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Abstract—Benchmarking cleaner production performance is an 

effective way of pollution control and emission reduction in coal-fired 
power industry. A benchmarking method using two-stage 
super-efficiency data envelopment analysis for coal-fired power plants 
is proposed – firstly, to improve the cleaner production performance of 
DEA-inefficient or weakly DEA-efficient plants, then to select the 
benchmark from performance-improved power plants. An empirical 
study is carried out with the survey data of 24 coal-fired power plants. 
The result shows that in the first stage the performance of 16 plants is 
DEA-efficient and that of 8 plants is relatively inefficient. The target 
values for improving DEA-inefficient plants are acquired by 
projection analysis. The efficient performance of 24 power plants and 
the benchmarking plant is achieved in the second stage. The two-stage 
benchmarking method is practical to select the optimal benchmark in 
the cleaner production of coal-fired power industry and will 
continuously improve plants’ cleaner production performance. 
 

Keywords—benchmarking, cleaner production performance, 
coal-fired power plant, super-efficiency data envelopment analysis  

I. INTRODUCTION 

HE coal-fired power industry is an important part of the 
electric utilities and about 80% electricity generation is 

from coal-fired power plants at present in China. In 2007, the 
installed capacity of the thermal power was 554420 MW, 
accounting for 77.7% of the total; and 82.9% of the electricity 
production was from thermal power generation, with 76% from 
coal-fired power plants, which resulted in 34% coal 
consumption of the total coal output in China [1]. The dominant 
position of coal in the primary energy structure led to the 
generating pattern of coal-oriented power industry. The Energy 
Research Institute of China forecasted that by 2020 Chinese 
installed capacity of electric power would reach 961000 MW, 
with 600000 MW from the coal-fired power industry, still 
accounting for 60% [2]. In 2007, China’s sulfur dioxide 
emissions were over 24.68 million tons, which made China 
become the largest emitting country of sulfur dioxide and 
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resulted in serious pollution of acid rain in one-third regions of 
China. Meanwhile, China’s carbon dioxide emission was 62000 
million tons (13.5% of the world) in 2007 [3], including 27000 
million tons (about 43.5%) from the electric power sectors, and 
it would reach 32000 million tons by 2010 [4]. The carbon 
emission reduction pressure of China is getting bigger and 
bigger. With large amounts of carbon dioxide, sulfur dioxide, 
nitrogen oxides, dust, wastewater and other pollutants 
discharged in the power generation, the development of the 
power industry in China is severely restricted by the 
environment and climate issues.  

Cleaner production, a creative idea, applies an integrated and 
preventative environment strategy to the producing, products 
and services, so that the eco-efficiency can be increased and the 
risks to the human and the environment can be reduced. This 
thinking also highlights the important concepts of overall 
prevention, eco-efficiency, environmental strategies, full life 
cycle, etc. and covers the whole procedure of raw materials, 
production, consumption and pollutant disposal, which has been 
well recognized for years by all countries in the world. 

Implementing cleaner production technology and cleaner 
production management in coal-fired power industry to 
continuously improve the cleaner production performance (CPP) 
of power plants is one of the most effective measures to reduce 
emissions. In 1980, the US launched the clean coal technology 
to solve the environmental problems caused by coal-burning 
and made remarkable achievements. From 1980 to 1998, the 
coal consumption of coal-fired power plants in the US increased 
by 60%. Due to the cleaner production action, the emissions of 
sulfur dioxide and nitrogen oxide had decreased by 23% and 
12% respectively. The investment on cleaner technology and 
management was 5200 million US dollars, while the economic 
benefits were 100000 million dollars [5]. In the recent years, 
Chinese government has promoted cleaner production 
technology and cleaner production benchmarking management 
in the electric industry. A series of developing plans have been 
formulated, such as The Cleaner Production Promotion Law 
approved by the National People’s Congress of China, The 
Cleaner Production Evaluation Index System for Thermal 
Power Industry issued by the National Development and 
Reform Council (NDRC), and The Cleaner Production 
Standards – Coal-fired Power Plant developed by the Ministry 
of Environmental Protection (MEP). These policies and 
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measures provide a basis for implementing cleaner production 
program in the coal-fired power industry.  

