
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

683

BDD Package Based on Boolean NOR 
Operation

M. Raseen1, A.Assi2, P.W. C. Prasad1 and A. Harb3

1United Arab Emirates University, College of Information Technology, U.A.E 
2American University of Technology, Department of Computer Engineering, Lebanon 

3United Arab Emirates University, Department of Electrical Engineering, U.A.E 

Abstract— Binary Decision Diagrams (BDDs) are useful data
structures for symbolic Boolean manipulations. BDDs are used in 
many tasks in VLSI/CAD, such as equivalence checking, property
checking, logic synthesis, and false paths. In this paper we describe a 
new approach for the realization of a BDD package. To perform
manipulations of Boolean functions, the proposed approach does not
depend on the recursive synthesis operation of the IF-Then-Else 
(ITE). Instead of using the ITE operation, the basic synthesis
algorithm is done using Boolean NOR operation. 

Keywords— Binary Decision Diagram (BDD), ITE
Operation, Boolean Function, NOR operation.

I. INTRODUCTION

ynthesis, verification, and testing algorithms of VLSI
circuits manipulate large number of switching functions
[1], [2]. Therefore it is important to have efficient methods

to represent and manipulate such functions. A large class of
problems in the area of VLSI CAD can be solved by adopting
efficient underlying data structures. During the last decade, 
several methods based on decision diagrams (DDs) have been 
proposed and successfully used in many industrial
applications  [3], [4], [5]. Recently, Binary Decision Diagrams
(BDDs) have emerged as one of the best representation
methods for wide range of applications. Despite the fact that
BDD is relatively old technique, its advantages as canonical
representations was only recognized and made clear by Bryant
in [2]. The success of this technique has attracted many
researchers in the area of synthesis and verification of digital
VLSI circuits [1], [4]. BDD packages are based on recursive 
synthesis operation of ITE. Since all binary synthesis
operation can easily be described by the use of ITE operation
no alternative concepts have been proposed [6].

BDDs as introduced by Bryant [2], have been traditionally
used to solve the equivalence checking problem due to their
canonical property. However, it is this requirement for 
canonicity that makes BDDs inefficient in representing certain
classes of functions. For example, integer multipliers have
displayed exponential memory requirements for any variable
ordering [7].There has been increased interest in BDDs 
techniques that reduce the time and space needed to solve the 
equivalence checking problem [7], [8], [9]. The combinational
equivalence checking needs to perform very fast due to the

use of larger designs which require more comparisons to be 
carried out [10], [11]. In such situations no dynamic variable
ordering will be considered mainly due to time complexity. A 
fast and efficient checking based on NAND-BDDs, instead of 
three operand ITE operation have been presented in [6]. In
this paper we present an approach for the realization of a BDD 
package, which uses two operand NOR operation instead of
using three operand ITE operation to perform manipulation of
Boolean functions. This method does not consider some of the
main features of BDD package such as dynamic variable 
ordering, complemented edges, etc. In the second section of 
this paper, background information's pertaining to the
construction and implementations of BDD are given. The new
Two operand NOR operation and the main difference between
NOR and ITE operations are discussed in the third and fourth
sections. Finally we conclude our paper with future
developments.

II. PRELIMINARIES

Basic definitions for BDDs are given in [1], [10], [11] and 
[12]. In the following we review some of these definitions.

Definition 1: A BDD is a directed acyclic graph (DAG). The 
graph has two sink nodes labeled 0 and 1 representing the
Boolean functions 0 and 1. Each non-sink node is labeled with
a Boolean variables v and has two out-edges labeled 1 (or 
then) and 0 (or else). Each non-sink node represents the
Boolean function corresponding to its 1 edge if v=1, or the
Boolean function corresponding to its 0 edge if v=0. 

Definition 2: An OBDD is a BDD in which each variable is 
encountered no more than once in any path and always in the
same order along each path. 

Definition 3: An ROBDD is a BDD with the following
properties.

-- There are no redundant nodes in which both of the two
edges leaving the node point to the same next node present
within the graph. If such a node exists it is removed and the
incoming edges redirected to the following node. 

-- If two nodes point to two identical sub-graphs (i.e.
Isomorphic sub-graphs) then one sub graph will be removed
and the remaining one will be shared by the two nodes.
Variable Ordering

S



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

684

The size of a BDD is largely affected by the choice of the
variable ordering. This is illustrated by the following example:

Example: Let . If the variable

ordering is given by , i.e. 

nn xxxxf 21221 .....

