. The optimization 
results are compared with the results from the compliance 
minimization problem which shows clearly the merits of our newly 
developed approach. 
 

Keywords—Topology optimization, BESO method, p-norm, 
fatigue constraint.  

I. INTRODUCTION 

N this research, we have applied the fatigue life as a 
constraint in our topology optimization problem to reach the 

optimal design which can withstand a specific life time 
without fatigue failure. Applying fatigue constraint in 
topology optimization is considered as one of the difficult 
engineering problems due to nonlinearity nature of the 
constraint. There are few researches that consider fatigue life 
as a constraint in topology optimization, however, all of them 
have used Solid Isotropic Material with Penalization (SIMP) 
[1], along with the Method of Moving Asymptotes (MMA) [2] 
to obtain the optimal design; for example see [3]-[8], among 
others. So far, there is no report on fatigue-based topology 
optimization by using the BESO method where discrete 0/1 
design variables have been used. 

One of the critical comments in the original ESO/BESO 
methods is that the procedure cannot be easily extended to 
other constraints, or multi-constraints problems, [9], [10] have 
demonstrated that the current BESO method can be extended 
to other constraints such as displacement. However it has 
never been developed to use fatigue as a constraint. In this 
paper, we introduce a fatigue-based topology optimization in 
the framework of the BESO. Our problem is formulated to 
minimize the volume if an object is subjected to a fatigue 
constraint. It is possible to perform the fatigue analysis and 
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topology optimization in two separate steps, as presented in 
[11]; we can find the critical fatigue stress based on the 
specific life time and then use this stress as a constraint in our 
topology optimization problem.  

There are three significant challenges that need to be 
overcome to effectively solve stress-based optimization 
problems [12]. The first one is related to the so-called 
“singularity” phenomenon [13]-[15], the second one is related 
to the local nature of the constraint, and the last one is related 
to the highly non-linear stress behavior. The “singularity” 
problem was first encountered when designing trusses subject 
to stress constraints, where it was shown that the n-
dimensional feasible design space contains degenerate 
subspaces of dimension less than n [16], [13]. In the BESO 
approach, two phases, typically representing void or solid 
material, are used and no singularity problem occurs because 
the stress constraint is only applied to the solid phase. The 
final design is also free from the intermediate design variable 
values between solid and void that remain for the continuous 
density formulation.  

The second difficulty of stress-based topology optimization 
is due to the local nature of the stress constraint. A large 
number of failure criteria should be defined for every element 
in a sub-optimization problem which is difficult for a gradient-
based optimizer to solve efficiently. To remedy this situation, 
a p-norm approach has been proposed which aggregates many 
local constraints into one global constraint. The last issue with 
the stress constraint is its highly nonlinear dependence on the 
design. According to [6], a highly non-linear stress constraint 
is often observed when relaxation techniques are employed to 
cope with the singularity issue. Consequently, the 
aforementioned challenges clearly highlight the complexity of 
obtaining global optima through stress-based topology 
optimization. After addressing these challenges, this paper 
discusses the recent advances making it possible to conduct 
the stress-based BESO method. Despite the drawbacks of the 
four nodes bilinear quadrilateral elements, see [17], it has been 
used in this paper due to its simplicity, low computational cost 
and its promising results as it has been used earlier in stress 
based problems in [7], [5].  

II. PROBLEM FORMULATION 

Our aim is to minimize the volume subject to critical fatigue 
stress. The problem formulation reads:  

Bi-Directional Evolutionary Topology Optimization 
Based on Critical Fatigue Constraint  

Khodamorad Nabaki, Jianhu Shen, Xiaodong Huang 
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where (x)σ PN
f  is a global modified P-norm based on 

maximum tensile principal stress which is discussed in Section 

III, iV is the volume of an individual element .The binary 

design variable ix  denotes the density of ith element and a 

small value of e.g. 0.001 rather than 0 is used to denote the 
void elements. To evaluate the displacements, stress and other 
quantities, FE analysis is performed as follows: 

 

 FKU            (2) 
 

where K and U are the global stiffness matrix of the 
structure and displacement vectors. According to the SIMP 
model, the material interpolation scheme can be expressed as: 

 

 q
ii xExE 0)(            (3) 

 

where 0E  denotes the Young’s modulus for solid material, q  

is the penalty exponent and in this paper is fixed as 3 unless 
stated. It is assumed that the Poisson’s ratio is independent 

from the design variables and the stiffness matrix K  can be 
expressed by the elemental stiffness matrix and design 
variables. 
 

 0
i

i

q
i  x = KK             (4) 

 

where 0
iK  denotes the elemental stiffness matrix for solid 

element.  

