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Abstract—A numerical approach for solving constant-coefficient
differential equations whose solutions exhibit boundary layer
structure is built by inserting Bernstein Partition of Unity into
Galerkin variational weak form. Due to the reproduction capability
of Bernstein basis, such implementation shows excellent accuracy
at boundaries and is able to capture sharp gradients of the field
variable by p-refinement using regular distributions of equi-spaced
evaluation points. The approximation is subjected to convergence
experimentation and a procedure to assemble the discrete equations
without a background integration mesh is proposed.

Keywords—Bernstein polynomials, Galerkin, differential equation,
boundary layer.

I. INTRODUCTION

IN recent years, Bernstein polynomials [1] have been
tested with success as trial functions for boundary value

problems. The implementation of Bernstein expansion into a
Galerkin scheme provides a meshfree-type approximation [2]
with smooth globally-supported shape functions that present
interesting properties related to consistency and reproduction
capability [3]. Bernstein polynomials constitute a Partition of
Unity (PU) by themselves and their derivatives [4] satisfy
the Partition of Nullity (PN) property [5]. Furthermore, they
form a complete basis of the polynomial space allowing the
reproduction of any bounded continuous function by uniform
convergence as the order of the basis is increased [1].

Computational tests have proved the feasibility of the
application of Bernstein polynomials to solve differential
equations with highly-accurate results. Bhatti and Bracken
[6] posed the combination of Bernstein basis functions
and expansion coefficients to approximate the solutions to
differential equations. Further work related to the study of
elliptic boundary value problems was published by Mirkov
and Rasuo [7]. Interface value problems were reviewed
by J. Liu et al. [8], while Bernstein-Galerkin and Bernstein-
Petrov-Galerkin formulations were applied to high even-order
differential equations by Doha et al. [4]. Numerical behavior
for free vibration analysis was tested by Valencia et al. [5], and
comparison of computational performances between Bernstein
and Moving Least Squares (MLS) [9] approximations in
elasto-statics benchmarks was presented by Garijo et al. [10].
Other global spectral-type expansions [11][12] like Lagrange
basis have also been introduced as shape functions of modified
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Element-Free Galerkin Methods (EFGM) [13][14], yielding
excellent results in terms of numerical error as reported by
Ohkami et al. [15] and Suetake [16].

Bernstein expansion leads to analytical global shape
functions extended to the whole domain of definition.
Convergence is achieved by means of p-refinement instead
of the h-refinement —or mesh refinement—, which is the
classical strategy of mesh-based approximations like Finite
Element Method (FEM) [17] to reproduce local high-order
solutions, e.g. stress concentration factors in solid mechanics
or confined boundary layers in convection-diffusion problems.
In a Bernstein-Galerkin approach, the order of the global
approximation is directly determined by the order selected
for Bernstein basis and the expansion can be performed with
patterns of equi-spaced evaluation points, which simplifies the
programing. Moreover, due to the non-interpolating nature
of Bernstein polynomials, the expansion avoids the Runge
phenomenon [18] and detrimental saturation that affects to the
schemes that employ high-order Lagrange interpolation with
equi-spaced nodes.

In this context, this work discusses the computational
performance of Bernstein-Galerkin approach when dealing
with boundary layer solutions [19] to constant-coefficient
differential equations with small perturbing parameters. The
weak form of these equations is developed and discretized.
Numerical experiments test the accuracy and the convergence
of the results.

II. BERNSTEIN POLYNOMIALS

For a given function f (x) defined in the interval x ∈ [0,1],
its Bernstein polynomial of order p is defined as [1]:

Bf
p (x) =

p∑
i=0

f

(
i

p

)(
p

i

)
xi(1 − x)p−i (1)

The set of Bernstein basis functions

Bp
i (x) =

(
p

i

)
xi(1 − x)p−i (2)

constitutes a Partition of Unity (PU) of order 1 for patterns of
equi-spaced evaluation points [5]:

p∑
i=0

Bp
i (x)xm

i = 1 , m = 0, 1 , xi = i/p (3)
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and is able to reproduce any continuous and bounded function
f (x) in the interval [0,1] by uniform convergence [18]:

lim
p→∞Bf

p (x) = f(x) (4)

Bernstein basis (see Fig. 1) can be used to generate a set of
shape functions usable in a Galerkin implementation. Let u(x)
be a function defined in a one-dimensional domain Ω, which
is intended to be approximated by a numerical function uh (x)
resulting from the linear combination:

uh (x) =
n∑

i=1

Bi (x) ai (5)

where n is the number of evaluation points in the domain,
Bi is the shape function associated to point i and ai is the
i-th evaluation point parameter, which is not the actual field
variable value at evaluation point i, since Bernstein expansion
does not possess the Kronecker delta property, ai �= uh (xi),
as it is not an interpolation scheme. Kronecker delta property
is satisfied only at the extremes of the interval, B1 (xj) = δ1j ,
Bn (xj) = δnj , being x1 = 0 and xn = 1.