II.  LITERATURE REVIEW 

The benchmarking method of cleaner production is actually 
based on measuring the CPP. The benchmark is selected from 
the enterprise with relatively efficient performance and stable 
and efficiency; and other enterprises will improve their 
efficiencies in the light of the benchmarks’ input-output 
indicators. Therefore, the key to selecting optimal production 
benchmark is to establish an evaluation index and a measuring 
method for the CPP in practice. 

At present, the evaluation index for cleaner production varies 
in different countries. The commonly used and accepted 
evaluation index mainly includes the following 6 indicators: 
ecological efficiency, climate change, environmental 
performance, environmental load, waste generating rate and 
emission-reduction trade. And in China, it generally includes 
indicators of raw materials, products, resources and pollutants, 
among which the index of environmental quality, pollution 
reduction, raw materials, energy consumption, environmental 
management, as well as comprehensive utilization of resources 
are mostly applied [6]–[8]. From the assessing contents of 
cleaner production, the evaluation of cleaner production degree, 
CPP assessment and measuring the potential for cleaner 
production, etc. are involved. The assessment method for 
cleaner production is mainly based on the Life Cycle Analysis 
(LCA), which can measure the environmental impact of the 
research objects [9], [10]. The LCA has been applied to the 
cleaner production assessment (CPA) of the electrolytic 
aluminum production, cement enterprises and so on [11], [12]. 
There are still other methods like the percentage method, the 
composite index analysis, fuzzy math method, etc. The fuzzy 
math method is widely used to evaluate the CPA of steel firms, 
electrolytic aluminum industry, cement enterprises, coal 
industry, paper industry, eco-industrial parks and so forth 
[13]–[18]. In addition, the CPA measured with the DEA model 
is a new method developed in the recent years. DEA is 
commonly used to assess the relative performance or efficiency 
of cleaner production so as to select the benchmark and to 
improve the CPA [19].  

The benchmarking methods mainly include the ideal state 
analysis [17], the relative performance evaluation [20], [21], 
and production frontier analysis [22]. And major models 
applied benchmarking are DEA model or extended DEA 
models, for example, the optimal decision-making model for 
benchmarking cleaner production with qualitative information 
[23], benchmarking management of public sectors’ 
performance with DEA [24], super-efficiency DEA model 
applied in benchmarking management [25], and sensitivity 
analysis of DEA benchmarking model [26]. In addition, the 
benchmarking management has been evolved to yardstick 
competition in enterprise management, that is, enterprises 
compete with each other to become the benchmark under the 
incentive regulation mechanism. Such a mechanism has been 

fully applied in electric power generation and pollution 
reduction [27]–[29].  

For the DEA model involved in the benchmarking 
management, whether CCR, BCC, G/DEA or SE-DEA has 
neglected an important issue, namely, the benchmark is 
acquired from measuring the original data with some DEA 
model. It is a method of selecting benchmark in the “bad 
sample”, because there are some DEA-inefficient DMUs in the 
raw data. Thus the benchmarking DMU may not be the best 
choice. Therefore, it is practical to select benchmark based on 
DEA-efficient DMUs after improving the DEA-inefficient or 
weakly DEA-efficient DMUs. 

III.  METHOD AND MODEL 

A. Super-efficiency DEA Model 

There are mainly two DEA models – CCR model and BCC 
model [30], [31]. The CCR model can be used to evaluate the 
efficiencies of scale and technique simultaneously. In other 
words, the DEA-efficient decision making unit (DMU) in the 
CCR model is either appropriate in its scale or efficient in the 
technical management. The BCC model can only be used to 
assess the technique efficiency of DMUs. In addition, DEA 
model can be divided into two types: input-oriented model and 
output-oriented model. The input orientation means to achieve 
the efficiency by reducing input under the existing output level, 
while the output orientation tells what an efficient status is by 
increasing output under present input. 

However, the CCR model can only figure out whether the 
DMUs are DEA-efficient or DEA-inefficient. It cannot 
distinguish the efficiencies of the DEA-efficient DMUs. On the 
basis of CCR model, Andersen and Petersen put forward the 
super-efficiency data envelopment analysis (SE-DEA) model (1) 
in 1993 [32]. In this model, the efficiency value will no longer 
be restricted in the scope of 0-1. That is to say, the efficiency 
value will probably be bigger than 1. Thereby, the 
DEA-efficient and DEA-inefficient DMUs can be ranked 
according to their super-efficiency values and the benchmark 
can be selected. 
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Literatures have studied the relationship between the CCR 

