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Abstract—In rotating machinery one of the critical components 

that is prone to premature failure is the rolling bearing. 
Consequently, early warning of an imminent bearing failure is much 
critical to the safety and reliability of any high speed rotating 
machines. This study is concerned with the application of Recurrence 
Quantification Analysis (RQA) in fault detection of rolling element 
bearings in rotating machinery. Based on the results from this study it 
is reported that the RQA variable, percent determinism, is sensitive 
to the type of fault investigated and therefore can provide useful 
information on bearing damage in rolling element bearings. 
 

Keywords—Bearing fault detection, machine vibrations, 
nonlinear time series analysis, recurrence quantification analysis.  

I. INTRODUCTION 
EARINGS are among the most important machine 
components in the vast majority of rotating machines and 

exigent demands are made upon their carrying capacity and 
reliability. Generally, a rolling bearing cannot rotate for ever. 
It often works well in non-ideal conditions, but sometimes 
minor problems cause bearings to fail quickly and 
mysteriously without any notable warning. The bearing 
failures are mainly resulted from excessive wear or damage in 
rolling ball elements as well as in the inner/outer races of the 
bearing.  Presently real-time condition monitoring systems for 
bearing systems often fail to provide sufficient time between 
warnings and on the other hand, inaccurate interpretation of 
operational conditions may result in false alarms and 
associated unnecessary costs and downtime [1].  

Traditionally, the detection of faults has become possible by 
comparing the sensitive features of signals from sensors in the 
machinery while running in normal and faulty conditions. 
This method of the detection of faults has showed 
considerable success and several techniques have been 
developed. The use of vibration signals is quite common in 
the field of condition monitoring of rotating machinery. 
Analyzing the vibration signals directly in the time domain is 
one among the simplest and cheapest diagnosis approaches 
[2].  However, as the damage increase, the vibration signal 
becomes more random and the temporary statistical values 
reduce to more like that of normal bearing levels. This is the 
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most important shortcoming of this approach [3]. In the 
frequency domain approach the major frequency components 
of vibration signals and their amplitudes are used for trending 
purposes [4]. One of the drawbacks of frequency-domain 
approaches is that they require the bearing defect frequencies 
to be known or pre-estimated.  The time-frequency domain 
approach use both time and frequency information allowing 
for the transient features, such as impacts. However, this 
approach fails to analyze the continuously smooth signal. 

In this paper, the powerful method of RQA is used to study 
and characterize the experimental sensor signals generated 
during the normal and faulty states of the bearing under study. 
The study has been carried out with an objective to 
discriminate these signals as due to a good or faulty bearing 
on the basis of the calculated sensitive RQA variables. 

II. EXPERIMENTAL SETUP AND DATA ACQUISITION SYSTEMS 
Two arrays of experiments, one with a good bearing and the 

other with a defective bearing, containing 10 trials in each 
array are conducted. A total of 20 numbers of experiments are 
conducted and the corresponding acquisition and recordings 
of sensor signals representing time history of bearing vibration 
signature during operations are done. Here a faulty bearing 
refers to a bearing with damage induced in one of the eight 
balls. The level of damage induced in the bearing is relatively 
large in order to provide a fault comparison. 

A. Test Rig 
The study of fault detection for the bearing is carried out in 

a specially designed test rig. It consists of an induction motor 
of 1410 rpm and a shaft of uniform cross section. The shaft 
passes through two deep grooved ball bearings (6305 Type) 
which reside within two Plummer blocks separated by a 
distance. One end of this shaft is connected to a single 
spherical load of 1.1 kg and to the other end is rigidly attached 
a pulley. The shaft is driven by the motor at the designated 
speed using a v-belt. The entire arrangement is rigidly bolted 
on to the test bench keeping the axes of the shaft as well as 
motor horizontal. The first Plummer block provides support to 
the shaft near the pulley and affords stability to the whole test 
bench whereas the second Plummer block provides support 
near to the load. During experiments only the second Plummer 
block is opened to change the bearings and analyze for defects 
while the first is maintained intact.  
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B. Data acquisition 
An ADXL-150 accelerometer sensor is mounted 

horizontally on top of the second Plummer block to pick up 
the vibrations in the bearing during operations. The resulting 
output of the accelerometer is amplified and passed through 
an anti-aliasing filter having a cut-off frequency 1 kHz before 
digitization. The analog voltage signal from the filter is sent to 
DAC NI PCI 6221 through NI SHC68-68-EPM and SCB 68 
for converting it to the digital domain. The sampling rate for 
this signal is fixed at 10 kHz. The digitized data is recorded in 
the PC hard drive using NI Lab VIEW.  