),......,,( 21 nxxx iixi)( , the size 

of the resulting BDD is . On the other hand, if the variable

ordering is chosen as , the size 

of the BDD is .

n2
)....,,,....,,( 2,421231 nn xxxxxx

)2( n

Thus, the number of nodes in the graph varies from linear to
exponential depending on the variable ordering. Fig. 1 shows 
the effect of the variable ordering on the size of BDDs.

Figure 1: Effect of the variable ordering on the size of BDDs

III. ITE OPERATION

BDD have two outgoing edges and are labeled by ‘then’ and 
‘else’, i.e. one labeled by the Boolean 1 (or then) and the other
by the Boolean 0 (or else). The ITE operation is a recursive 
form of the Shannon decomposition theorem [1], [13] given as 
below:

hfgfhgfite ),,(                (1) 

Shannon’s decomposition theorem can be shortly written as: 

01,,(
ixixi ffxitef )                    (2) 

Let x be the top variable of functions f, g, h and  and xf
x

f

denote function

1ixf and 0ixf respectively. Then the following recursive 

formula can be derived.

)),,(),,,(,(),,(
xxxxxx hgfitehgfitexitehgfite        (3) 

Recursion proceeds until one of terminal calls occurs: 

),,0(),,1()0,1,( fgitegfitefite ffitefffgite )1,0,(:),,(

The algorithm for ITE operation is given in Fig. 2. 

          Function ite (f, g, h: edge type): edge type;

          begin 
 execute the first step

                 if terminal case 

then return result 

                 else
                     begin 

execute the second and third step

                            if  result is in the computed-table

                                then return result 

                            else
                                begin 

let v be the top variable of function f,g,h;

),,(: xxx hgfiteT

),,(:
xxx

hgfiteE

          if T=E

                                           then ite:=T;

else
R:= find or add node(x,T,E);

                                   Insert in computed table (f,g,h,R);

                                                ite :=R

                                    end 

                          end 

               end; 

Figure. 2: ITE operation

All two variable operations can be implemented as an ITE 
expression as shown in Table 1 and therefore it forms a basic
operation of BDD.

TABLE 1
ITE OPERATION 

Table Name Expression Equivalent Form
0000 0 0 0
0001 gANDf gf )0,,( gfite

0010 gf gf )0,,( gfite

0011 f f f

0100 gf gf . ),0,( gfite

0101 g g g

0110 gXORf gf ),,( ggfite

0111 gORf gf ),1,( gfite

1000 gNORf gf ),0,( gfite

1001 gXNORf gf ),,( ggfite

1010 gNOT g )1,0,(gite

1011 gf gf ),1,( gfite

1100 fNOT f )1,0,( fite

1101 gf gf )1,,( gfite

1110 gNANDf gf )1,,( gfite

1111 1 1 1



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

685

IV. NOR OPERATION

This new approach work with only one operation
(Boolean NOR) compared to the two operations used in ITE. 
The modified algorithm for NOR operation is given in Fig. 3.
This algorithm is exactly the same as the ITE algorithm except 
the use of two operands instead of three operands required for 
ITE operations. All two variable operations can be
implemented as an NOR expression as shown in Table 2. This
method does not provide a fully fledge BDD package mainly
due to the following factors:

Combinational Equivalent checking needs very fast
execution of larger designs. Variable ordering might
result in an increase of the time complexity. A
heuristic Ordering might solve this problem.
Complemented edges are not considered, therefore
no comparison between the variables are required. It
leads to minimum use of memory for the BDD
package.

TABLE 2.
NOR OPERATION 

Table Name Exp. Equivalent Form
0000 0 0 0
0001 gANDf gf ),( gfNOR

0010 gf gf ),( gfNOR

0011 f f f

0100 gf gf . ),( gfNOR

0101 g g g

0110 gXORf gf ,),((( gfNORNORNOR

)1)),,( gfNOR

0111 gORf gf )1),,(( gfNORNOR

1000 gNORf gf ),( gfNOR

1001 gXNORf gf )),(,),(( gfNORgfNORNOR

1010 gNOT g g

1011 gf gf )1),,(( gfNORNOR

1100 fNOT f f

1101 gf gf )1),,(( gfNORNOR

1110 gNANDf gf )1),,( gfNOR

1111 1 1 1

Advantages of using this system can be classified as follows: 
Easy to implement compared to any other logic 
function mainly due to the fact that NOR is a 
universal gate.
This method works with 2 operand compare to ITE 
operation. So the execution of the BDD operations
will be faster. 

