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Abstract—There are three approaches to complete Bayesian 

Network (BN) model construction: total expert-centred, total data-
centred, and semi data-centred. These three approaches constitute the 
basis of the empirical investigation undertaken and reported in this 
paper. The objective is to determine, amongst these three 
approaches, which is the optimal approach for the construction of a 
BN-based model for the performance assessment of students’ 
laboratory work in a virtual electronic laboratory environment. BN 
models were constructed using all three approaches, with respect to 
the focus domain, and compared using a set of optimality criteria. In 
addition, the impact of the size and source of the training, on the 
performance of total data-centred and semi data-centred models was 
investigated. The results of the investigation provide additional 
insight for BN model constructors and contribute to literature 
providing supportive evidence for the conceptual feasibility and 
efficiency of structure and parameter learning from data. In addition, 
the results highlight other interesting themes. 
 

Keywords—Bayesian networks, model construction, parameter 
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I.  INTRODUCTION  
 Bayesian Network (BN) model consists of two 
component parts:  

 network structure (the qualitative part of the BN) a 
set of random variables (nodes) and a set of directed 
edges interconnecting the nodes without creating directed 
loops, so that the nodes, together with the edges, form a 
Directed Acyclic Graph (DAG). 

  parameters (the quantitative part of a BN): value entries 
in the Conditional Probability Tables (CPTs) associated 
with each child node in the BN model, which describes 
the probability distribution of the child node conditioned 
on every possible combination of the values of its parent 
nodes, and the Prior Probability Tables (PPTs) associated 
with each independent node (nodes without parents) in 
the BN).  

Thus, building a BN involves three ordered tasks: 
identification of the variables and their possible values, 
identification of the relationships between the variables, and 
obtainment of the parameters. Each node in a BN represents a 
random variable or hypothesis and each directed edge 

represents a relationship (dependency) between the two linked 
nodes, thereby creating a parent→child relationship. 

BN model constructors, ab initio, relied only on domain 
experts to define both the structure and parameters of a model, 
currently algorithms exist to construct BN models from data. 
Hence, BN model construction can be categorized under two 
approaches: expert- and data-centred. Consequently, there are 
three techniques to BN model construction:  

 total expert-centred (tecen)  
 total data-centred (todacen) 
 semi data-centred (sedacen).  

In tecen approach, the BN model is a product of domain 
analysis, whereby domain expert(s) completely specify both 
the qualitative and quantitative components of the model. The 
todacen approach uses algorithms to generate both the 
qualitative and quantitative components of a BN model from 
data. The generation of the qualitative component from data is 
referred to as structure learning, and the generation of the 
quantitative component referred to as parameter learning. 
The sedacen approach is a hybrid framework whereby domain 
expert(s) assist in the creation of the qualitative component of 
a BN model, while the quantitative component is learnt from 
data. 

A BN-based model, the LAboratory Performance (LAP) 
model, was constructed with the assistance of domain experts, 
for the performance assessment of students' laboratory work, 
in a Virtual Electronic Laboratory (VEL) environment. 
Detailed descriptions of the VEL and the LAP model, 
together with their evaluation processes and results are given 
in [1] and [2] respectively. Having constructed the LAP 
model with the assistance of three domain experts, there was 
need to investigate if the model is the best or optimal model 
for the intended purpose. That is, to empirically investigate if 
the expert-centred approach is the best approach for 
constructing the LAP model, or if it is possible to derive an 
improved or better model using the data-centred BN model 
construction approach. This required the construction of 
sedacen and todacen models from data, with respect to the 
focus domain. The aim is to compare the performances of the 
sedacen and todacen models to the performance of the tecen 
LAP model, based on a set of performance metrics.  

There are two possible sources of sample datasets that can 
be used for the construction of the sedacen and todacen 
models. First, sample domain historical dataset(s) on students’ 
laboratory work performance assessment, with respect to a set 
of performance indicators and their respective criteria, could 
be used if available.  This option was not possible as there are 
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no existing historical sample datasets, for the domain of 
engineering students’ laboratory education (with respect to 
performance-based assessment of students’ laboratory work), 
to the best of the authors' knowledge. The second option is the 
use of simulated sample datasets.  Often, researchers needing 
to undertake empirical investigations, with respect to structure 
and/or parameter learning, create frameworks that would 
allow them to generate the required sample datasets from a 
reference model. This approach has been adopted by a 
number of researchers including [3], [4], [5], [6]. The 
procedure starts with an existing model (the reference model), 
generates datasets from the Joint Probability Distribution 
(JPD) represented by the model, and then uses learning 
algorithms to attempt to retrieve the reference model from the 
datasets. The retrieved (learnt) model is then compared with 
the original model that generated the dataset [6]. This 
procedure is commonly used for evaluating learning 
algorithms, and was deemed appropriate for this empirical 
investigation because of lack of existing historical sample 
datasets. The idea is that if, using the above procedure, the 
algorithms fail to retrieve (induce) the reference model, a 
comparable model, or a better model (in terms of 
performance) from the sample datasets generated using the 
JPD encoded by its structure, then it may imply that the 
algorithms will also fail to induce a comparable model, or a 
better model from sample datasets generated from other 
sources. That is, failing to retrieve the reference model, the 
algorithms should at least learn a model whose performance is 
comparable to or better than that of the reference model. It is 
assumed that the reference model is the existing optimal 
model. If the algorithms learn a model whose performance is 
significantly better than that of the reference model, then the 
learnt model is taken to be the optimal model, else the 
reference model is taken to be the optimal model. Optimal, in 
this context, refers to the model which is best in terms of the 
adopted optimality criteria [7].  

First, section II details the different BN model construction 
approaches. Section III describes the procedure for the 
empirical investigation, highlighting how the different 
sedacen and todacen models used in the investigation were 
constructed, and the model test process, while section IV 
highlights the criteria and comparative tools used to compare 
the models. The results of the investigation are presented in 
section V, and the discussions given in section VI. The paper 
is summarised in section VII.  