Vibration data is recorded continuously for 30 sec duration 
during every trial of the experiments and from each of which 
25000 data points representing a 2.5 sec duration vibration are 
randomly selected and analyzed. Fig. 1 and Fig. 2 show the 
time history of the sampled vibration sensor signals from the 
system using a good bearing and a faulty bearing. 

 
Fig. 1 Time series of recorded vibration signals-Good bearing 

 
Fig. 2 Time series of recorded vibration signals-Faulty bearing 

III. NON LINEAR ANALYSIS AND METHODS 
Most often, in signal analysis, the amplitude distribution of 

the signal is analyzed and various statistical moments are used 
as characteristics. The nonlinear time series analysis (NTSA) 
approach is basically different from the statistical one, in the 
respect that it can overcome inherent limits of the traditional 
linear and statistical tools. Despite its wide range of 
applications, NTSA suffers from the problems of non-

stationarity of the measured time series data, which may lead 
to pitfalls that may invalidate the analysis. This can be 
overcome to a very great extent by the recurrence plots (RPs) 
and the RQA. In 1987, Eckmann et al. [5] introduced the 
concept of RPs that can visualize the recurrence behavior of 
the phase space trajectory of dynamical systems. 
Subsequently, the recurrence quantification analysis (RQA) 
was developed by Zbilut and Webber Jr. [6], [7] and extended 
with new measures of complexity by Marwan et al. [8]. The 
basic idea behind RQA is the identification of recurrence of 
local data points in a reconstructed phase-space. This method 
of analysis is found to be independent of various limiting 
constraints like the data size, it's stationarity and assumptions 
regarding the statistical distribution of data. Thus, it is ideally 
suited for analyzing experimental signals which are 
characterized by non-stationarity and noise. 

In the following sections our approach is described; based 
on phase space reconstruction, the recurrence plot and the 
recurrence quantification analysis. 

A. Phase Space Reconstruction  
Takens [9] proved a theorem that is the firm basis of the 

methodology of delays. Since one variable only is measured 
(the usual case in an experiment) the delay coordinate 
approach is used in the present analysis. Given a time series   

( ) (1), (2), (3),.......... ( )x j x x x x N=  we define points ( )X i in an - m  
dimensional state space as  
 

( ) [ ( ),  x( ),  x( 2 ),....... ( ( 1) )]X i x i i i x i mτ τ τ= + + + −             (1) 
 

for   1, 2,3,...., ( 1)i N m τ= − − where  i  are time indices, τ,  
a time lag and m   is called the embedding dimension. Time 
evolution of  ( )X i  is called a trajectory of the system, and the 
space, which this trajectory evolves in, is called the phase 
space. 

B. Selecting the Minimum Embedding Dimension  
The embedding dimension is the minimum dimension at 

which the reconstructed attractor can be considered 
completely unfolded. This parameter is usually estimated by 
the method of False Nearest Neighbors (FNN) given by 
Abarbanel [10]. 

By checking the neighborhood of points embedded in 
projection manifolds of increasing dimension, the algorithm 
eliminates 'false neighbors'[11]. A natural criterion for 
catching embedding errors is that the increase in distance 
between two neighbored points is large when going from 
dimension m  to m+1. This criterion is stated by designating as 
a false nearest neighbor any neighbor for which the following 
is valid.  

 
1/22 2

1
2

( ) ( )( , ) ( , )
( , )( , )

rm r m r
tol

m rm r

X i m X i mR i i R i i
R

R i iR i i
τ τ+ + − +⎡ ⎤−

= >⎢ ⎥
⎣ ⎦

        (2) 

 
Here  i  and ri   are the times corresponding to the neighbor 
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and the reference point, respectively.  mR  and 1mR +  denotes 
the distance in phase space with embedding dimension m  and  

1m +  respectively, and tolR   is the tolerance threshold. For the 
present analysis the embedding dimension corresponding to 
the lowest value of FNN is selected. 

