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Abstract—We investigated statistical performance of Bayesian 

inference using maximum entropy and MAP estimation for several 
models which approximated wave-fronts in remote sensing using SAR 
interferometry. Using Monte Carlo simulation for a set of wave-fronts 
generated by assumed true prior, we found that the method of 
maximum entropy realized the optimal performance around the 
Bayes-optimal conditions by using model of the true prior and the 
likelihood representing optical measurement due to the interferometer. 
Also, we found that the MAP estimation regarded as a deterministic 
limit of maximum entropy almost achieved the same performance as 
the Bayes-optimal solution for the set of wave-fronts. Then, we 
clarified that the MAP estimation perfectly carried out phase 
unwrapping without using prior information, and also that the MAP 
estimation realized accurate phase unwrapping using conjugate 
gradient (CG) method, if we assumed the model of the true prior 
appropriately.  
 

Keywords—Bayesian inference using maximum entropy, MAP 
estimation using conjugate gradient method, SAR interferometry.  

I. INTRODUCTION 
AVE-FRONTS often carry information through noisy 
channel. Therefore, researchers [1]-[3] have developed 

many techniques to utilize wave-fronts for information 
communication both from theoretical and experimental points 
of view. Especially, many engineers have constructed optical 
instruments via interferometers to observe a set of phase 
differences in principal interval [-π,+π]. Also, researchers have 
constructed techniques to reconstruct original wave-fronts by 
making use of the set of principal phase differences from an 
interferogram observed by interferometer. Various techniques 
[1]-[3] have been proposed, such as least square estimation 
[4]-[7], Bayesian approaches [8], [9] using simulated annealing 
and a method of maximum entropy. In recent years, Saika and 
Nishimori [10], [11], Saika and Uezu [12] have studied phase 
unwrapping based on an analogy between statistical mechanics 
and Bayesian inference using the maximizer of the posterior 
marginal (MPM) estimate. Then, Marroquin and Rivera [13] 
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have investigated the MAP estimation using conjugate gradient 
method (CG method) phase unwrapping in remote sensing 
using synthetic aperture radar (SAR) interferometry. They 
found that maximum of a posteriori (MAP) estimation via the 
CG method succeeded in phase unwrapping under several 
conditions. Sakaematsu and Saika [14] have improved 
performance of the MAP estimation using the CG method for 
two dimensional phase unwrapping. However, as they have not 
tried a systematic approach for this problem, it was not clarified 
criterion that the CG method based on the MAP estimation was 
effective for phase unwrapping in remote sensing using SAR 
interferometry. 

Therefore, in this study, we tried a Bayesian inference using 
maximum entropy and maximum of a posteriori (MAP) 
estimation for one and two dimensional phase unwrapping in 
remote sensing using SAR interferometry both on the basis of 
the method of maximum entropy and the MAP estimation 
regarded as a deterministic limit of a method of maximum 
entropy. From the theoretical point of view, we first 
constructed the method of maximum entropy based on the 
Bayesian inference using a continuous spin system on the 
square lattice. Then, we estimated statistical performance of the 
present method based on performance measure using mean 
square error (MSE) for a set of wave-fronts generated by an 
assumed true prior expressed as a Boltzmann factor of the 
continuous spin model in one dimension. Especially, we tried 
the Bayesian inference using maximum entropy including the 
Bayes-optimal solution which was realized by using the model 
of the assumed true prior and the likelihood representing 
optical measurement using interferometer. Using numerical 
simulation for the set of the wave-fronts, we found that the 
optimal performance was  achieved around the Bayes-optimal 
condition within statistical uncertainty, and that by making use 
of both an assumed model of the true prior and a likelihood 
representing optical measurement using the model prior. We 
found that the optimal performance was realized around the 
Bayes-optimal condition and also that the optimal performance 
achieved by the Bayes-optimal solution was almost similar to 
the performance of the MAP estimation regarded as the 
deterministic limit of the method of maximum entropy. 
Therefore, in order to construct a practical method, we tried the 
conjugate gradient method based on the MAP estimation for 
several artificial models approximating wave-fronts in remote 
sensing using the SAR interferometry. Using numerical 
simulation, we found that the MAP estimation was successful 
in phase unwrapping, if we set parameters appropriately.   
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The content of this paper is organized as follows. First, we 
outline Bayesian inference using the method of maximum  

 

 
Fig. 1 Remote sensing using SAR interferometry 

 