 

II. BN MODEL CONSTRUCTION APPROACHES  

A. Expert-Centred Approach 
“Manually” building a BN model involves three ordered 
tasks: identification of the network variables and their 
possible values (states), definition of the relationships 
between the variables, and model calibration 
(parameterization). There are no formal foundations for 
“manual” BN model construction, and the process is still 
essentially an art [8]. It depends on the model constructor to 
use suitable techniques and tools for undertaking the 
knowledge elicitation tasks. Expert-centred BN model 
construction approach offers a number of benefits: 

 the model embeds reasonably accurate domain 
knowledge because it is built interactively with expert(s). 
The model variables, their states, and relationships are 
fully appreciated, and the reasoning and rationale behind 
the BN model can be clearly articulated and 
communicated.  

 model creation is often based on the consensus or average 
of information and opinions of more than one domain 
expert, thereby enabling the capture of uncommon or rare 
scenarios and knowledge.  

 the technicalities of the domain represented by the model 
can be verified/discussed in details at each stage of the 
development cycle.  

 Expert probability elicitation codifies knowledge so that 
the knowledge is available in the future for other projects 
and systems thereby promoting reliability in assessment 
of a family of systems that change within a changing 
usage environment [9].  

However, knowledge elicitation is often said to be a major 
challenge of the expert-centred BN model construction 
approach because it is difficult to elicit expert knowledge, 
which is often biased, and experts rarely agree. Guidelines for 
easing the elicitation process and elicitation methods have 
been outlined by [10] [11] [12]. Experts’ opinion 
disagreement is generally acknowledged [13]. Methods for 
resolving expert opinion conflicts and how to obtain 
composite or consensus opinion are addressed by [13]. Also, 
[9] argued that the issue of bias no longer holds as a range of 
techniques and tools that minimize the effort required for 
probability elicitation have been developed. In addition, the 
issue of bias is often addressed through the involvement of 
more than one domain expert and the knowledge elicitation 
process often goes through review stages, after which the 
model is subjected to sensitivity analysis. Moreover, BNs 
have been found not to be too sensitive to inaccuracies in their 
parameters [14], so determining good parameter values is in 
many application areas is quite feasible [15]. 

 

B. Data-Centred Approach 

Let ,B G θ=  be a BN model, where G is the network 
structure with nodes corresponding to the set of random 
variables, ( )1, , mX X X= …… , in the focus domain, and θ 
represents the set of parameters for the network. B encodes 

the JPD ( ,..., ) ( | ( )1 1

m
p X X p x pa xm i ii

=∏
=

, where ( )ipa x  

represents the parent set of node ix . The probability 

distribution, ( | ( ))i iP x pa x , for each discrete node, iX , is 

represented as a CPT at node iX  in B. The data-centred 
approach entails learning both the structure, G, and 
parameters, θ , from a given sample dataset, or only the 
parameters. 

A dataset, D, is a table consisting of records of observations 
for the network variables, such that, 1 2[ , ,......., ]Nd d dD= , 
where N = total number of records in D, and 
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1 2[ ], [ ],......., [ ]{x x x }l ml l ld = Є D, l = 1 to N, represents a record 
of observation for all the variables, X. A dataset can be 
complete or incomplete. A complete dataset contains No 
Missing Values (NMV) for any of the variables, implying full 
observability. An incomplete dataset contains missing values 
for some variables in some or in all the records in the dataset, 
implying partial observability or presence of latent (hidden) 
variables, respectively.   

 
Parameter Learning 
In parameter learning, the structure, G, is known and the 
problem is to learn the parameter, θ , from the given dataset, 

D. That is, the estimation of { } 1,...,i i mθ θ= = , from D, given 

G, where iθ  is the set of numerical value entries in the CPT 

of node iX . θ  is the complete set of parameters that can best 
explain the set of observations, D [16]. Parameter learning 
could involve single or multiple parameters. Single Parameter 
Learning implies that the variable, Xi  has only two possible 

mutually exclusive states denoted, xi  and xi , such that the 

probability mass function )(p Xi is defined by: 

( )p X xi i iθ= =  and )( 1p X xi i iθ= = − . Multinomial 

Parameter Learning implies that Xi  is a multinomial 

variable with r > 2 possible states, ,.......,  ,1x x ri i  such that 

Xi  has the set of probabilities, ( ),......., 1 ri i iθ θ θ= , 

respectively, where 1
1

r
i kk

θ =∑
=

.  

 
Structure Learning 
Given the dataset, D, the structure learning problem is to find, 
using D, the most probable network structure, Gi , from 

among the set of possible network structures, 

( ), ,.......,1 2G G GΦ λ= , where λ  is the cardinality of the 

search space. That is, discover the BN structure that most 
likely generated D. That is, Gi is the network that best 

describes the conditional independences suggested by the 
given dataset, D [17]. This is often referred to as model 
selection in literature, which term will not be used in this 
paper because, in this context, BN model refers to a complete 
Bayesian network (structure + parameters). Once G is found, 
its parameters, θ, are derived as described earlier. 

Structure learning algorithms are either based on 
Conditional Independence (CI) tests or Search and Score 
(SaS). The CI approach uses constraint-based algorithms to 
find the structure whose implied independence constraints 
“match” those found in the data by performing CI tests on 
tuples of variables, using statistical tests or information 
theoretic measures [18]. CI-based algorithms include the PC 

algorithm by [19]. The SaS approach consists of three 
components: the search space, the scoring function, and the 
search engine. The search space consists of the set of all 
possible BN structures, Φ , given the domain variables. The 
main operation in the search space is the modification of one 
structure to produce another structure with the operators ‘‘add 
an edge’’, ‘‘delete an edge’’, and “reverse an edge” [20].  

