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Abstract—We introduce and study the class of weak almost
Dunford-Pettis operators. As an application, we characterize Banach
lattices with the weak Dunford-Pettis property. Also, we establish
some sufficient conditions for which each weak almost Dunford-Pettis
operator is weak Dunford-Pettis. Finally, we derive some interesting
results.
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I. INTRODUCTION AND NOTATION

As many Banach spaces do not have the Dunford-Pettis
property, a weak notion is introduced, called the weak
Dunford-Pettis property. A Banach space (respectively, Banach
lattice) E has the Dunford-Pettis (respectively, weak Dunford-
Pettis) property if every weakly compact operator defined
on E (and taking their values in a Banach space F ) is
Dunford-Pettis (respectively, almost Dunford-Pettis, that is, the
sequence (‖T (xn)‖) converges to 0 for every weakly null
sequence (xn) consisting of pairwise disjoint elements in E
[5]). It is obvious that if E has the Dunford-Pettis property,
then it has the weak Dunford-Pettis property.

On the other hand, whenever Aliprantis-Burkinshaw [1] and
Kalton-Saab [4] studied the domination property of Dunford-
Pettis operators, they used the class of weak Dunford-Pettis
operators which satisfies the domination property [4]. Let us
recall from [2] that an operator T from a Banach space X
into another Y is called weak Dunford-Pettis if the sequence
(fn(T (xn))) converges to 0 whenever (xn) converges weakly
to 0 in X and (fn) converges weakly to 0 in Y . Alternatively,
T is weak Dunford-Pettis if T maps relatively weakly compact
sets of X into Dunford-Pettis sets of Y (see Theorem 5.99
of [2]). A norm bounded subset A of a Banach lattice E is
said to be Dunford-Pettis set if every weakly null sequence
(fn) of E′ converges uniformly to zero on the set A, that is,
supx∈A |fn(x)| → 0 (see Theorem 5.98 of [2]).

In [3], we introduced a new class of sets we call almost
Dunford-Pettis set. A norm bounded subset A of a Banach
lattice E is said to be almost Dunford-Pettis set if every
disjoint weakly null sequence (fn) of E′ converges uniformly
to zero on the set A, that is, supx∈A |fn(x)| → 0.

As weak Dunford-Pettis operators, we introduce a new
class of operators that we call weak almost Dunford-Pettis
operator. An operator T from a Banach space X into a Banach
lattice F is said to be weak almost Dunford-Pettis if T maps
relatively weakly compact sets of X into almost Dunford-
Pettis sets of F . The latter class of operators differs from
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that of weak Dunford-Pettis operators. In fact, the first one
is defined between Banach spaces while the second one is
defined from a Banach space into a Banach lattice.

On the other hand, since each Dunford-Pettis set in a
Banach lattice is almost Dunford-Pettis, then the class of weak
almost Dunford-Pettis operators contains strictly that of weak
Dunford-Pettis operators, that is, every weak Dunford-Pettis
operator is weak almost Dunford-Pettis. But a weak almost
Dunford-Pettis operator is not necessary weak Dunford-Pettis.
In fact, for Wnuk (see [5], Example 1, p. 231)), the Lorentz
space ∧(ω, 1) has the weak Dunford-Pettis property but does
not have the Dunford-Pettis property, and then its identity op-
erator is weak almost Dunford-Pettis (because each relatively
weakly compact set in a Banach lattice has the weak Dunford-
Pettis property is an almost Dunford-Pettis set, see Theorem
2.8 of [3]), but it is not weak Dunford-Pettis.

The objective of this paper is to study the class of weak
almost Dunford-Pettis operators. Also, we derive the following
interesting consequences: some characterizations of this class
of operators, some characterizations of the weak Dunford-
Pettis property, the coincidence of this class of operators with
that of weak Dunford-Pettis operators, the domination property
of this class of operators and the duality property.

To state our results, we need to fix some notation and recall
some definitions. A Banach lattice is a Banach space (E, ‖ ·
‖) such that E is a vector lattice and its norm satisfies the
following property: for each x, y ∈ E such that |x| ≤ |y|,
we have ‖x‖ ≤ ‖y‖. Note that if E is a Banach lattice, its
topological dual E′, endowed with the dual norm and the dual
order, is also a Banach lattice. A norm ‖·‖ of a Banach lattice
E is order continuous if for each generalized sequence (xα)
such that xα ↓ 0 in E, (xα) converges to 0 for the norm ‖ · ‖
where the notation xα ↓ 0 means that (xα) is decreasing, its
infimum exists and inf(xα) = 0.