 
Fig. 2 Optical measurement via SAR interferometry and phase 

unwrapping 
 

  
(a)                                                 (b) 

  
(c)                                                   (d) 

  
(e)                                             (f) 

Fig. 3 (a) an original wave-front generated by the assumed true prior in 
eq. (1), (b) an interferogram of the wave-front in (a), (c) a 

reconstructed wave-front obtained by the method of maximum 
entropy under the Bayes-optimal condition, (d) an artificial model 

approximating one dimensional wave-front in remote sensing in  SAR 
interferometry, (e) an interferogram of the original wave-front in (d), 
(f) a reconstructed wave-front obtained by the method of maximum 

entropy without using prior information 

entropy for phase unwrapping for several artificial models 
representing wave-fronts in remote sensing using the SAR 
interferometry. Then, we show the statistical performance both 
of the method of maximum entropy and the MAP estimation for 
the set of wave-fronts in remote sensing using the SAR 
interferometry. Last part is devoted to summary and discussion. 

II.  GENERAL FORMULATION 
In this chapter, we outlined general formulation in Fig. 1 for 

phase unwrapping in remote sensing using SAR interferometry 
(Fig. 2) both in one and two dimensions. 

In this formulation, we first consider an original wave-front 
{ξi}/{ξx,y} both in one and two dimensions, where 0<ξi(ξx,y)<R0, 
i=1,…,L(x, y=1,…,L). As shown in Fig. 3(a), we consider a set 
of one dimensional wave-fronts generated by an assumed true 
prior expressed by a Boltzmann factor of continuous spin 
system as 
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Here, Zs is a normalization factor and then Js and Ts are 

hyper-parameters. Also, as shown in Fig. 3(d) and Fig. 4(a), we 
consider typical models approximating wave-fronts in remote 
sensing using SAR interferometry in one and two dimensions. 
Next, when these original wave-front {ξi}/{ξx,y} are carried 
through noisy channel to optical measurement systems, they are 
corrupted by some noises, such as the Gaussian noise:  

 
),0( 2σξη iii n+=                                (2) 

 
in one dimension and 
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,,, σξη yxyxyx n+=                            (3) 

 
in two dimensions. Next, by making use of interferometer, we 
observe corrupted interferograms (Figs. 3(b), (e) and Fig. 4(b)) 
as  
 

)( ii Wr ηζ =                                   (4) 
 
in one dimension and 
 

)( ,, yxyx Wr ηζ =                               (5) 

 
in two dimensions. Here, 
  

πππxx -)2,+mod(=)(Wr                     (6) 
 

Then, as shown in Figs. 3(c) and 4(c), we derive sets of phase 
differences {gx

i}/{gx
x,y}({gy

x,y}) from the interferograms which 
are in eqs. (4) and (5) as 
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in one dimension and 
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x

yx Wrg ζζ −= +                        (8) 
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y

yx Wrg ζζ −= +                         (9) 
 
in two dimensions. Here, we note a relation between sampling 
points due to interferometer and the lattice points of the original 
wave-front in Fig. 5(a). Then, we assume that these phase 
differences are not corrupted by any noises, when we observe 
them due to the optical instruments via the interferometer. 

Next, in order to carry out phase unwrapping by utilizing the 
set of the observed phase differences {gx

i}/{gx
x,y}({gy

x,y}), we  
 

     
(a)                                           (b) 

 
(c) 

Fig. 4 (a) an original wave-front typical in remote sensing via SAR 
interferometry, (b) an interferogram obtained from the original 
wave-front in (a), (c) a reconstructed wave-front by the MAP 
estimation using the CG method under an optimal condition 

 

      
(a)                                      (b)                     

Fig. 5 (a) Lattice point (x,y) of the original wave-front {ξx,y} and 
sampling points of phase differences {gx

x,y} and {gy
x,y} in two 

dimensions, (b) lattice point (x,y) of the original wave-front {zx,y} and 
sampling points of the phase differences {gx

x,y} and {gy
x,y} in two 

dimensions 
 
try Bayesian inference via the method of maximum entropy. 
Here, we consider a model system {zi}/{zx,y}, where 0<zi/zx,y<R, 
i=1,…,L / x=1,…,L and y=1,…,L. In the two dimensions, the 

model system {zx,y} is arranged on the square lattice in Fig. 5(b). 
In this method, we reconstruct the original wave-front in 
one/two dimension(s) as an expectation value zi/zx,y averaged 
over the posterior probability as 
 