The score metric takes the dataset and a possible structure 
and returns a score reflecting the goodness-of-fit of the data to 
the structure [21]. There are two categories of scoring 
functions: Bayesian and information-theoretic. The 
information-theoretic score functions include: the Log-
likelihood (LL) [22], Minimal Description Length (MDL) 
[23], Akaike Information Criterion (AIC) [24], and the 
Bayesian Information Criterion (BIC) [25]. The MDL is said 
to be equivalent to the BIC function; hence they are often 
written as MDL/BIC. The Bayesian scoring metrics include: 
Bayesian Dirichlet (BD) [26], likelihood-equivalence 
Bayesian Dirichlet (BDe) [26], the uniform joint distribution 
Bayesian Dirichlet (BDeu) [27], and the K2 [3]. The K2 has 
been described as one of the most successful scoring metrics 
[28].  

The search engine (search algorithm) works to identify 
structures with high scores by exploring the search space. It 
makes comparisons of network structures as it searches 
heuristically for the most likely structure [29]. Essentially, the 
dataset D, the scoring function, and the search space 
constitute the inputs to the search algorithm while the output 
is a network that maximizes the score, ( | )P D Gi , the 

probability of the most probable structure, Gi , given the 
dataset, D [30].   

One of the main challenges of the data-centred approach is 
that structure learning is NP-hard [31]. Researchers have 
attempted to reduce the complexity of BN structure learning 
by various algorithmic means, but the problem remains 
complex and hard, without exact and exhaustive solution [18]. 
Consequently, heuristic algorithms are often employed for the 
learning process. The latter help produce an acceptable 
solution to a problem in many practical scenarios, though it is 
not certain to arrive at an optimal solution.  It begins with an 
approximate method of solving the problem within the 
context of the goal, and then uses feedback from the solution 
to improve its performance, searching for a satisfactory 
solution rather than optimal solution.  

The complexity of the search space is another major 
challenge of structure learning because the number of possible 
structures grows super-exponentially with the number of 
variables, n, in the problem domain [18]. For, n variables, the 
cardinality of the search space is given by [32] as the 
recursive function: 

( ) ( ) ( ) ( ) ( )1
1 2

1

n k n kk nf n f n kkk

−+
= − −∑

=
, where 

( )1 1f =    
Table 1 lists the possible number of BN structures for some 
values of n. 
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TABLE I 
NUMBER OF POSSIBLE BN STRUCTURES FOR VARIOUS NUMBERS OF 

VARIABLES 

4,175,098,976,430,598,10010

1,213,442,454,842,8819

78,370,2329,3438

1,138,779,2657

3,781,5036

29,2815

5434

253

32

11

No of possible BN structuresNo of variables, n

4,175,098,976,430,598,10010

1,213,442,454,842,8819

78,370,2329,3438

1,138,779,2657

3,781,5036

29,2815

5434

253

32

11

No of possible BN structuresNo of variables, n

 
 

This super-exponential relationship between the number of 
variables and the number of possible structures is a major 
source of computational complexity [33].  
 

III. INVESTIGATION PROCEEDURE 
First, sample datasets were generated with the reference 

model in such a way that the investigation was undertaken 
from two different approaches referred to, in this context, as 
non-parameteric and parameteric approaches. The non-
parameteric approach entailed the use of the unparameterised 
version of the reference model (structure without the elicited 
parameters) to generate some of the sample datasets for the 
investigation. The parameteric approach entailed the use of 
the parameterised version of the reference model (structure 
with elicited parameters) to generate some of the sample 
datasets for the investigation. A set of four training (learning) 
datasets were generated using each of the two approaches. 
Hence, there were a total of eight training datasets, 

( )1 , 2 , 3 , 4Dnp D np D np D np D np=  

and ( )1 , 2 , 3 , 4Dp D p D p D p D p= . The np and p at the end 
of the dataset names indicate non-parameteric and 
parameteric approaches to the generation of the datasets, 
respectively. Models constructed with training datasets 
generated using the non-parameteric approach are referred, in 
this context, as non-parameteric  models, while models 
constructed with training datasets generated using the 
parameteric approach are referred as parameteric  models.  
Also, a set of four test datasets, ( 1, 2, 3, 4)T T T T T= , different 
from the training datasets, were generated for the evaluation 
of the models. Several training datasets were used to facilitate 
the acquisition of meaningful data for the intended analysis.  

The BN software tools, Genie [34], Netica [35], SamIam 
[36], and WinMine Toolkit [37] were used for the 
investigation. Genie is the graphical interface to SMILE [34], 
a Bayesian inference engine. Netica is a complete program for 
working with belief networks. SamIam (Sensitivity Analysis 
Modeling Inference And More) is a tool for modelling and 
reasoning with Bayesian networks, developed in Java, and 
includes a GUI for editing Bayesian networks. 
 

A. Construction of the Data-centred Models used for the 
Investigation 

A total of twenty four (24) sedacen models were constructed, 
consisting of three sets of four  non-parameteric models, 

( )1 , 2 , 3 , 4PNDnp PND np PND np DPN np PND np= , 

( )1 , 2 , 3 , 4PGDnp PGD np PGD np PGD np PGD np= , and 

( )1 , 2 , 3 , 4PSDnp PSD np PSD np PSD np PSD np= ; and three 
sets of four  parameteric models, 

( )1 , 2 , 3 , 4PNDp PND p PND p DPN p PND p= , 

( )1 , 2 , 3 , 4PGDp PGD p PGD p PGD p PGD p= ,  and 

( )1 , 2 , 3 , 4PSDp PSD p PSD p PSD p PSD p= . 
The model names indicate the type of learning undertaken, 

and the software tool and the dataset used for the construction 
of the model. For example, 1PND np  indicates that the model 
was constructed by parameterizing, using Netica, a known 
structure from the training dataset, 1D np . Netica, Genie and 
SamIam were used for the construction of the sedacen 
models, based on the Expectation Maximization (EM) 
algorithm, implemented by all three software tools.  The plan 
to also undertake parameter learning using Gibbs sampler, for 
comparative purposes, was jettisoned because, according to 
[38], EM and Gibbs sampler are substantially equivalent in 
their parameter estimates.  