A linear mapping T from a vector lattice E into a vector
lattice F is called a lattice homomorphism, if x ∧ y = 0 in
E implies T (x) ∧ T (y) = 0 in F . An operator T : E −→ F
between two Banach lattices is a bounded linear mapping. It is
positive if T (x) ≥ 0 in F whenever x ≥ 0 in E. If T : E −→
F is a positive operator between two Banach lattices, then its
adjoint T ′ : F ′ −→ E′, defined by T ′ (f) (x) = f (T (x)) for
each f ∈ F ′ and for each x ∈ E, is also positive. We refer the
reader to [2] for unexplained terminologies on Banach lattice
theory and positive operators.

II. MAIN RESULTS

Recall from [5] that an operator from a Banach lattice E
into a Banach space X is said to be almost Dunford-Pettis if
the sequence (‖T (xn)‖) converges to 0 for every weakly null
sequence (xn) consisting of pairwise disjoint elements in E.
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The following result gives a characterizations of weak
almost Dunford-Pettis operators from a Banach space into a
Banach lattice in term of weakly compact operators and the
adjoint of almost Dunford-Pettis operators.

Theorem 2.1: For an operator T from a Banach space
X into a Banach lattice F , the following statements are
equivalent:

1) T is weak almost Dunford-Pettis operator.
2) If S is a weakly compact operator from an arbitrary

Banach space Z into X , then the adjoint of the operator
product T ◦ S is almost Dunford-Pettis.

3) If S is a weakly compact operator from �1 into X ,
then the adjoint of the operator product T ◦ S is almost
Dunford-Pettis.

4) For all weakly null sequence (xn)n ⊂ X , and for all
disjoint weakly null sequence (fn)n ⊂ F ′ it follows
that fn(T (xn)) → 0.

Proof: (1) ⇒ (2) Let (fn) be a disjoint weakly null
sequence in F ′, we have to prove that ((T ◦ S)′ (fn)) con-
verges to 0 for the norm of Z ′. If not, then there exist a
sequence (zn) in the closed unit ball BZ of Z, a subsequence
of ((T ◦ S)′ (fn)) (which we shall denote by ((T ◦ S)′ (fn))
again), and some ε > 0 satisfying |fn (T (S (zn)))| > ε for
all n. Since S is weakly compact, the set A = {S (z1) ,
S (z2) , ...} is relatively weakly compact subset of E, and then
the set T (A) is an almost Dunford-Pettis (because T carries
weakly relatively compact sets of X to almost Dunford-Pettis
sets of F ). Hence we obtain

|fn (T (S (zn)))| ≤ sup
x∈T (A)

|fn(x)| → 0.

Then |fn (T (S (zn)))| → 0, which is impossible with
|fn (T◦S (xn))| > ε for all n. Thus, the sequence
((T ◦ S)′ (fn)) converges to 0 for the norm of Z ′, and so
the adjoint (T ◦ S)′ is almost Dunford-Pettis.
(2) ⇒ (3) Obvious.
(3) ⇒ (4) Let (fn) be a disjoint weakly null sequence in

F ′, and let (xn) be a weakly null sequence in X . Consider
the operator S : l1 → X defined by
S((λi)

∞
i=1) =

∑∞
i=1 λixi for each (λi)

∞
i=1 ∈ l1.

Then S is weakly compact (Theorem 5.26 of [2]), and so by
our hypothesis (T ◦S)′ = S′ ◦T ′ is an almost Dunford-Pettis
operator. Thus ‖(T ◦ S)′(fn)‖ → 0 and the desired conclusion
follows from the inequality

|fn(T (xn))| = |fn(T (S(en)))|
≤ sup

(λi)∈Bl1

|fn(T (S((λi)∞i=1)))|

= ‖(T ◦ S)′(fn)‖

for each n, where (ei)
∞
i=1 is the canonical basis of l1.