∑
≠}{

}){|}Pr({maxarg=
izz

x
i gzz            (10) 

 
Here the posterior probability is estimated based on the 

Bayes-formula using the model prior and the likelihood as  
 

}){|}Pr({})Pr({}){|}Pr({ zgzz x∝τ          (11) 
 

In this study, we assume the model prior which enhances 
smooth structures, as seen from natural wave-fronts appearing 
in remote sensing using the SAR interferometry, as  
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Here Z is the normalization factor. Then, J and Tm are 

hyper-parameters. Then, we assume the likelihood enhancing 
wave-fronts from which principal phase differences {gx

i} are 
observed using the interferometer as 
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On the other hand, in the two dimensional case, we also carry 

out phase unwrapping based on the Bayesian inference using 
the method of maximum entropy as 
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Here, the posterior probability is also estimated based on the 

Bayes formula:  
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using the assumed model prior and the likelihood representing 
the optical measurement using the interferometer. Here, we use 
the model prior which enhances smooth structures as 
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Also, we assume the likelihood enhancing two dimensional 

wave-fronts from which principal phase differences {gx} and 
{gy} are observed by using the interferometer as 
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where 
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Fig. 6 Mean square error as a function of Tm obtained by the method of 
maximum entropy, if aliasing does not occur in optical measurements 

if σ=0.2 in one dimension 
 

 
Fig. 7 Mean square error as a function of λ obtained by the two 

dimensional MAP estimation using the CG method. Bold (Dotted) line 
denoted the mean square error for σ=0 (0.2) at α= 1.2 

 

Next, we also try the MAP estimation using the CG method 
for phase unwrapping in remote sensing via SAR 
interferometry. Althoug this strategy was already proposed by 
Saika, et al. [15], we here introduce this method using a 
generalized model of the true prior in the following. Here 
utilize the CG method based on the MAP estimation which is 
regarded as Tm→0 limit of the method of maximum entropy, i. 
e., 
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Here, we use the likelihood enhancing observed phase 

differences {gx}. In this case, we carry out the CG method to 
obtain the MAP solution from the minimum condition of the 
one dimensional cost function in eq. (22) as 
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at every lattice site i. On the other hand, in the two dimensional 
case, we utilize the CG method to reconstruct the two 
dimensional wave-front as  
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using the two dimensional model {zx,y}(0<zx,y,<∞, x,y=1,…,L) 
on the square lattice, where 
 

∑

∑

∑

∑

∑

−−+

−−+

+−−+

+−+

+−=

+

+

++++

+−

+−

),(

2
,,1,

),(

2
,,,1

),(

2
,,11,1,1

),(

2
1,,1,

),(

2
,1,,1

)(

)(

)(

)2(

)2(})({

yx

y
yxyxyx

yx

x
yxyxyx

yx
yxyxyxyx

yx
yxyxyx

yx
yxyxyxCG

gzz

gzz

zzzzJ

zzzJ

zzzJzE

α      (28) 

                  
We note here that we utilize a generalized version of the 

model.  
In this case, we carry out the CG method to obtain the MAP 

solution on the basis of the minimum condition of the cost 
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functions in eq. (11) as 
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at every lattice site (x, y).  

In the following parts of this chapter, we note that a set of 
linear equations on {zi }/{zx,y} as  

 
Az = b,                                     (30) 

 
which represents both the minimum conditions of the cost 
function in eqs. (24), (28). Here, z is a L-dimensional vector 
which expresses a wave-front and b is a L-dimensional constant 
vector. Then, A is a L×L/L2×L2 square matrix. Next, we 
indicated how to obtain the MAP solution due to the CG 
method as below.  

 
 
 
 
 
 
 
 

 

 
 
 
 

Next, in order to clarify efficiency of the present method, we 
evaluate a performance measure based on the mean square 
error as 
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On the other hand, we evaluate a performance measure based 

on the mean square error averaged over the assumed true prior 
as  
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If these variables become zero, if the phase unwrapping is 
carried out completely. 

III. PERFORMANCE 
In this study, we investigated statistical performance of the 

MAP estimation using the CG method for phase unwrapping in 
remote sensing using the SAR interferometry. For this purpose, 
we first investigated statistical performance of Bayesian 
inference via maximum entropy including the Bayes-optimal 
solution. Then, we estimated the performance of the MAP 
estimation using the CG method for several models 

approximating wave-fronts in remote sensing using SAR 
interferometry.  