It was possible to use the same sets of datasets with the 
three different software tools, Netica, Genie, and SamIam, 
because they all support text data file formats, albeit with 
different file extensions (.cas, .txt/.dat, and .dat, respectively). 
All that was required was to save the data file with the 
appropriate file extension for each software tool and edit as 
may be necessary (for example, Netica requires the inclusion 
of the row number for each record of the data file, while 
Genie and SamIam do not) . Also, all the software tools used 
similar network file formats (.dne, .dnet, and .net) so it was 
possible to open any of the networks with any of the tools.  

It was aimed to construct a total of thirty two (32) todacen 
models from the two sets of four training datasets, 

( )1 , 2 , 3 , 4Dnp D np D np D np D np= and ( )1 , 2 , 3 , 4Dp D p D p D p D p= , 
using Genie and WinMine.  WinMine supports SaS-based 
structure learning approach, while Genie supports both CI- 
and SaS-based. Exploiting this, in order to exact more 
investigative effort at inducing a better model than the 
reference model, the todacen model construction using Genie 
was done as per the following three steps: 

a. first, eight todacen models were constructed based on 
the CI approach with the PC algorithm, using each 
training datasets in the two sets of training datasets. 
Search time limit was not imposed. This step generated 
the 

( )1 , 2 , 3 , 4SPGaDnp SPGaD np SPGaD np SPGaD np SPGaD np=
 and 

( )1 , 2 , 3 , 4SPGaDp SPGaD p SPGaD p SPGaD p SPGaD p=  
groups of models.  The model name, 1SPGaD np , for 
example, indicates that the model was constructed by 
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learning both structure and parameters, using Genie, this 
step, a, and the training dataset, 1D np . 

b. next, another eight  models were constructed with the 
Greedy Thick Thinning (GTT) search algorithm and the 
K2 score metric, based on the SaS approach, using each 
training datasets in the two sets of training datasets to get 
the

( )1 , 2 , 3 , 4SPGbDnp SPGbD np SPGbD np SPGbD np SPGbD np=  

and ( )1 , 2 , 3 , 4SPGbDp SPGbD p SPGbD p SPGbD p SPGbD p=  
groups of models.  The model name, 1SPGbD np , for 
example, indicates that the model was constructed by 
learning both structure and parameters, using Genie, this 
step, b, and the training dataset, 1D np . 

c. finally, eight models were constructed with the Greedy 
Thick Thinning (GTT) search algorithm and the BDeu 
score metric, based on the SaS approach using each 
training datasets in the two sets of training datasets to get  

( )1 , 2 , 3 , 4SPGcDp SPGcD p SPGcD p SPGcD p SPGcD p=
 groups of models.  The model name, 1SPGcD np , for 
example, indicates that the model was constructed by 
learning both structure and parameters, using Genie, this 
step, c, and the training dataset, 1D np . 

Factors related to the learning algorithms and score metrics, 
such as maximum adjacency size (for the PC algorithm) and 
number of parents constraints (for the K2 and BDeu score 
metrics), were varied, aimed at increasing the chances of 
inducing a model structure that will yield a better model than 
the reference model.  

Furthermore, two groups of models, 
( )1 , 2 , 3 , 4SPWDnp SPWND np SPWD np SPWD np SPWD np=

 
and ( )1 , 2 , 3 , 4SPWDp SPWD p SPWD p SPWD p SPWD p= , 
were constructed from the two sets of four training datasets, 
using WinMine Toolkit. The letters, SP, in the model names 
imply structure and parameter learning, W implies WinMine 
Toolkit, and 1D np  and 1D p  highlight the particular training 
dataset used for the construction of the model. 

 

B. Evaluation of the Models 
The reference, sedacen, and todacen models were evaluated 
using the set of four test datasets. The test procedure consisted 
of entering findings at selected evidence nodes of a model, 
and querying one or more target nodes. The nodes of the 
model are divided into two sets: evidence and target nodes. 
Any node can belong to any one of the two sets, for the 
purposes of the test. It is often preferable to choose as target, 
the node that in the real context would be target of inference. 
The values in each record of the test dataset are split into two 
sets: values for the chosen evidence nodes, and values for the 
chosen target nodes. The values for the evidence nodes are 
entered as findings into the network, the network is updated, 
and inference made at the target nodes. This process is 
repeated for each record in the test dataset. For each network 
update, the probability distribution of the target node is 

recorded and its prediction determined. That is, after each 
network update, the state with higher belief value (the most 
likely or maximum likelihood state), based on a cut-off 
threshold probability, is taken to be the prediction for the 
target node. For example, for a 50% cut-off threshold 
probability, of the two states of the target node, the state 
which belief level is higher than 50% is taken to be the 
prediction. The predictions are then compared with the 
observations (the set of values for the target node in the test 
dataset taken as the actual “observations”), for each record of 
the test dataset. If a prediction corresponds to the observation, 
it is recorded as a success otherwise it is recorded as a failure. 
The statistics are then collected and used to assess the 
performance of the model, generating values for the various 
performance metrics that constitute the optimality criteria. 

IV. OPTIMALITY CRITERIA AND COMPARATIVE TOOLS 

A. Structure Comparison 
Structural difference measures are often used to compare 

the structural differences between an induced model structure 
and a reference model structure [6]. The comparison may 
sometimes not take into consideration the orientation of the 
edges. If the focus is causality, then the orientation of the 
edges becomes extremely important. Otherwise, the 
orientation of some of the edges can be deemphasized [6]. A 
causal model is a “Bayesian network with added property that 
the parents of each node are its direct causes” [39]. This 
implies an asymmetric relationship between parent and child 
nodes, such that in the case edge of reversal, the resulting 
network will not be equivalent in terms of representational 
ability.  In induced non-causal model structures, it is possible 
to ignore the direction of the reversible edges but not those of 
the compelled edges. The reversible edges are the edges that 
occur in the opposite direction in some other DAG that is 
equivalent (in terms of representational ability) to the current 
DAG [40]. “If two DAGs encode the same conditional 
independencies, they are called Markov equivalent. The set of 
all DAGs can be partitioned into Markov equivalence classes. 
Graphs within the same class can have the direction of some 
of their arcs reversed without changing any of the CI 
relationships. Each class can be represented by a PDAG 
(partially directed acyclic graph) called an essential graph or 
pattern. This specifies which edges must be oriented in a 
certain direction (compelled edges), and which are reversible. 
When learning graph structure from observational data, the 
best one can hope to do is to identify the model up to Markov 
equivalence” [41].  