(4) ⇒ (1) Let W be a relatively weakly compact subset of
X , and let (fn) be a disjoint weakly null sequence in F ′. If
(fn) does not converge uniformly to zero on T (W ), then there
exist a sequence (xn) of W , a subsequence of (fn) (which
we shall denote by (fn) again), and some ε > 0 satisfying
|fn (T (xn))| > ε for all n.

Since W is weakly compact, we can assume that xn → x
weakly in X . Then T (xn) → T (x) weakly in F and so,

by our hypothesis, we have 0 < ε < |fn (T (xn))| ≤
|fn (T (xn − x))| + |fn (T (x))| → 0, which is impossible.
Thus, (fn) converges uniformly to zero on T (W ), and this
shows that T (W ) is an almost Dunford-Pettis set. This ends
the proof of the Theorem.

Let us recall that, an operator T from a Banach lattice E
into a Banach lattice F is said to be order bounded if for
each z ∈ E+, the set T ([−z, z]) is order bounded set in F .
An operator T from a Banach lattice E into a Banach lattice
F is said to be regular if it can be written as a difference
of two positive operators. Note that, every regular operator is
order bounded but an order bounded operator is not necessary
regular (see [2], Example 1.16, p. 13).

Remark 2.2: Each order interval [−z, z] of a Banach lattice
E is an almost Dunford-Pettis set for each z ∈ E+. In fact, if
(fn) be a disjoint weakly null sequence in E′, then by Remark
1 of Wnuk [5], (|fn|) is a disjoint weakly null sequence in E′.
Hence supx∈[−z,z] |fn(x)| = |fn| (z) → 0 for each z ∈ E+.
As a consequence, if T : E → F is an order bounded operator
from a Banach lattice E into another F , then T ([−z, z]) is
an almost Dunford-Pettis set in F , and then |fn ◦ T | (z) =
supy∈T ([−z,z]) |fn(y)| → 0 for each z ∈ E+.

We will need the following characterizations, which are just
Theorem 2.4 of [3].

Theorem 2.3: [3] Let T : E → F be an order bounded
operator from a Banach lattice E into another Banach lattice
F , and let A be a norm bounded solid subset of E. The
following statements are equivalent:

1) T (A) is an almost Dunford-Pettis set.
2) {T (xn), n ∈ N} is an almost Dunford-Pettis set for

each disjoint sequence (xn) in A+ = A ∩ E+.
3) fn(T (xn)) → 0 for each disjoint sequence (xn) in A+

and for every disjoint weakly null sequence (fn) of E′.
Proof: (1) ⇒ (2) Obvious.

(2) ⇒ (3) Obvious.
(3) ⇒ (1) To prove that T (A) is an almost Dunford-Pettis

set, it suffice to show that supx∈A |fn (T (x))| → 0 for every
disjoint weakly null sequence (fn) of F ′. Otherwise, there
exists a sequence (fn) ⊂ E′ satisfying supx∈A |fn (T (x))| >
ε for some ε > 0 and all n. For every n there exists zn in
A+ such that |T ′ (fn)| (zn) > ε. Since |T ′ (fn)| (z) → 0 for
every z ∈ E+ (see Remark 2.2), then by an easy inductive
argument shows that there exist a subsequence (yn) of (zn)
and a subsequence (gn) of (fn) such that

|T ′ (gn+1)| (yn+1) > ε and |T ′ (gn+1)| (4n
n∑

i=1

yi) <
1

n

for all n ≥ 1. Put x =
∑∞

i=1 2
−iyi and xn = (yn+1 −

4n
∑n

i=1 yi − 2−nx)+. By Lemma 4.35 of [2] the sequence
(xn) is disjoint. Since 0 ≤ xn ≤ yn+1 for every n, and (yn+1)
in A+ then (xn) ⊂ A+.