The shape function Bi is therefore written in the form:

Bi(x) = Bn−1
i−1 (x) =

(
n − 1
i − 1

)
xi−1(1 − x)n−i (6)

Fig. 1. Bernstein basis functions, 21 evaluation points

As stated in [10], the computational cost of Bernstein
implementation is closely related to the evaluation of binomial
terms of high orders. Following Mirkov and Rasuo [7] and
Spivey [20], binomial terms may be computed more efficiently
by applying the Binomial Multiplicative formula:(

m

l

)
=

l∏
h=1

m − (l − h)
h

(7)

then:

Bi(x) =

(
i−1∏
h=1

n − i + h

h

)
xi−1(1 − x)n−i (8)

The derivatives of Bernstein shape functions (Fig. 2) can be
expressed as [10]:

dBi

dx
=

i − 1 − (n − 1) x

x (1 − x)
Bi , x �= 0, 1 (9)

dBi

dx
=

{ ∓ (n − 1) if i − 1 = 0, 1;
0 if i − 1 �= 0, 1.

, x = 0 (10)

dBi

dx
=

{ ∓ (n − 1) if i − 1 = n − 2, n − 1;
0 if i − 1 �= n − 2, n − 1.

, x = 1

(11)

Fig. 2. Derivatives of Bernstein basis functions, 21 evaluation points

By defining the inner product P (f, g)

P (f, g) = 〈f, g〉 =
∫ 1

0

fgdx (12)

and the integral It (α, β):

It (α, β) =
∫

tα (1 − t)β
dt =

=
β∑

k=0

(
β

k

)
1β−k (−1)k tα+k+1

α + k + 1

(13)

it is verified that Bernstein basis is not orthogonal:

P (Bi, Bj) =
∫ 1

0

BiBjdx =

= γn
i,j Ix (i + j − 2, 2n − i − j)|10 �= δij ‖P (Bi, Bj)‖

(14)

where γn
i,j =

(
n−1
i−1

)(
n−1
j−1

)
. Interesting expressions can however

be derived by extending the inner product to the derivatives
(9)-(11):

P

(
dBi

dx
,Bj

)
=

∫ 1

0

dBi

dx
Bjdx =

= γn
i,j

[
(i − 1) Ix (i + j − 3, 2n − i − j − 1)|10 −

− (n − 1) Ix (i + j − 2, 2n − i − j − 1)|10
] (15)
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P

(
dBi

dx
,
dBj

dx

)
=

∫ 1

0

dBi

dx

dBi

dx
dx =

= γn
i,j

[
(i − 1) (j − 1) Ix (i + j − 4, 2n − i − j − 2)|10 −

− (i + j − 2) (n − 1) Ix (i + j − 3, 2n − i − j − 2)|10 +

+ (n − 1)2 Ix (i + j − 2, 2n − i − j − 2)
∣∣∣1
0

]
(16)

Previous expressions can be used to compute the terms
of the matrices of Galerkin weak form without need of a
background integration mesh.

III. GALERKIN WEAK FORM FOR ONE-DIMENSIONAL

PERTURBATION PROBLEMS

The boundary value problem considered for analysis is:

A (ε)
d2u

dx2
+ B (ε)

du

dx
+ C (ε) u = g (x) , ε << 1 (17)

u (0) = ū0 , u (1) = ū1 (18)

The governing differential equation (17) is the general
form of a non-homogeneous constant-coefficient second-
order differential equation with small perturbing parameter
ε. Typically, when the highest derivative is multiplied by
the perturbing parameter (A (ε) = ε), the solution to (17)
presents narrow regions of very sharp gradients to adapt to the
imposed boundary conditions (18), this is, exhibits boundary
layer structure [19]. The problem (17)-(18) is a classical
mathematical model of one-dimensional convection-diffusion
phenomena, which have been widely studied with numerical
approximations, including finite difference, finite element and
meshless techniques, see Morton and Mayers [21], Miller
et al. [22], Budd et al. [23], Knobloch [24] and recent works
by Roos et al. [25] and Reddy et al. [26].