In this context, ignoring the reversible edges, the link 
statistics of an induced model structure are categorized as:  

 correct positive (cp)-- a link is learnt between two nodes 
where a link exists between the same two nodes in the 
reference model (correct link) 

 false positive (fp)-- a link is learnt between two nodes 
where a link does not exist between the same two nodes 
in the reference model (extra link) 

 correct negative (cn)-- no link is learnt between two 
nodes where a link does not exist between the same two 
nodes in the reference model (correct nolink) 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:7, 2011

712

 false negative (fn)-- no link was learnt between two 
nodes where a link exists between the same two nodes in 
the reference model (missing link).  

 

B. Performance Metrics 
Scoring functions or rules are appropriate for evaluating the 

performance of probabilistic predictive models [42].  
Mathematically convenient scoring rules are most commonly 
used [43].  These include, error rate, logarithmic (logloss) 
score, and Briers score [44] [42] [45][18]. Sensitivity is also, 
often used as a model performance and comparison measure 
[18][45]. 

The error rate, based on the maximum likelihood state of 
the target node [46], is a way to analyze model predictions by 
dividing the number of predictive errors by the number of test 
cases in the test dataset. It gives the percentage failure rate. It 
identifies the percentage of the cases in a test dataset for 
which the network predicted a wrong value for the query 
node. For example, an error rate of 24% implies that in 24% 
of the cases for which the test dataset contains a value for the 
target node, the predictions did not match the observed values. 

The logarithmic (logloss) score was suggested by [47] and 
is defined as follows: let X denote a discrete random variable, 
with m (mutually exclusive) possible 
states, ( , , , ., )1 2x x x xmi… … , which is to be observed for a 

sequence of cases, i = 1,…….,N. Let ( )p xi  denote the 

estimated probability (referred to as the predicted value for 
the purposes of the test) for the ith state.  Suppose the jth state 
is actually observed, then the particular observation is 
associated with a logloss score for the jth state given by 
[Cowell, 1999b] [Jenson 2001] 

as:
1

log log ( )
( )

p xj jp x j
= = −l . Then, by accumulating 

the scores for the N cases, a total penalty for the N 

observations is obtained by:  
1

N
jj

= ∑
=

l l , and the average 

logloss score for the N cases is:  
1 1

log ( )
1 1

N N
p xavg j jN Nj j

= = −∑ ∑
= =

l l . The logloss value lies 

in the range [0, ∞], where smaller (lower) values of the score 
imply better model performance.   

The Brier score (b), also referred to as Quadratic Loss 
(QL) or Mean Squared Error of Prediction (MSEP), measures 
the accuracy of a set of probability assessments. The Brier 
score function, as used in BN model performance comparison, 
is given by [17][18] [45][48] as: 

( )1 21 2 ( | ) ( | )
1 1

N k
b p y c x p y j xi iN i j
= − × = + =∑ ∑

= =

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
where ( | )p y c xi= is the probability predicted for the actual 
(observed) state, c , of the target variable, y (the state of y in 
the particular record of the test dataset), given the evidence 

variables, xi ; ( | )p y j xi= is the probability predicted for the 
jth state of y, given the evidence variables; k is the number of 
states of the target variable, y; N is the number of records in 
the test dataset. The QL is a measure of the average quadratic 
loss that occurred on each instance in the test dataset. It is 
averaged over all the records in the test dataset and not only 
accounts for the probability assigned to the actual (observed) 
state, but also the probabilities assigned to the other possible 
states of y. The value of Brier score lies in the range [0, 1], 
with b = 0 indicating higher prediction accuracy, thus better 
performance. 

Sensitivity (also referred to as the recall rate) is a statistical 
measure of model performance. It   measures the proportion 
(in percentage) of actual values (observations) which are 
correctly predicted. A sensitivity of 100% means that the 
model correctly predicted all actual observations for the target 
variables (100% actual or true positives). 

These metrics are often used together, in any one 
investigation, by researchers [18][45], in order to facilitate the 
drawing of more robust conclusions. The different metrics, 
though not complementary, evaluate performance from 
different perspectives, thereby collectively giving a more 
robust picture of the performance of a model. Error rate 
informs on the percentage failure rate of a model, the Brier 
score gives a measure of the accuracy of the probability 
estimates made by the model, and sensitivity informs on the 
percentage success rate of the model. The logloss score is 
similar to Brier score, however, the logloss score is local in 
that it only depends upon the probability assigned to the 
particular state and not on any of the probabilities assigned to 
the other states [49].  

V. OUTCOME OF THE INVESTIGATION 
As stated earlier (in section III), the models constructed for 
the purposes of this investigation are broadly grouped as 
parameteric and non-parameteric models (based on the 
training dataset used for the construction model), and the type 
of model (sedacen and todacen). Table 2 highlights the 
different sample training and test datasets and their respective 
sizes.  