From the inequalities

|T ′ (gn+1)| (xn) ≥ |T ′ (gn+1)| (yn+1 − 4n
n∑

i=1

yi − 2−nx)

≥ ε− 1

n
− 2−n |T ′ (gn+1)| (x)
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we see that |T ′ (gn+1)| (xn) > ε
2 must hold for all n

sufficiently large (because 2−n |T ′ (gn+1)| (x) → 0).
In view of |T ′ (gn+1)| (xn) = sup{|gn+1 (T (z))| : |z| ≤

xn}, for each n sufficiently large there exists some |zn| ≤
xn with |gn+1 (T (zn))| > ε

2 . Since (z+n ) and (z−n ) are both
norm bounded disjoint sequence in A+, it follows from our
hypothesis that
ε

2
< |gn+1 (T (zn))| ≤

∣∣gn+1

(
T (z+n )

)∣∣+ ∣∣gn+1

(
T (z−n )

)∣∣→0

which is impossible. This proves that T (A) is an almost
Dunford-Pettis set.

For order bounded operators between two Banach lattices,
we give a characterization of weak almost Dunford-Pettis
operators.

Theorem 2.4: Let T be an order bounded operator from a
Banach lattice E into another F . Then the following assertions
are equivalent:

1) T is weak almost Dunford-Pettis operator.
2) fn (T (xn)) −→ 0 for all weakly null sequence (xn)

in E consisting of pairwise disjoint terms, and for all
weakly null sequence (fn) in E′ consisting of pairwise
disjoint terms.

Proof: (1) ⇒ (2) Obvious.
(2) ⇒ (1) Let (xn) be a weakly null sequence in E, and

let (fn) be a disjoint weakly null sequence in F ′. We have to
prove that fn(T (xn)) → 0.

Let A be the solid hull of the weak relatively compact subset
{xn, n ∈ N} of E, by Theorem 4.34 of [2], (zn) → 0
weakly for each disjoint sequence (zn) in A+ and so, by
our hypothesis, we have gn(T (zn)) → 0 for each disjoint
weakly null sequence (gn) in F ′ and for each disjoint sequence
(zn) in A+, then Theorem 2.3, implies that T (A) is an
almost Dunford-Pettis set, and hence supy∈T (A) |fn(y)| → 0.
Therefore,

|fn(T (xn))| ≤ sup
x∈A

|fn((T (x)| ≤ sup
y∈T (A)

‖fn(y)‖ → 0

holds and the proof is finished.
Now for positive operators between two Banach lattices,

we give other characterizations of weak almost Dunford-Pettis
operators.

Theorem 2.5: Let E and F be two Banach lattices. For
every positive operator T from E into F , the following
assertions are equivalent:

1) T is weak almost Dunford-Pettis.
2) If S is a weakly compact operator from an arbitrary

Banach space Z into E, then the adjoint of the operator
product T ◦ S is almost Dunford-Pettis.

3) If S is a weakly compact operator from �1 into E,
then the adjoint of the operator product T ◦ S is almost
Dunford-Pettis.

4) For all weakly null sequence (xn)n ⊂ E, and for all
disjoint weakly null sequence (fn)n ⊂ F ′ it follows
that fn(T (xn)) → 0.

5) fn (T (xn)) −→ 0 for every weakly null sequence (xn)
in E+ and for all disjoint weakly null sequence (fn) in
F ′.

6) fn (T (xn)) −→ 0 for all weakly null sequence (xn)
in E consisting of pairwise disjoint terms, and for all
weakly null sequence (fn) in F ′ consisting of pairwise
disjoint terms.

7) For all disjoint weakly null sequences (xn)n ⊂ E+,
(fn)n ⊂ (F ′)+ it follows that fn (T (xn)) −→ 0.

8) fn (T (xn)) −→ 0 for every disjoint weakly null se-
quence (xn) in E+ and for all weakly null sequence
(fn) in F ′.

9) fn (T (xn)) −→ 0 for every disjoint weakly null se-
quence (xn) in E+ and for all weakly null sequence
(fn) in (F ′)+.

10) fn (T (xn)) −→ 0 for every weakly null sequence (xn)
in E and for all weakly null sequence (fn) in (F ′)+.

11) fn (T (xn)) −→ 0 for every weakly null sequence (xn)
in E+ and for all weakly null sequence (fn) in (F ′)+.

12) fn (T (xn)) −→ 0 for every weakly null sequence (xn)
in E+ and for all weakly null sequence (fn) in F ′.

Proof: (1) ⇔ (2) ⇔ (3) ⇔ (4) Follows from Theo-
rem 2.1.