The weak form of equation (17) is posed by introducing a
virtual field δU and enforcing the integral:∫ 1

0

δU

{
A (ε)

d2u

dx2
+ B (ε)

du

dx
+ C (ε) u − g (x)

}
dx = 0

(19)
The term of (19) multiplied by the perturbing coefficient

A (ε) can be developed as:∫ 1

0

δU
d2u

dx2
dx =

[
δU

du

dx

∣∣∣∣
1

0

−
∫ 1

0

dδU

dx

du

dx
dx

]
(20)

Essential boundary conditions (18) are enforced by means
of Lagrange Multipliers, which is a classical strategy for
approximations that do not verify the Kronecker delta property
[2]. The additional set of unknowns to be introduced in the
weak form (19) are:

λT = (λ0 λ1) , δλT = (δλ0 δλ1) (21)

therefore

δU
du

dx

∣∣∣∣
1

0

= δU (1)λ1 + δλ1 (u − ū1)|x=1 −
−δU (0)λ0 − δλ0 (u − ū0)|x=0

(22)

and the weak form (19) becomes:

A (ε) {δU (1)λ1 + δλ1u (1) − δλ1ū1−
− δU (0)λ0 − δλ0u (0) + δλ0ū0}−

−A (ε)
∫ 1

0

dδU

dx

du

dx
dx + B (ε)

∫ 1

0

δU
du

dx
dx+

+C (ε)
∫ 1

0

δUudx −
∫ 1

0

δUg (x) dx = 0

(23)

The Galerkin scheme employs the Bernstein basis to
approximate both the trial and the test fields using (5):

u =
n∑

i=1

Bi (x) ai , δU =
n∑

j=1

Bj (x) δaj (24)

Inserting now the expressions (24) into (23):

A (ε)

⎧⎨
⎩

n∑
j=1

Bj (x = 1) δajλ1 + δλ1

n∑
i=1

Bi (x = 1) ai−

−δλ1ū1 −
n∑

j=1

Bj (x = 0) δajλ0−

−δλ0

n∑
i=1

Bi (x = 0) ai + δλ0ū0

}
−

−A (ε)
∫ 1

0

⎡
⎣
⎛
⎝ n∑

j=1

dBj

dx
δaj

⎞
⎠(

n∑
i=1

dBi

dx
ai

)⎤
⎦ dx+

+B (ε)
∫ 1

0

⎡
⎣
⎛
⎝ n∑

j=1

Bj (x) δaj

⎞
⎠(

n∑
i=1

dBi

dx
ai

)⎤
⎦ dx+

+C (ε)
∫ 1

0

⎡
⎣
⎛
⎝ n∑

j=1

Bj (x) δaj

⎞
⎠(

n∑
i=1

Bi (x) ai

)⎤
⎦ dx−

−
∫ 1

0

⎛
⎝ n∑

j=1

Bj (x) δaj

⎞
⎠ g (x) dx = 0

(25)

Defining the arrays:

BT = (B1 B2 . . . Bn) (26)

aT = (a1 a2 . . . an) (27)

δaT = (δa1 δa2 . . . δan) (28)

equation (25) can be expressed in compact form:

δaT A (ε) Bj (x = 1) λ1 + δλ1A (ε) BT
i (x = 1) a−

−δaT A (ε) Bj (x = 0) λ0 − δλ0A (ε) BT
i (x = 0) a−

−δλ1A (ε) ū1 + δλ0A (ε) ū0−

−δaT A (ε)
∫ 1

0

[
dBj

dx

dBT
i

dx

]
dxa+

+δaT B (ε)
∫ 1

0

[
Bj

dBT
i

dx

]
dxa+

+δaT C (ε)
∫ 1

0

[
BjBT

i

]
dxa − δaT

∫ 1

0

Bjg (x) dx = 0

(29)
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Solving (29) for all δa and δλ fields:

−Kεa + Dεa + Mεa − g+
+A (ε) Bj (x = 1) λ1 + A (ε) Bj (x = 0)λ0 = 0

(30)

A (ε) B (x = 0) a − A (ε) ū0 = 0
A (ε) B (x = 1) a − A (ε) ū1 = 0

(31)

Finally, expressions (30) and (31) can be compacted as:[
Kε − Dε − Mε Gε

GεT 0

]{
a
λ

}
=

{ −g
−ūε

}
(32)

where the terms in the matrices are:

Kε
ij = A (ε)

∫ 1

0

dBi

dx

dBj

dx
dx

Dε
ij = B (ε)

∫ 1

0

dBi

dx
Bjdx

Mε
ij = C (ε)

∫ 1

0

BiBjdx

Gε
ik = −A (ε) Bi (x = xk)

gi =
∫ 1

0

Big (x) dx

ūε
k = A (ε) ūk

(33)