C. Selecting the Time Lag  
To choose the time lag, τ, we use the non linear correlation 

function of average mutual information (AMI). Fraser et. al 
[12] establishes that delay corresponds to the first local 
minimum of the average mutual information function  

( )I τ which is defined as follows. 
 

2
( ( ), ( ))( ) ( ( ), ( ))log

( ( )) ( ( ))
P X i X iI P X i X i

P X i P X i
ττ τ
τ

⎡ ⎤+
= + ⎢ ⎥+⎣ ⎦
∑

              

 (3) 

 
where ( ( ))P X i  , is the probability of the measure ( )X i  ,  

( ( ))P X i τ+  is the probability of the measure ( )X i τ+ and 
( ( ), ( ))P X i X i τ+  is the joint probability of the measure of 
( )X i   and ( )X i τ+  . Plotting   ( )I τ versus τ makes it possible 

to identify the best value for the time delay, this is related to 
the first local minimum. 

The values for time lag, τ,  and embedding dimension m for 
the good bearing and faulty bearing have been calculated 
following the AMI and FNN methods and are shown in Table 
I. The values of time lag as well as the embedding dimension 
of the sensor signals for the two types of bearings differ. Since 
the work is aimed at monitoring of bearing failure that takes 
place during its operation, phase space reconstruction using 
two different sets of values is avoided here. Instead, they are 
chosen from the representative values of the faulty bearing 
which is found to take higher embedding dimension. 

 
TABLE I 

PHASE SPACE RECONSTRUCTION PARAMETERS 

Bearing Type Time Lag Embedding Dimension 

Good bearing 4 9 
Faulty bearing 5 11 

 

D.  Recurrence Plots based Analysis 
A recurrence plot (RP) is a way to visually investigate the 

multi dimensional phase space trajectory through a two-
dimensional representation [8]. Recurrence of states of the 
system, in the meaning that states are arbitrarily close after 
some time, is a well-known property of deterministic 
dynamical systems and is typical for nonlinear or chaotic 
systems. An RP is derived from the distance plot, which is a 
symmetric NxN   matrix where a point ( , )i j   represents some 
distance between coordinates ( )X i   and ( )X j  on the phase 
space trajectory. Thresholding the distance plot at a certain 
cut-off value transforms it into an RP which shows all the 
recurrent points as black spots. 

( , ) ( ( ) ( ) )RP i j X i X jε= Θ − −
              

            (4) 

 

where  , 1,.,.,., ,   i j N ε=  is a cut-off distance, •   is some 

norm and  ( )Θ •  is the Heaviside function [13].  
In the present analysis recurrence plots are constructed 

applying L2 norm in distance calculations. The threshold ε is 
chosen by analyzing the measure of recurrence point density 
[14] as percentage of maximum distance (Table II). Again, as 
followed and due to reasons assumed in phase reconstruction, 
we use the threshold ε values obtained for the faulty bearing 
(27 for vibration) as representative values for RQA 
estimation.  

 
TABLE II 

CALCULATED VALUES FOR THE THRESHOLD 

Bearing Type Threshold ε 

Good bearing 22 
Faulty bearing 27 

 
Since the RPs itself does not contain any visually 

appreciable quantitative information we utilize the RQA 
approach for the purpose in the present study. 

E. Recurrence Quantification Analysis 
The RQA is a tool based on the statistical description of the 

parallel lines distribution among the RP [9]. Measures of 
complexity are defined using the recurrence point density and 
diagonal line structures in the recurrence plot. These measures 
provide a qualitative description of the dynamics underlying 
the time series that is studied. In the original definition 
Eckman et al [5] used a fixed number of neighbors for 
determining recurrences. In the present analysis we use a fixed 
value for the threshold ε due to which the RP is symmetric 
across the central diagonal, called the line of identity (LOI). 
Attention is focused on the diagonal and vertical structures in 
the RP since from those stem the recurrence variables or 
quantifications. As the recurrence plot is symmetrical across 
the central diagonal, all quantitative feature extractions take 
place within the upper triangle in the RP [14], excluding the 
long diagonal (which provides no unique information) and 
lower triangle (which provides only redundant information).   