No complemented edges are considered. So the 
memory requirement for this method will be less then 
other operations.
This will fit for combinational Equivalence checking
of larger circuits with less time complexity, since
numbers of nodes are not counted.
Variable ordering techniques are not required.

Function NOR(f,g: edge type): edge type;
begin

                         execute the first step

if terminal case

then return result 

else
begin

                                 execute the second and third step

if  result is in the computed-table

then return result 

else
begin

              let v be the top variable of function f,g;

),(: xx gfNORT

),(:
xx

gfNORE

if T=E

then NOR:=T;

else

R:= find or add node(x,T,E);

 Insert in computed table ((f, g), R);

NOR :=R

end

 end 

end;

Figure 3: NOR Operation

V. CONCLUSION

In this paper, a new approach for the realization of a BDD
package has been presented and discussed. The proposed 
approach is based on the Boolean NOR operation and does 
not depend on some of the main features used with ITE 
operation. The use of Boolean NOR operation will be much
more appropriate than ITE in combinational equivalence
checking, especially for large VLSI circuits. Since NAND 
logic is used more frequently in designs and testing than NOR
logic, still we believe that this method will provide better 
results than the ITE operation and it is worth to be considered
and discussed. In addition, a modification to the NAND as 
well as the NOR- method to work as a fully fledge BDD
package with less space and time complexity is our future 
research work.

VI. ACKNOWLEDGEMENT

The authors would like to thank Prof. Rolf Drechsler from the 
Institute of Computer Science – University of Bremen for his



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

686

constructive comments that helped to improve quality of this
paper and American University of Technology (AUT). For 
their financial support of this paper.

REFERENCES

[1] R. E. Bryant, "On the complexity of VLSI
implementations and graph representations of Boolean
functions with application to integer multiplication,"
IEEE Trans. Computers, Vol. 40, pp. 203 213, 1991 

.[2] R. E. Bryant, "Graph Based Algorithm for Boolean
Function Manipulation," IEEE Trans. Computers, Vol.
35, pp. 677-691, 1986.

[3] H. Andreas, R. Drechsler and B. Becker, "MORE: An
Alternative Implementation of BDD-Packages by Multi-
Operand Synthesis," IEEE European Design Automation
Conference, pp. 164-169, 1996. 

[4] A. Gupta and P. Ashar, "Integrating a Boolean
satisfability checker and BDDs for combinational
equivalence checking," Proc. of the International
Conference on VLSI Design, 1998. 

[5] B. Bollig and I. Wegener, "Improving the Variable
Ordering of OBDDs is NP Complete," IEEE Trans. 
Computers, Vol. 45, pp. 993-1002, 1996. 

[6] R. Drechsler and M. Thornton, "Fast and Efficient
Equivalence Checking based on NAND-BDDs," 
Proceedings of IFIP International Conference on Very 
Large Scale Integration, pp. 401-405, 2001. 

[7] J. Marques-Silva and T. Glass, "Combinational
Equivalence Checking Using Satisfability and Recursive
Learning," International Conference on Design,
Automation and Test in Europe, pp.145-164, 1999. 

[8] A. Kuehlmann, M. Ganai and B. Paruthi, "Circuit-based
Boolean Reasoning," International Design Automation
Conf., pp. 232-237, 2001. 

[9] H. Hulgaard, P. Williams and H. Andersen, "Equivalence
checking of combinational circuits using Boolean
expression diagrams," IEEE Transaction on Computer
Aided Design, Vol. 18, 1999.

[10] R. Drechsler and B. Becker, "Binary Decision 
Diagrams Theory and Implementation," Kluwer
Academic Publishers, 1998. 

[11]S. Christoph and R. Drechsler, "BDD minimization using
Symmetric," IEEE transaction on CAD of IC and 
systems, Vol. 18, no. 2, pp. 81-100, 1999. 

[12] S.  B. Akers, "Binary Decision Diagram," IEEE Trans. 
Computers, Vol. 27, pp. 509-516, 1978. 