The integrals of Mij , Dij and Kij in (31) can be computed
exactly using expressions (14), (15) and (16), respectively.
A background integration mesh for numerical integration is
therefore not required, then the order of the quadrature, for
instance the number of Gauss points, is not a parameter of the
Bernstein-Galerkin approach. For the particular case in which
g (x) is a polynomial function, an exact expression for the
term gi can also be derived using (13):

gi =
∫ 1

0

Bi

(
H∑

h=0

ghxh

)
dx =

H∑
h=0

gh

∫ 1

0

Bix
hdx =

=
H∑

h=0

gh

(
n − 1
i − 1

)∫ 1

0

xi−1+h(1 − x)n−idx =

=
H∑

h=0

gh

(
n − 1
i − 1

)
Ix (i − 1 + h, n − i)|10

(34)

IV. NUMERICAL EXPERIMENTS

In this section, the exposed Bernstein-Galerkin approach
is tested in reference cases of bibliography. The experiments
deal with the response of the approximation scheme in terms
of numerical error and convergence when the perturbing
parameter ε is modified. The accuracy of the approach is
evaluated with the global norm of error E, defined as:

E = log

⎧⎨
⎩

√
1
2

∫ 1

0

(uexact (x) − unum (x))2

⎫⎬
⎭ (35)

where uexact and unum are the exact and the numerical
solutions, respectively.

The first analysis is performed for the perturbed differential
equation:

ε
d2u

dx2
+ (1 + ε)

du

dx
+ u = 0 , ε << 1 (36)

with boundary conditions u (0) = 0, u (1) = 1. The exact
solution can be found in Bender and Orszag [19] or Johnson
[27]:

uexact (x) =
e−x − e−x/ε

e−1 − e−1/ε
(37)

The solution presents a boundary layer in the left extreme
x = 0 of the interval. The thickness of the region where
boundary layer is confined, the so-called inner region,
becomes proportional to ε as ε → 0. Note that the Taylor
serie of e−x/ε up to order m as x → 0 is:

e−x/ε = 1 +
m∑

i=1

(−1)i xi

εii!
+ O

(
xm+1

εm+1

)
(38)

and therefore the numerical approach should be able to
reproduce in the inner region a polynomial function whose
coefficients are ∼ (1/εm).

The exact and Bernstein-Galerkin solutions are plotted in
Fig. 3 and Fig. 4 for two different values of ε:

Fig. 3. Exact and numerical solutions, ε = 0.05, analysis case A

Fig. 4. Exact and numerical solutions, ε = 0.005, analysis case A

A. Exactly Soluble Boundary Layer Problem
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The norm of error (35) for the first reference case is
presented in Fig. 5 as a function of the number of evaluation
points n (note that the order of the Bernstein expansion is
therefore n − 1):

Fig. 5. Norm of error E, analysis case A

The analysis of Fig. 5 reveals interesting features of the
numerical behavior of the Bernstein-Galerkin approach. First,
for the range of ε from 10−1 to 2.5·10−2, the norm E
reaches a minimum for moderately low number of equi-
spaced evaluation points n, and afterwards the approximation
becomes less accurate and E tends asymptotically to a value of
E ∼ −9, which is still an excellent result. This phenomenon
suggests that when the boundary layer gradient is relatively
smooth, the numerical approximation provides very accurate
results that are not improved by further increase of the order
of the polynomial basis. Similar behavior was found in Garijo
et al. [10], where the lack of convergence with p-refinement
was attributed to truncation errors and to the evaluation of
powers of high order when building Bernstein shape functions.
Second, for lower values of ε, this is, for thinner boundary
layer regions, the approximation is convergent and accurate re-
sults can be reached, although the rates of convergence become
slower as ε decreases. Note that the numerical approach is
compared in this case versus the exact solution of (36).

The second reference case is a classical example of
exponentially decaying solutions for x → 0 and x → 1,
resulting in boundary layers at both ends of the interval
in order to satisfy the boundary conditions. The non-
homogeneous governing differential equation is:

ε2 d2u

dx2
− u = −1 , ε << 1 (39)

with boundary conditions u (0) = 0, u (1) = 0. The analytical
first-order solution is provided by Hinch [28]:

uexact (x) ∼ 1 − e−x/ε − e(x−1)/ε (40)

Similarly to previous case, the Bernstein-Galerkin approach
is tested by sweeping parameters ε and n. Figures that follow
illustrate the numerical behaviour of the numerical approach:

Fig. 6. Exact and numerical solutions, ε = 0.05, analysis case B

Fig. 7. Exact and numerical solutions, ε = 0.005, analysis case B

Fig. 8. Norm of error E, analysis case B

Expression (40) is a first-order solution to (39), therefore
for perturbing parameter ε not too small, numerical solutions

B. Boundary Layers at Both Ends of the Interval
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may be noticeably closer to the actual full solution to (39)
than (40). In Fig. 8, this feature is confirmed by the constant
error curves obtained for ε = 10−1 and ε =7.5·10−2. For
lower values of ε, the refinement of solution (40) allows the
numerical behavior of case A to be recovered. The rate of
converge of Bernstein-Galerkin approach with n decreases
progresively with ε, although many of the curves tend to error
E ∼ −9.

The third analysis focuses on the equation:

ε
d2u

dx2
− u = g (x) , ε << 1 (41)

with boundary conditions u (0) = 0, u (1) = 0 and function
g (x) sufficiently smooth on [0, 1]. Verhulst [29] gives a
second-order formal uniform expansion for (41) by adding the
outer and inner (boundary layer) regions terms:

uexact (x) = −g (x) + g (0) e
−x√

ε + g (1) e
−(1−x)√

ε +

+
√

ε
d2g

dx2
(0) e

−x√
ε +

√
ε
d2g

dx2
(1) e

−(1−x)√
ε + O (ε)

(42)

For numerical experimentation, two functions g (x) are
selected, g (x) = x3 (case C1) and g (x) = cos (x) (case C2):

Fig. 9. Exact and numerical solutions, ε = 0.0005, analysis case C1

Fig. 10. Exact and numerical solutions, ε = 0.00005, analysis case C1

Fig. 11. Norm of error E, ε 10−3 to 10−6, analysis case C1

Fig. 12. Norm of error E, ε 10−5 to 10−8, analysis case C1

Fig. 13. Exact and numerical solutions, ε = 0.005, analysis case C2

C. Second-Order Approximation for Two-Point Boundary Value
Problem with Smooth Forcing Term g(x)
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Fig. 14. Exact and numerical solutions, ε = 0.0005, analysis case C2

Fig. 15. Norm of error E, ε 10−3 to 10−6, analysis case C2

Fig. 16. Norm of error E, ε 10−5 to 10−8, analysis case C2

The analysis with forcing term g (x) confirms the expected
behaviour after discussion of case B. For the two functions
tested, when the perturbing parameter ε << 1 is moderately

large, a fast convergence takes place for low orders of
Bernstein basis, reaching a minimum of norm E. However,
further increase of n has not significant impact on accuracy,
see Fig. 11 and 15. In these cases, the assymptotic limit of
norm E is lower the smaller the value of ε is. Convergent
behavior is recovered if parameter ε is decreased, as illustrated
in Fig. 12 and 16, where it can be observed that the numerical
approximation needs larger orders n to reach its minimum
computational error.

V. CONCLUSION

Inserted into a Galerkin implementation, Bernstein
expansion can be used as an approximation technique
yielding globally-supported shape functions that present
interesting properties related to the consistency and the
reproduction capability of the numerical approximation:
analytical formulation, PU up to order 1 with regular
distribution of evaluation points and able to span exactly the
polynomial space, allowing the reproduction of any bounded
continuous function by uniform convergence.

The presented work focuses on the study of the numerical
performance of this global approximation for boundary
value problems governed by perturbed constant-coefficient
differential equations. Solutions to this type of problems
typically exhibit boundary layer structure, which implies
that the field variable suffers from abrupt gradients in thin
regions in order to be able to adapt to the prescribed
boundary conditions. Instead of local mesh refinement —or
h-refinement— in boundary layer regions, which is a powerful
strategy of mesh-based methods such as FEM for capturing
high-order solutions, Bernstein-Galerkin approach employs
patterns of equi-spaced evaluation points and is driven by
p-refinement to reproduce the sharp gradients. Moreover,
taking advantage of the analytical nature of Bernstein shape
functions and their derivatives, a background integration mesh
is not required for the evaluation of the terms of the system
of discrete equations resulting from the Galerkin weak form
of these problems.

Numerical experiments with benchmark problems of
perturbation theory suggest that Bernstein-Galerkin approach
can easily reach the accuracy of first and second-order uniform
solutions of literature using a relatively low number of
evaluation points. In some scenarios, when exact analytical
solution is available, very accurate results may be achieved,
but it those cases a phenomenon of lack of convergence may
arise beyond the order of minimum error. As the perturbing
parameter decreases, convergence is achieved by increasing
the order of Bernstein basis, although rates of convergence
become slower.
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