TABLE II 
TRAINING AND TEST DATASETS 

270, 5000, 35000, 70000, respectivelyT1, T2, T3, T4TTest

24000, 72000, 142000, 240000, respectivelyD1np, D2np, D3np, D4npDnp

24000, 72000, 142000, 240000, respectivelyD1p, D2p, D3p, D4pDp
Training

Sizes of the DatasetsMember DatasetsName of set of DatasetsType of Dataset

270, 5000, 35000, 70000, respectivelyT1, T2, T3, T4TTest

24000, 72000, 142000, 240000, respectivelyD1np, D2np, D3np, D4npDnp

24000, 72000, 142000, 240000, respectivelyD1p, D2p, D3p, D4pDp
Training

Sizes of the DatasetsMember DatasetsName of set of DatasetsType of Dataset

 
 

The sizes of the training datasets were chosen to represent 
an increasing reasonably spaced size range, for the purposes 
of the investigation. Full observability was assumed, for the 
purposes of the investigation. It was also assumed that the 
data samples, generated using a BN software tool, are 
representative of the larger set of baselines samples. As 
highlighted in Table 2, four different sizes of test datasets 
were used for evaluating the models. One of the reasons was 
to investigate the relationship between model performance 
and the size of the test dataset. The second reason was for 
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repeatability of the test for evaluating the performances of the 
models in order to facilitate the drawing of more robust 
conclusions from the investigation. The results of the 
empirical investigation are hereby presented with respect to 
the models’ performance indices. Rather than use the 
performance metric values (error rate, logloss, Brier score, 
and sensitivity) individually, for each of the four test 
instances, to compare the models, a single performance index 
was derived for each model, based on the metrics. The 
function, ψ, for calculating the performance index of a model 
is defined, in this context, is defined as: 

[ ](100 ) (1 ) *100 (1 ) *100 normalizede b s lψ = − + − + + − , where 
e = error rate, b = brier score, l = logloss, and s = sensitivity. 
The function, ψ, takes the values of the performance metrics 
for a model as input, and yields a performance index for the 
model, for a test instance. The function assumes equal 
importance for all the performance metrics. Table 3 lists the 
performance indices for the parameteric models, with respect 
to the four test instances, while Figure 1 graphically 
highlights the average performance indices of the parameteric 
models and that of the Reference model. Also, Table 4 lists 
the performance indices for the non-parameteric models, with 
respect to the four test instances, while Figure 2 graphically 
highlights the average performance indices of the non-
parameteric models and that of the Reference model.Tables 
III and IV, and Figures 1 and 2, highlight performance 
differences between the parameteric and non-parameteric 
models, relative to the performance of the Reference model. 
The performance indices of the SPWDp group of models were 
not listed in Table 3 because they could not be evaluated with 
respect to the performance metrics, using WinMine toolkit. 
The WinMine BN network file format (.xmod) did not allow 
for its conversion to network file formats supported by other 
software tools that facilitate model evaluation with respect to 
the performance metrics. Also, the performance indices of the 
non-parameteric todacen groups of models (with the 
exception of one) were not listed in Table 4 because no 
structures or meaningful structures were learnt, hence no 
model to evaluate.  

TABLE III 
PARAMETERIC MODELS: PERFORMANCE INDICES  

*****35SaS
(?/BDu)SPWD1p

*****35SaS
(?/BDu)SPWD1p

*****35SaS
(?/BDu)SPWD1p

*****35SaS
(?/BDu)SPWD1p

SPWDp
(WinMine
Toolkit)

0.6310.6290.6330.6230.63835
SaS

(GTT/BD
u)

SPGcD4p

0.6300.6280.6320.6220.63635
SaS

(GTT/BD
u)

SPGcD3p

0.6290.6280.6320.6210.63735
SaS

(GTT/BD
u)

SPGcD2p

0.6300.6280.6320.6220.63735
SaS

(GTT/BD
u)

SPGcD1p

SPGcDp
(Genie)

0.6300.6280.6320.6220.63735SaS
(GTT/K2)SPGbD4p

0.6300.6290.6330.6230.63835SaS
(GTT/K2)SPGbD3p

0.6300.6290.6330.6230.63735SaS
(GTT/K2)SPGbD2p

0.6300.6280.6320.6220.63735SaS
(GTT/K2)SPGbD1p

SPGbDp
(Genie)

0.6300.6280.6320.6220.63735CI-Test
(PC)SPGaD4p

0.6300.6290.6330.6230.63835CI-Test
(PC)SPGaD3p

0.6320.6290.6330.6230.64335CI-Test
(PC)SPGaD2p

0.6300.6290.6330.6220.63835CI-Test
(PC)SPGaD1p

SPGaDp
(Genie)

todacen
(structure and 

parameter learning)

0.3260.3260.3270.3260.328--PSD4p

0.3260.3260.3270.3260.328--PSD3p

0.3260.3260.3270.3260.328--PSD2p

0.4800.4900.4890.4790.461--PSD1p

PSDp
(SamIam)

0.6300.6290.6330.6220.638--PGD4p

0.6300.6290.6330.6230.638--PGD3p

0.6300.6290.6330.6230.638--PGD2p

0.6300.6300.6290.6290.633--PGD1p

PGDp
(Genie)

0.6310.6290.6330.6230.638--PND4p

0.6300.6300.6290.6290.633--PND3p

0.6300.6300.6290.6290.633--PND2p

0.6300.6300.6280.6290.633--PND1p

PNDp
(Netica)

Sedacen
(known structure, 

parameter learning)

0.6300.6290.6330.6230.638--REF-tecen

Average 
Performance 

Index 
T4T3T2T1

Performance Index
No of 
links 
learnt

Structure 
Learning 
Approach

Model

Model Group
and 

(Software 
Tool)

Type

PARAMETERIC MODELS

*****35SaS
(?/BDu)SPWD1p

*****35SaS
(?/BDu)SPWD1p

*****35SaS
(?/BDu)SPWD1p

*****35SaS
(?/BDu)SPWD1p

SPWDp
(WinMine
Toolkit)

0.6310.6290.6330.6230.63835
SaS

(GTT/BD
u)

SPGcD4p

0.6300.6280.6320.6220.63635
SaS

(GTT/BD
u)

SPGcD3p

0.6290.6280.6320.6210.63735
SaS

(GTT/BD
u)