model and SE-DEA model (Fig. 1). When the sample DMUs are 
measured by the SE-DEA model, the super-efficiency values of 
the DEA-inefficient DMUs are the same as their DEA 
efficiencies respectively, still smaller than 1 (e.g. point B1' point 
B2' and in Fig. 1), and the input redundancies and output 
deficiencies are consistent with the values from the CCR model; 
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for the weakly DEA-efficient DMUs, their super-efficiency 
values are equal to 1 and input-output redundancies will not 
change (e.g. point A1 and point A2 in Fig. 1); the production 
frontier of the DEA-efficient DMUs has been changed and their 
super-efficiency values are greater than 1 (e.g. point B1, point B2, 
point C1, point C2, and point D1, point D2,  in Fig. 1) [25], [33]. 
Therefore, we can directly evaluate the CPP of coal-fired power 
plants with the SE-DEA model, instead of using CCR model. 

 
 

 
Fig. 1 CCR model (a) vs. SE-DEA model (b) 

 

B. Projection Analysis 

The super-efficiency values (θ*), input redundancies (s–*) and 
output deficiencies (s+*) of all DMUs can be acquired with the 
SE-DEA model in (1), which will be used for the projection 
analysis of DEA-inefficient and/or weakly DEA-efficient 
DMUs. And the input-out data of these DMUs may be adjusted 
according to the projected values (input-output targets) so as to 
improve the productive efficiency. The projection analysis 
model can be expressed as (2). 
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According to the principle of projection analysis, the 

projected values of DEA-inefficient and weakly DEA-efficient 
DMUs at the production frontier are DEA-efficient [34]. Thus 
all DMUs can achieve the DEA-efficient efficiencies. 

C. Sensitivity Analysis 

The benchmarking method requires that the efficiency 
benchmark be relatively efficient and stable with a wide 
variation range to maintain DMUs DEA-efficient. The range 
can be achieved through sensitivity analysis. 

Suppose that the input-output data of a single DMU turns into 
(1 ± γ) times of the original data, namely, DMU0 changes as: 
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Then, the necessary and sufficient conditions for DMU0 

maintaining DEA-efficient are: 
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If all the DMUs change at the same time, considering the rest 
DMU j change in the opposite direction of the change trend of 
DMU0 (i.e. the most adverse cases), DMU0 still changes based 
on (3), while the rest DMUj change according to (5). 
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Then, the necessary and sufficient conditions for DMU0 

maintaining DEA-efficient are:  
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We can see from (4) and (6) that DMUs with high the 

super-efficiency values are with more stability and wide range 
maintaining DMUs DEA-efficient, whether a single DMU 
changes or all DMUs change simultaneously; that is, the DMU 
with the highest super-efficiency can serve as the benchmark 
[25], [33]. 

D. Benchmarking Process of Coal-fired Power Plant’s CPP 

On the basis of cleaner production benchmarking 
management and CPP evaluation, the benchmarking process of 
CPP for coal-fired power plants can be divided into two stages 
(Fig. 2). 

 
 

 
 

Fig. 2 Benchmarking process of cleaner production performance 
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Stage I: To carry out the correlation analysis of the original 
input-output data to test whether the input and output data meet 
the requirement of isotonicity; then the SE-DEA model in (1) 
will be used to evaluate the relative performance of all power 
plants DMUi (i = 1,2, ..., u, u+1, ... m); and the super-efficiency 
value (θ1

*), input redundancy (s1
–*), and output deficiency (s1

+*) 
of each power plant can be figured out; the benchmark B1 and 
the sensitivity γ1 in Stage I can also be achieved. Then the target 
values of DEA-inefficient and/or weakly DEA-efficient DMUs 
(j=1,2,…,u) are calculated by projection analysis in (2). 

Stage II: Suppose that the DEA-inefficient and/or weakly 
DEA-efficient DMUs adjusting their input-output data based on 
the projection analysis to improve their CPP, the original 
input-output data of corresponding DMUs may be replaced with 
the target values achieved in Stage I and this new data set will be 
evaluated by the SE-DEA model to get the new super-efficiency 
value (θ2

*), input redundancy (s2
–*), and output deficiency (s2

+*). 
Using the sensitivity analysis by (4) and (6), the final benchmark 
B2 and the sensitivity γ2 of Stage II can be determined. 