III. CRITICAL FATIGUE STRESS MEASUREMENT 

In this section, we discuss the fatigue stress measure used in 
this paper. We use the global approaches [11] by using the 
modified P-norm to calculate a single fatigue stress measure 
from element stress evaluation points which are in the centroid 
of each element. Since fatigue failure occurs for compressive 
stress, the maximum tensile principal stress of elements 
contributes to the fatigue stress measurement. The P-norm 
stress is defined as:  
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where p is the P-norm factor, Ni is the number of stress 

evaluation points and 
1
aσ  is the maximum tensile principal 

stress. Thus )0,max( 11 aσ , where 321   are the 

eigenvalues of the stress tensor: 
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Increasing the value of the exponent p in (5) brings the P-

norm value closer to the maximum stress. On the other 
extreme, p=1 will lead to mean stress calculation. Different p-
values are evaluated in [7]. In principal it should be infinite, 
but in practice a value from 3 to 4 was reported by some 
authors to work properly. In this paper our numerical 
experiences show that a value from 3 to 5 works well.  

IV. CRITICAL FATIGUE STRESS 

We can perform the fatigue analysis and the topology 
optimization in two separate steps [11]. We use the high cycle 
fatigue approach with constant proportional external load to 
calculate the critical fatigue stress. First, we seek the highest 
stress value that satisfies the Modified Goodman fatigue 
criteria:  

 

 )1( 
u

m

n

a

SS


          (7) 

 

where a , m , nS and uS  are alternating stress , mean 

stress, fatigue strength, and ultimate tensile stress of materials 
respectively. Using the Basquin law we can find the stress 
amplitude for the desired constant life. By substituting this 
stress amplitude as fatigue strength in Modified-Goodman 
equation we obtain a threshold criterion for fatigue failure 
according to the desired constant life. In the next step by 
calculating the alternating and mean stress of all elements we 
can find the maximum stress which satisfies the threshold 
criterion of fatigue failure. The critical fatigue stress 
calculation problem (Pcrit) only needs to be solved once during 
the optimization process. The problem reads: 
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According to the Modified-Goodman fatigue criterion, Fig. 

1, to avoid fatigue failure, all combinations of the mean and 
alternating stress must lie under the Goodman-line (Safe 
Zone). 

V. SENSITIVITY ANALYSIS 

The gradient of the modified P-norm stress in (5), is derived 
from the chain rule,  
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Fig. 1 Modified Goodman fatigue failure criterion 
 

By taking the derivative of (5), the term 
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The derivative of the principal tensile stress vector in (9) 

with respect to design variable ix gives. 
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where i is the component of corresponding eigenvector and 

D , B  and u  are the constitutive matrix, the strain 
displacement matrix corresponding to stress evaluation point 
of ith element and displacement matrix respectively. The term 

ix

x


 )(u

 in (13) is calculated from the global state (2). By 

considering the chain rule we get: 
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From which the 
ix

x


 )(u  can be calculated as: 
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Substituting (15) into (13) and then (13) into (11) and 

finally (11) into (9) gives: 
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Considering the adjoint method we can define the adjoint 

equation by: 
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By inserting the adjoint variable into (9), the final gradient 

reads: 
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VI. BESO PROCEDURE  

The evolutionary iteration procedure can be outlined as 
follows:  
Step 1: Discretize the whole design domain using a finite 

element mesh. 
Step 2: Define the BESO and stress calculation parameters 

such as evolutionary ratio ER, penalty exponent q, and 
p-normal exponent p. 

Step 3: Carry out finite element analysis (FEA) for the real 
structure and virtual structure (the structure undergoes 
the dummy load) using FEA MATLAB code in this 
manuscript. Then output the data for calculating the 
sensitivity numbers based on the tensile principal 
stress. 

Step 4: Determine the target volume for the next design based 
on the p-norm fatigue stress and critical fatigue stress 
constraint.  

Step 5: Filter sensitivity numbers in the whole design domain 
by: 
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where ijr  denotes the distance between the center of the 

element i and element j. )( ijrw is the weight factor given as 
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where minr is the filter radius. Due to the discrete design 

variable used in the BESO algorithm, [18]-[21] proposed that 
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the elemental sensitivity number can be further modified by 
averaging with its historical information to improve the 
convergence of the solution. That is, the sensitivity number 
after the first iteration is calculated by: 

 

 )ˆˆ(
2
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1,,  kikii          (21) 

 

where k is the current iteration number. Then let iki  ˆ,ˆ   

which will be used for the next iteration, thus, the modified 
sensitivity number considers the sensitivity information in the 
previous iterations.  
Step 6: Reset the design variables of all elements. For solid 

elements, the elemental density is switched from 1 to 

minx  if the following criterion is satisfied. 
 

 thi             (22) 

 
For void elements, the elemental density is switched from

minx  to 1 if the following criterion is satisfied 
 

 thi             (23) 

 

where th~  is the threshold of the sensitivity number which is 

determined the relative ranking of the sensitivity numbers. The 

details about the calculation of th~  may refer to [20].  