We can derive eight statistical values from a RP using 
RQA. The first value is Percent Recurrence, quantifies the 
percentage of recurrent points falling within the specified 
radius.  The second variable is Percent Determinism and 
measures the percentage of recurrent points that are contained 
in lines parallel to the main diagonal of the RP, which are 
known as deterministic lines. A deterministic line is defined if 
it contains a predefined minimum number of recurrence 
points. It represents a measure of predictability of the system. 
The third recurrence variable is Linemax, which is simply the 
length of the longest diagonal line segment in the plot, 
excluding the main diagonal line of identity .The fourth 
variable value is called Entropy and it refers to the Shannon 
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entropy of the distribution probability of the diagonal lines 
length. Entropy is a measure of signal complexity and is 
calibrated in units of bits/bin and is calculated by binning the 
deterministic lines according to their length. The fifth 
statistical value is the Trend which is used to detect non-
stationarity in the data. The trend essentially measures how 
quickly the RP pales away from the main diagonal and can be 
utilized as a measure of stationarity.  For the detection of 
chaos-chaos transitions, Marwan et al. [10] introduced other 
two additional RQA variables, the Percent Laminarity and 
Trapping Time, in which attention is focused on vertical line 
structures and black patches. Percent Laminarity is analogous 
to percent determinism except that it measures the percentage 
of recurrent points comprising vertical line structures rather 
than diagonal line structures. Trapping time on the other hand 
is the average length of vertical line structures.  It represents 
the average time in which the system is “trapped” in a specific 
state. The eighth recurrence variable is Vmax, which is simply 
the length of the longest diagonal line segment in the plot. 
This variable is analogous to the standard measure Linemax.  

IV. EPISODIC RECURRENCE QUANTIFICATION ANALYSIS  
A Recurrence Quantification Episodic test is conducted on 

the full length of sample data sets (Fig. 3). Here an epoch is 
designed to have a width of 512 data points and is made 
moving giving a 128 point data shift resulting in a total of 191 
epochs. From the tests it was found that only one among the 
eight RQA variables; the percent determinism shows 
constancy of value over the whole length of data. Moreover, 
as shown in Fig. 3, there is a wide separation between the 
means of the percent determinism values of the two data sets 
suggesting of two distinct dynamics. This is explained by the 
source of the data; the upper graph in each is from the system 
using good bearing whereas the lower graph is from the 
system using faulty bearing.  

 
Fig. 3 Episodic Recurrence Analysis of test signals 

 
Finally, it is to be noted here that the above tests are 

conducted with constant input parameter values for both the 
data sets; good as well as faulty bearing. As a check, we have 
examined the effects on RQA variables if the calculated input 

parameter values were used in RQA. Since the representative 
values of faulty bearing test data have been used as the 
constant input parameters, it is sufficient to analyze the good 
bearing signal data only, but with the calculated input 
parameter values for it. The RQA results indicates a similar 
trend here too, justifying the assumption to use constant input 
parameter values for online detection, as it is found to have no 
trade-off in using instantly calculated values for the input 
parameters epoch by epoch. 

V. CONCLUSION 
Wide separation between the mean values of RQA variable, 

Percent Determinism representing the two conditions under 
study suggest that RQA can be an efficient tool in analyzing 
time series related to fault detection in bearings. The definite 
advantage being that the RQA features can be extracted very 
easily from a noisy or non stationary time series signals which 
often is a challenge in mechanical systems signal processing. 
Also, since the data size and computational resource 
requirements are not large or intensive in comparison to the 
existing condition monitoring methods, the RQA based 
approaches proves to be a cost effective alternative. All these 
factors make RQA an attractive feature extraction 
methodology suitable for deployment in real-time condition 
monitoring systems involving roller bearings for quick 
retrieval of information with regard to bearing fault from 
sensor signals. 
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