IV. EMPIRICAL STUDY 

A. Input-output Indicators  

At present, the DEA method has been applied in many fields. 
As to application to the cleaner production assessment, the key 
is to introduce the inefficient output of pollutant into the DEA 
model. In measuring efficiency, the more output is usually the 
better, but the pollutant emission is just the opposite. Obviously, 
to treat the pollutant as the output indicator cannot meet the 

requirements of the model. From the perspective of cleaner 
production, pollutant emission, as a DMU of output, is an 
undesired output and it should be minimized. When the cleaner 
production assessment is carried out based on the output DMU 
of pollutants, neither CCR model nor SE-DEA model is 
available. Therefore, only when the pollutant emissions are 
considered as negative outputs or inputs, the calculation and 
evaluation can be operated by means of the DEA model [35], 
[36]. 

Combined with The Cleaner Production Evaluation Index 
System for Thermal Power Industry and The Cleaner 
Production Standards – Coal-fired Power Plant issued by 
NDRC and MEP of China, the input-output indicators for 
measuring the CPP of the coal-fired power plant is set up, 
considering the requirements of operating the SE-DEA model 
simultaneously. 

Input indicators (per unit power generation): x1, coal 
consumption; x2, water consumption; x3, energy consumption; 
x4, flyash output volume; x5, smoke dust emission volume; x6, 
sulfur dioxide emissions; x7, nitrogen dioxide emissions; x8, 
wastewater emissions. 

Output indicators: y1 utilization rate of flyash; y2, utilization 
rate of recycled water; y3, total output value per unit power 
generation. 

B. Sample Data and Isotonicity of Input-output Indicators  

Golany & Roll proposed the good rule of thumb for the 
number of DMUs in applying DEA model, namely, the number 
of DMUs should be at least twice the number of inputs and 

 
TABLE I 

SURVEY DATA OF 24 COAL-FIRED POWER PLANTS 

Input indicators a, b Output indicators a 
Power plant 

x1 x2 x3 x4 x5 x6 x7 x8 y1 y2 y3 
P01 815 563 0.184 3296 2.99 5.06 2.129 1550 0.886 0.849 0.823 
P02 514 723 0.154 6293 2.66 4.10 2.774 1830 0.643 0.745 0.734 
P03 416 441 0.086 2303 2.89 2.70 0.631 810 0.632 0.649 0.701 
P04 440 820 0.104 3527 1.95 2.94 0.611 820 0.631 0.750 0.598 
P05 729 850 0.172 7091 3.17 2.24 1.560 1130 0.837 0.823 0.668 
P06 404 800 0.108 2953 2.83 3.26 0.547 1330 0.568 0.650 0.621 
P07 616 912 0.199 8849 3.35 4.99 1.568 1680 0.772 0.785 0.711 
P08 533 494 0.135 7648 2.87 4.05 1.692 1780 0.651 0.620 0.655 
P09 711 776 0.178 7345 1.96 2.82 0.993 1230 0.729 0.699 0.801 
P10 854 903 0.184 2355 2.24 3.69 2.354 1645 0.898 0.800 0.794 
P11 568 874 0.099 7327 2.57 3.66 0.897 999 0.821 0.802 0.886 
P12 707 768 0.178 6684 3.99 4.99 2.205 1456 0.698 0.900 0.900 
P13 495 692 0.186 6503 2.32 3.51 1.367 1698 0.768 0.733 0.653 
P14 803 658 0.156 4897 1.98 4.35 2.094 1765 0.649 0.853 0.780 
P15 799 593 0.171 5635 3.23 3.29 1.779 1811 0.850 0.784 0.787 
P16 663 990 0.149 8735 3.17 4.45 0.999 1258 0.900 0.800 0.706 
P17 623 789 0.128 6742 2.76 2.87 1.643 1603 0.822 0.865 0.863 
P18 700 808 0.181 4963 2.12 3.35 2.680 1633 0.651 0.830 0.741 
P19 822 954 0.172 5005 2.68 4.21 2.011 1599 0.729 0.739 0.805 
P20 586 897 0.176 6120 2.54 4.25 1.782 1135 0.588 0.825 0.871 
P21 737 803 0.165 6563 2.32 3.17 2.020 1369 0.773 0.758 0.820 
P22 675 762 0.158 5869 2.16 3.88 1.886 1238 0.726 0.865 0.795 
P23 642 735 0.155 4937 2.21 2.96 1.835 1457 0.689 0.830 0.785 
P24 708 783 0.168 6097 2.49 4.12 1.692 1326 0.805 0.741 0.856 

a The carbon dioxide emissions from the power generation can be estimated based on the coal consumptions and the thermal efficiency of the boiler. There is 
the coal consumption indicator (x1) in the resource consumption indicators and both the carbon dioxide emission and coal consumption are treated as the input 
in the model operation, so it is unnecessary to consider the indicator of carbon dioxide emissions in the waste discharge. 