SPGcD2p

0.6300.6280.6320.6220.63735
SaS

(GTT/BD
u)

SPGcD1p

SPGcDp
(Genie)

0.6300.6280.6320.6220.63735SaS
(GTT/K2)SPGbD4p

0.6300.6290.6330.6230.63835SaS
(GTT/K2)SPGbD3p

0.6300.6290.6330.6230.63735SaS
(GTT/K2)SPGbD2p

0.6300.6280.6320.6220.63735SaS
(GTT/K2)SPGbD1p

SPGbDp
(Genie)

0.6300.6280.6320.6220.63735CI-Test
(PC)SPGaD4p

0.6300.6290.6330.6230.63835CI-Test
(PC)SPGaD3p

0.6320.6290.6330.6230.64335CI-Test
(PC)SPGaD2p

0.6300.6290.6330.6220.63835CI-Test
(PC)SPGaD1p

SPGaDp
(Genie)

todacen
(structure and 

parameter learning)

0.3260.3260.3270.3260.328--PSD4p

0.3260.3260.3270.3260.328--PSD3p

0.3260.3260.3270.3260.328--PSD2p

0.4800.4900.4890.4790.461--PSD1p

PSDp
(SamIam)

0.6300.6290.6330.6220.638--PGD4p

0.6300.6290.6330.6230.638--PGD3p

0.6300.6290.6330.6230.638--PGD2p

0.6300.6300.6290.6290.633--PGD1p

PGDp
(Genie)

0.6310.6290.6330.6230.638--PND4p

0.6300.6300.6290.6290.633--PND3p

0.6300.6300.6290.6290.633--PND2p

0.6300.6300.6280.6290.633--PND1p

PNDp
(Netica)

Sedacen
(known structure, 

parameter learning)

0.6300.6290.6330.6230.638--REF-tecen

Average 
Performance 

Index 
T4T3T2T1

Performance Index
No of 
links 
learnt

Structure 
Learning 
Approach

Model

Model Group
and 

(Software 
Tool)

Type

PARAMETERIC MODELS

 
* Could not evaluate the models based on the performance metrics, using the 
WinMine toolkit.  
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Fig. 1 Average performance indices of the parameteric models and 

the Reference model 
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TABLE IV 
NON-PARAMETERIC MODELS: PERFORMANCE INDICES 

*****0SaS
(?/BDu)SPWD4np

*****0SaS
(?/BDu)SPWD3np

*****0SaS
(?/BDu)SPWD2np

*****0SaS
(?/BDu)SPWD1np

SPWDnp
(WinMine
Toolkit)

*****0SaS
(GTT/BDu)SPGcD4np

*****0SaS
(GTT/BDu)SPGcD3np

*****0SaS
(GTT/BDu)SPGcD2np

*****0SaS
(GTT/BDu)SPGcD1np

SPGcDnp
(Genie)

*****0SaS
(GTT/K2)SPGbD4np

*****0SaS
(GTT/K2)SPGbD3np

*****0SaS
(GTT/K2)SPGbD2np

*****0SaS
(GTT/K2)SPGbD1np

SPGbDnp
(Genie)

0.4930.4930.4930.4880.49525
(3 nets)

CI-Test
(PC)SPGaD4np

*****10
(8 nets)

CI-Test
(PC)SPGaD3np

*****9 
(7 nets)

CI-Test
(PC)SPGaD2np

*****6
(4 nets)

CI-Test
(PC)SPGaD1np

SPGaDnp
(Genie)

todacen
(structure and 

parameter learning)

0.3260.3260.3270.3260.328--PSD4np

0.3260.3260.3270.3260.328--PSD3np

0.3260.3260.3270.3260.328--PSD2np

0.3260.3260.3270.3260.328--PSD1np

PSDnp
(SamIam)

0.4870.4900.4880.4870.484--PGD4np

0.4350.4310.4330.4380.436--PGD3np

0.4490.4540.4530.4550.436--PGD2np

0.4720.4690.4690.4690.480--PGD1np

PGDnp
(Genie)

0.4500.4540.4530.4560.436--PND4np

0.4870.4900.4880.4870.484--PND3np

0.4350.4310.4330.4380.436--PND2np

0.4720.4710.4690.4690.480--PND1np

PNDnp
(Netica)

Sedacen
(known structure, 

parameter learning)

0.6300.6290.6330.6230.638--REF-tecen

Average 
Performance 

Index
T4T3T2T1

Performance Index
No of 
links 
learnt

Structure 
Learning 
Approach

Model
Model Group

and
(Software Tool)

Type

NON-PARAMETERIC MODELS

*****0SaS
(?/BDu)SPWD4np

*****0SaS
(?/BDu)SPWD3np

*****0SaS
(?/BDu)SPWD2np

*****0SaS
(?/BDu)SPWD1np

SPWDnp
(WinMine
Toolkit)

*****0SaS
(GTT/BDu)SPGcD4np

*****0SaS
(GTT/BDu)SPGcD3np

*****0SaS
(GTT/BDu)SPGcD2np

*****0SaS
(GTT/BDu)SPGcD1np

SPGcDnp
(Genie)

*****0SaS
(GTT/K2)SPGbD4np

*****0SaS
(GTT/K2)SPGbD3np

*****0SaS
(GTT/K2)SPGbD2np

*****0SaS
(GTT/K2)SPGbD1np

SPGbDnp
(Genie)

0.4930.4930.4930.4880.49525
(3 nets)

CI-Test
(PC)SPGaD4np

*****10
(8 nets)

CI-Test
(PC)SPGaD3np

*****9 
(7 nets)

CI-Test
(PC)SPGaD2np

*****6
(4 nets)

CI-Test
(PC)SPGaD1np

SPGaDnp
(Genie)

todacen
(structure and 

parameter learning)

0.3260.3260.3270.3260.328--PSD4np

0.3260.3260.3270.3260.328--PSD3np

0.3260.3260.3270.3260.328--PSD2np

0.3260.3260.3270.3260.328--PSD1np

PSDnp
(SamIam)