  As shown in Fig. 3 (a), we first considered the set of the one 
dimensional wave-fronts generated by the assumed true prior in 
eq. (1). Here, we observed the interferograms in Fig. 3(b). Next, 
as shown in Fig. 3(c), we found that the method of maximum 
entropy was effective for phase unwrapping for the set of 
wave-fronts generated by the assumed true prior around the 
Bayes-optimal condition. Further, as shown in Fig. 6, we 
evaluated how the mean square error depends on the parameter 
Tm around the Bayes-optimal condition. This result indicated 
that the method of maximum entropy realized the optimal 
performance around the Bayes-optimal condition, and also that 
the MAP estimation almost realized same statistical 
performance as the Bayesian inference under the 
Bayes-optimal condition. Therefore, we examined the 
performance of MAP estimation for phase unwrapping both for 
one and two dimensional models which approximated the 
wave-fronts in SAR interferometry in Fig. 3(d) and Fig. 4(a) 
whose interferograms were shown in Fig. 3(e) and Fig. 4(b). 
Then, as shown from the reconstructed wave-fronts in Fig. 3(d) 
and Fig. 4(c), we found that the MAP estimation using the CG 
method with high degree of accuracy. Also, as shown in Fig. 7, 
we evaluated statistical performance of the MAP estimation 
using the CG method for the wave-front (Fig. 4(a)) whose 
interferogram had no residue. Here, we evaluated λ dependence 
of the MSE averaged over 5 sets of the phase differences which 
were corrupted from the original wave-front (Fig.  4 (a)) by the 
Gaussian noise n(0, σ2), where σ=0, 0.2. We found that the CG 
method perfectly carried out phase unwrapping without using 
prior information, if observed information was not corrupted by 
any noises. On the other hand, if observed information was not 
corrupted by some noises, we found that the CG method was 
effective for phase unwrapping, if we tuned the parameter λ 
appropriately. Also, we noted that the performance was 
improved by introducing the parameter α(=1.2) into our model 
[15]. 

These results indicated that Bayesian inference using the 
maximum entropy realized the optimal performance around the 
Bayes-optimal condition, and also that the MAP estimation 
almost realized same performance as the Bayes-optimal 
solution.  

IV. SUMMARY AND DISCUSSION 
In previous chapters, in order to construct a practical and 

useful method for phase unwrapping in remote sensing using 
SAR interferometry, we have constructed the MAP estimation 
using the CG method. For our purpose, we have first 
constructed the Bayesian inference using maximum entropy 
which included the Bayes-optimal solution for the sets of 
wave-fronts generated by the assumed true prior. Using Monte 
Carlo simulations for these wave-fronts, we have clarified that 
the method of maximum entropy realized the optimal 
performance around the Bayes-optimal condition within 
statistical uncertainty, and also that the MAP estimation almost 
realized the same performance as the method of maximum 

Algorithm of the CG methodethodethod 
(i)  First, we set to  z0 = 0,  r0 = b0 – Az0, p0 = r0.  
(ii) Then, we set to k=0. 
(iii) Next, we calculate 

,
},{

},{

kk

kk
k App

pr
=α  

    where, {a, b}=∑i aibi.  
(iv) We set to zk+1 = zk+αk pk and rk+1 = rk -αk Apk. 
(v) If ||rk+1||<ε, stop. Otherwise, we calculate 
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pk+1 = rk+1 + βkpk.                              
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entropy under the Bayes-optimal condition. So, we have 
investigated the MAP estimation using the CG method for 
phase unwrapping. Using numerical simulations, we found that 
the CG method perfectly carried out phase unwrapping without 
using prior information, if observed information was not 
corrupted by any noises. On the other hand, if observed 
information was not corrupted by some noises, we found that 
the CG method was effective for phase unwrapping, if we tuned 
the parameter λ appropriately. In addition, we noted that the 
performance was improved by introducing the parameter 
α(=1.2) into our model [15].  

These results have suggested that the MAP estimation using 
the CG method may be a practical and useful method for phase 
unwrapping by introducing a technique of parameter estimation, 
such as the EM algorithm. As a future problem, we are going to 
construct a method for phase unwrapping which can be 
applicable of realistic case, such as remote sensing using the 
SAR interferometry.  
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