b The evaluation in the SE-DEA model is dimensionless, so the unit of each indicator is omitted.  
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outputs considered [37]. There are 8 input indicators and 3 
output indicators in measuring the CPP of the coal-fired power 
plant. Thus at least 22 DMUs should be involved in running the 
model. To satisfy this rule, this research investigated the power 
generation of 24 coal-fired power plants with similar technology 
and scale. The survey data based on the input-output indicators 
and the requirements of SE-DEA model is listed in Table I. 

DEA model requires that the DMUs be homogeneous with 
comparability and the input-output indicators meet the 
requirement of isotonicity, namely, the output will not decrease 
along with the increase of input [38]. This can be tested by 
correlation analysis of the input-output data. It should be noted 
that this paper does not use the indicator of “flyash discharge 
per unit power generation” because it cannot satisfy the 
requirement of isotonicity. The correlation analysis result of the 
input-output indicators of 24 power plants is listed in Table II, 
from which we can see that the input-output indicators are 
positive related, indicating that the input-output indicators in 
this research meets the requirement of isotonicity and reflects 
the input-output relationship of implementing cleaner 
production of coal-fired power plants. 

C. Evaluation of the Original Data 

The original data in Table I is calculated with EMS software 
and the result is listed in Table III. The result shows the CPP of 
16 plants is DEA-efficient and that of the rest 8 plants is 
relatively inefficient with input redundancy and output 
deficiency. The super-efficiencies of the 24 power plants are 
achieved and P03 is with the biggest super-efficiency and 
sensitivity. 

D. Projection Analysis 

The purpose of benchmarking CPP is to adjust and optimize 
relevant indicators of inefficient or weakly efficient DMUs so 
that the performance of coal-fired power plants can be improved. 
By operating (1) with super-efficiency values (Table III) and 
input-output slacks (Table IV), the projected values of 8 
DEA-inefficient power plants can be figured out by (2), and 
these 8 power plants may improve the power generation process 
and input-output data based on the target values (Table V). 

E. Benchmark Selection 

According to the benchmarking process in the context, the 
original input-output data of the 8 DEA-inefficient power plants 
is replaced by the target values in Table V. The SE-DEA model 
in (1) is applied again to gain the measuring result of CPP of 
improved coal-fired power plants (Table VI). It can be seen that 
the CPP of all power plants are DEA-efficient. In the second 
stage, the super-efficiency and sensitivity of P10 are bigger than 
those of any other plant, that is, the final benchmark is no longer 
plant P03 but P10. 

V. CONCLUSION 

The benchmark selection of CPP for the coal-fired plant can 
be divided into two stages. In the first stage, the CPP assessment 
of the original data of all power plants and the projection 

TABLE II 
CORRELATION COEFFICIENTS OF INPUT-OUTPUT INDICATORS 

 y1 y2 y3 

x1 0.5802 0.5327 0.5437 
x2 0.2203 0.3205 0.1582 
x3 0.3401 0.3957 0.2693 
x4 0.2463 0.1308 0.1434 
x5 0.2399 0.1074 0.0824 
x6 0.0988 0.2786 0.3117 
x7 0.0994 0.4828 0.4079 
x8 0.1450 0.1146 0.0692 

 

TABLE III 
EVALUATION RESULT OF CPP OF 24 COAL-FIRED POWER PLANTS (STAGE I) 