0.4870.4900.4880.4870.484--PGD4np

0.4350.4310.4330.4380.436--PGD3np

0.4490.4540.4530.4550.436--PGD2np

0.4720.4690.4690.4690.480--PGD1np

PGDnp
(Genie)

0.4500.4540.4530.4560.436--PND4np

0.4870.4900.4880.4870.484--PND3np

0.4350.4310.4330.4380.436--PND2np

0.4720.4710.4690.4690.480--PND1np

PNDnp
(Netica)

Sedacen
(known structure, 

parameter learning)

0.6300.6290.6330.6230.638--REF-tecen

Average 
Performance 

Index
T4T3T2T1

Performance Index
No of 
links 
learnt

Structure 
Learning 
Approach

Model
Model Group

and
(Software Tool)

Type

NON-PARAMETERIC MODELS

 
* No structure or meaningful structure was learnt, hence no model to 

evaluate 
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Fig. 2 Average performance indices of the non-parameteric models 

and the Reference model 
 

It was observed, as highlighted and indicated by Tables 5.3 
and 5.4, and Figures 5.2 and 5.3, that the: 

 best performing model is the SPGaD2p with an average 
performance index of 0.632, as against the Reference 
model’s average performance index of 0.630. 

 performances of the parameteric groups of model (with 
the exception of one) are comparable (equivalent) to the 
performance of the Reference model. That is, the 
performances of 67% of the parameteric sedacen and 
100% of the parameteric todacen models were 
comparable (equivalent) to that of the reference model. 

 The performances of the non-parameteric models were 
relatively poor compared to the performance of the 

Reference model. That is, taking 0.500 as the threshold 
between comparable and poor performance, the 
performances of 100% of both the non-parameteric 
sedacen and todacen models were relatively poor. The 
learnt CPT entries were more or less inconclusive. 

 In 15 (94%) of the 16 cases in which the Dnp  set of 
datasets (non-parameteric datasets) were used for the 
construction of todacen models (structure and parameter 
learning), no structures or meaningful structures were 
learnt. 

In addition, a weak negative correlation (r = -0.0734) was 
found between the size of the training dataset and model 
performance. Also, a weak negative correlation (r = -0.0569, 
p = 0.94400) was found between the size of the test dataset 
and model performance. 

VI. DISCUSSION 
The results of the empirical investigation are encouraging 

and contribute to the literature providing supportive evidence 
for the conceptual feasibility and efficiency of structure and 
parameter learning algorithms and approaches. The induction 
of models which performances were comparable (equivalent) 
to, and in one case better than (albeit marginally by 0.002 
(0.32%)) the performance of the Reference model is 
significant. However, the results show that it may not have 
been possible to construct the sedacen and todacen models 
with performances that are comparable to or better than the 
performance of the Reference model without first constructing 
the complete Reference model (structure + parameters), with 
assistance of domain experts. Though the performances of all 
the models (parameteric  and non-parameteric,  sedacen and 
todacen) constructed using the SamIam software tool were 
relatively poor, it is assumed to imply inefficiency of the 
software tool, which however, may be due to some 
uncontrolled factor(s) and therefore may require further 
investigation. The results also indicate that the Conditional 
Independence (CI) test based PC structure algorithm is 
equivalent in its learning outcomes to the Score and Search 
(SaS) based GTT/K2 and GTT/BDeu structure learning 
algorithms, with respect to the parameteric models. The PC 
algorithm performed better than the SaS-based algorithms 
with respect to the non-parameteric models. It was able to 
learn some links (in 100% of the cases), though the links did 
not yield meaningful models in 75% of the cases. 
Furthermore, the sizes of the training and test datasets did not 
seem to have any relationship with model performance. 
However, the results showed that in 100% of the 12 non-
parameteric sedacen models, almost equal probability values 
were assigned to all possible parent combinations. The 
parameter values seemed logically and realistically 
unacceptable for the purpose for which the models are aimed, 
as highlighted in Figure 5.4, the CPT of one of the nodes in a 
non-parameteric sedacen model.   
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Fig. 3 The CPT of a node in a non-parameteric sedacen model, 

PND2np 
 

Finally, the results have also highlighted an important area 
that may require further investigation. The results showed that 
a complete Reference model (that is knowledge of the 
relationship between the domain variables and their 
Conditional Probability Distributions) is a requirement for 
simulating sample datasets for structure and/or parameter that 
will yield meaningful and comparable models for the domain. 
This suggests the need for further research in order to 
investigate the outcome of structure and/or parameter learning 
using historical sample datasets from the domain that may not 
have been generated with knowledge of the relationship 
between the domain variables and their Conditional 
Probability Distributions.  The main challenge to this 
investigation will be the obtainment of historical sample 
datasets for the domain.    
 

VII. CONCLUSION 
The best approach for the construction of the BN-based 

model for the performance assessment of students’ laboratory 
work in the VEL environment has been empirically 
investigated. The optimisation exercise has yielded a, albeit 
marginally, better model. This provides reassurance that the 
procedure followed in the derivation of the assessment model 
was fit for purpose. The results additional insight for BN 
model constructors and contribute to the literature providing 
supportive evidence for the conceptual feasibility and 
efficiency of structure and parameter learning algorithms and 
approaches. In addition, they also highlighted the need for 
further investigation with respect to data-centred BN model 
construction approach for the domain. Furthermore, from our 
experience, the data-centred BN model construction approach 
depends on the availability of appropriate software tools and 
sample training datasets. Model construction may be limited 
by the software tools available. Commercial software tools 
may be inaccessible, in which case freeware tools, which may 
have limited capabilities, are used. Also, there seems to be no 
standardized data and network file formats for BN software 
tools. Different tools support different data and network file 

formats. For example, some software tools may support only 
numeric data files, some string data files, while some may 
require the inclusion of record occurrence frequencies. This 
may be counterproductive for the data-centred BN 
construction approach. 
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