Step 8: Repeat 3–7 until the solution is convergent. 

VII. EXAMPLES 

To show the validity of the present fatigue-based topology 
optimization in the frame work of BESO method, this section 
provides optimal layouts for the L-shape beam with a fixed 
upper edge. This is the most popular example of stress based 
topology optimization and has been considered in much 
previous research; see [7], [3], [6], [4], [22]. 

The dimensions of the L-beam are seen in Fig. 2, where the 
domain is meshed with 6400 equal sized four node elements. 
Fig. 3 shows the Goodman fatigue diagram for the case of 
fatigue optimization (1.0 mm by 1.0 mm) and the thickness of 
the structure is 1 mm. The material is carbon steel 1018 and 
with material data; Young’s modulus 210,000 MPa, Poisson’s 

ratio 0.3 and yield limit and uS are 358 MPa and 440 MPa, 

respectively. Magnitudes of the mean and 1 Hz alternating 
forces were set to 250 N and 450 N, respectively; it should be 
emphasized that the forces are constant proportional loadings. 
The exponent of the Basquin equation, b, were set -0.0851. 
The minimum desired number of loading cycles for the S-N 

curve, Nf, was set to 
710 from which we can calculate the 

fatigue stress nS that is180.82 Mpa. Finally, by considering 

the modified- Goodman fatigue failure and the combination of 
the mean and alternating stress the critical fatigue stress for 

710 cycles obtained as 337.62 Mpa which has been used as 
stress constraint in the example. 3 × 2 numbers of elements 
under the load have been excluded from the design space to 
avoid stress concentration under applied load. The sensitivity 
filter is applied with a filter radius, rmin = 1.5 mm. 

 

 

Fig. 2 Design domain, loading and boundary conditions of the L-beam 
 

Solution for the L-beam problem for fatigue optimization 
and compliance can be found in Tables I and II. In the case of 
fatigue optimization we minimize the volume based on the 
critical fatigue stress however in the case of compliance 
minimization to compare the result with fatigue case we set 
the volume constraint equal to the optimized volume which we 
obtained in the fatigue case (v/v0=0.421).  

In the case of compliance minimization, we have large 
stress concentration, and as it can be seen from Fig. 5, the 
combination of the mean and alternating stresses are not in the 

safe zone and the fatigue failure will occur before the 
prescribed life cycles. However, the stress distribution of 
elements in the case of fatigue optimization is more uniform 
than the compliance method, and as it has shown in Fig. 3, the 
scatter of the mean and alternating stresses lies in the safe 
zone and fatigue failure will not occur. Fig. 4 shows the 
convergence plot of the fatigue optimization problem. We 
have considered the uniaxial stress state for calculation of the 
critical fatigue stress by the Modified- Goodman fatigue 
failure criterion. 
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Fig. 3 Goodman fatigue diagram used in the fatigue optimization 
 

 

Fig. 4 Convergence plot for the case of fatigue optimization 
 

TABLE I 
FATIGUE-BASED BESO LAYOUTS FOR L-BRACKET  

Optimized Structure 

 

Tensile principal Stress 
plot 

[MPa] 

 

von Mises Stress 
Plot 

[MPa] 

v/v0 0.421 

c [N mm] 249.521 

 

TABLE II 
COMPLIANCE-BASED BESO LAYOUTS FOR L-BRACKET 

Optimized Structure 

Tensile principal Stress plot 
[MPa] 

 

von Mises Stress 
Plot 

[MPa] 

v/v0 0.421 

c [N mm] 189.423 

 

 

Fig. 5 Goodman fatigue diagram for compliance case 

VIII. CONCLUSIONS  

Since fatigue failure is one of the most important criteria for 
engineering problems and it has never been developed in the 
BESO method, in this paper, we proposed the BESO method 
for the high cycle fatigue optimization by considering the 
maximum tensile principal stress and modified Goodman 
fatigue failure criterion. The method has been verified 
numerically and the obtaining results are appealing. Compared 
with the traditional compliance minimization problem where 
fatigue failure may occur, the numerical example shows that 
considering critical fatigue stress in the BESO method allows 
for designs of a practical engineering structure free from 
fatigue failure for prescribed life cycles.  
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