Power 
plant 

DEA-efficient γ1 γ1* 
SE-DEA 
efficiency 

Rank 

P01 Y 0.0826 0.0414 1.1801 6 
P02 N – – 0.9508 20 
P03 Y 0.2381 0.1208 1.6249 1 
P04 Y 0.1680 0.0846 1.4039 3 
P05 Y 0.1513 0.0761 1.3565 4 
P06 Y 0.0351 0.0175 1.0727 13 
P07 N – – 0.8242 24 
P08 N – – 0.9135 21 
P09 Y 0.0778 0.0390 1.1687 7 
P10 Y 0.1718 0.0865 1.4148 2 
P11 Y 0.1153 0.0578 1.2606 5 
P12 N – – 0.8694 22 
P13 Y 0.0461 0.0230 1.0966 10 
P14 Y 0.0569 0.0285 1.1207 9 
P15 Y 0.0418 0.0209 1.0873 11 
P16 N – – 0.9516 19 
P17 Y 0.0622 0.0311 1.1327 8 
P18 Y 0.0005 0.0003 1.0011 16 
P19 N – – 0.8630 23 
P20 Y 0.0125 0.0063 1.0254 15 
P21 N – – 0.9743 18 
P22 Y 0.0347 0.0173 1.0718 14 
P23 Y 0.0362 0.0181 1.0752 12 
P24 N – – 0.9961 17 

 

TABLE VI 
EVALUATION RESULT OF CPP OF 24 COAL-FIRED POWER PLANTS (STAGE II) 

Power 
plant 

DEA-efficient γ2 γ2* 
SE-DEA 
efficiency 

Rank 

P01 Y 0.0653 0.0327 1.1398 6 
P02 Y 0.0000 0.0000 1.0001 23 
P03 Y 0.1496 0.0752 1.3517 3 
P04 Y 0.1314 0.0660 1.3026 4 
P05 Y 0.1513 0.0761 1.3565 2 
P06 Y 0.0351 0.0175 1.0727 13 
P07 Y 0.0018 0.0009 1.0037 16 
P08 Y 0.0008 0.0004 1.0017 19 
P09 Y 0.0666 0.0333 1.1427 5 
P10 Y 0.1718 0.0865 1.4148 1 
P11 Y 0.0636 0.0318 1.1359 7 
P12 Y 0.0011 0.0006 1.0023 17 
P13 Y 0.0412 0.0206 1.0859 11 
P14 Y 0.0569 0.0285 1.1207 9 
P15 Y 0.0418 0.0209 1.0873 10 
P16 Y 0.0009 0.0004 1.0018 18 
P17 Y 0.0622 0.0311 1.1327 8 
P18 Y 0.0005 0.0003 1.0011 20 
P19 Y 0.0003 0.0002 1.0007 21 
P20 Y 0.0125 0.0063 1.0254 15 
P21 Y 0.0000 0.0000 1.0001 24 
P22 Y 0.0341 0.0171 1.0706 14 
P23 Y 0.0362 0.0181 1.0752 12 
P24 Y 0.0002 0.0001 1.0004 22 
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analysis for the DEA-inefficient DMUs are conducted to get the 
target input-output values, and the benchmark B1 in the first 
stage is achieved simultaneously. The DEA-inefficient plants 
may adjust their input-output data according to the projected 
values. In the second stage, the CPP of the DEA-efficient plants 
and the improved DEA-inefficient DMUs will be evaluated 
again. All power plants will be DEA-efficient and the 
benchmark B2 in the second stage (final benchmark) can be 
acquired. B2 is different from B1 because B2 is obtained under 
the premise that all DMUs are DEA-efficient. In the first stage, 
DMUB1 is DEA-efficient and its input-output data does not 
change during the second stage; in the second stage, both 
DMUB1 and DMUB2 are DEA-efficient, but the super-efficiency 
of B2 is bigger than that of B1. In fact, the B1 and B2 can be 
regarded as “to select the best in the bad or in the good”. The 
second stage can be considered as a re-benchmarking process. 
Therefore, B2 is a more appropriate benchmark and we can put 
the two stages above into practice and improve the CPP of 
coal-fired power plants. 

The above analysis shows that the CPP of coal-fired power 
plants can be measured, benchmarked, ranked, and improved 
through the SE-DEA model. An empirical study of 24 coal-fired 
power plants gives the fact that the efficiency benchmark will 
probably change. The benchmark B1 achieved in the first stage 
may be not the best choice and the benchmark B2 got in the 
second stage is better than B1. To select B2 as a benchmark will 
be more conducive to improve the CPP. 

It should be noted that the benchmarking based on SE-DEA 
model is a relative measuring method. In the process of 
implementing cleaner production and in the course of valuing 
and improving CPP of coal-fired power plants, the national or 
industrial standard methods should also be used to assess the 
developing level of cleaner production. Only to combine the 
relative assessment with the absolute evaluation can 

continuously improve the CPP in the coal-fired power industry, 
and can the benchmarking of CPP guide the power generation 
and the emission reduction.  
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