(6) ⇔ (4) Follows from Theorem 2.4.
(4) ⇒ (5) Obvious.
(5) ⇒ (6) Let (xn) be a weakly null sequence in E

consisting of pairwise disjoint elements, and let (fn) be a
weakly null sequence in F ′, consisting of pairwise disjoint
elements, it follows from Remark 1 of Wnuk [5] that x+n −→ 0
and x−n −→ 0 weakly in E+. Hence by (5), fn(T (xn)) =
fn(T (x

+
n ))− fn(T (x

−
n )) −→ 0.

(6) ⇒ (7) Obvious.
(7) ⇒ (8) Assume by way of contradiction that there exists

a disjoint weakly null sequence (xn) ⊂ E+ and a weakly null
sequence (fn) ⊂ F ′ such that fn (T (xn)) � 0. The inequality
|fn (T (xn))| ≤ |fn| (T (xn)) implies |fn| (T (xn)) � 0. Then
there exists some ε > 0 and a subsequence of |fn| (T (xn))
(which we shall denote by |fn| (T (xn)) again) satisfying
|fn| (T (xn)) > ε ∀n.

On the other hand, since (xn) → 0 weakly in E, then
T (xn) → 0 weakly in F . Now an easy inductive argument
shows that there exist a subsequence (zn) of (xn) and a
subsequence (gn) of (fn) such that ∀n ≥ 1

|gn| (T (zn)) > ε and (4n
∑n

i=1
|gi|)(T (zn+1)) <

1

n

Put h =
∑∞

n=1 2
−n |gn| and hn = (|gn+1|−4n

∑n
i=1 |gi|−

2−nh)+. By Lemma 4.35 of [2] the sequence (hn) is disjoint.
Since 0 ≤ hn ≤ |gn+1| for all n ≥ 1 and (gn) → 0 weakly in
F ′ then it follows from Theorem 4.34 of [2] that (hn) → 0
weakly in F ′.

From the inequalities

hn(T (zn+1)) ≥ (|gn+1| − 4n
∑n

i=1
|gi| − 2−nh)(T (zn+1))

≥ ε− 1

n
− 2−nh(T (zn+1))

we see that hn(T (zn+1)) >
ε
2 must hold for all n sufficiently

large (because 2−nh(T (zn+1)) → 0), which contradicts with
our hypothesis (7).
(8) ⇒ (9) Obvious.
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(9) ⇒ (10) Assume by way of contradiction that there
exists a weakly null sequence (xn) ⊂ E and a weakly null
sequence (fn) ⊂ (F ′)+ such that fn (T (xn)) � 0. The in-
equality |fn (T (xn))| ≤ fn (T (|xn|)) implies fn (T (|xn|)) �

0. Then there exists some ε > 0 and a subsequence of
fn (T (|xn|)) (which we shall denote by fn (T (|xn|)) again)
satisfying fn (T (|xn|)) > ε for all n.

On the other hand, since (fn) → 0 weakly in F ′, then
T ′ (fn) → 0 weakly in E′. Now an easy inductive argument
shows that there exist a subsequence (zn) of (|xn|) and a
subsequence (gn) of (fn) such that ∀n ≥ 1

T ′ (gn) (zn) > ε and T ′ (gn+1) (4
n
∑n

i=1
zi) <

1

n

Put z =
∑∞

n=1 2
−nzn and yn = (zn+1 − 4n

∑n
i=1 zi −

2−nz)+. By Lemma 4.35 of [2] the sequence (yn) is disjoint.
Since 0 ≤ yn ≤ zn+1 for all n ≥ 1 and (zn) → 0 weakly in
E, then it follows from Theorem 4.34 of [2] that (yn) → 0
weakly in E.

From the inequalities

T ′ (gn+1) (yn) ≥ T ′ (gn+1) (zn+1 − 4n
∑n

i=1
zi −

z

2n
)

≥ ε− 1

n
− 2−nT ′ (gn+1) (z)

we see that gn+1 (T (yn)) = T ′ (gn+1) (yn) >
ε
2 must hold

for all n sufficiently large (because 2−nT ′ (gn+1) (z)) → 0),
which contradicts with our hypothesis (9).

(10) ⇒ (11) Obvious.
(11) ⇒ (6) Let (xn) be a weakly null sequence in E

consisting of pairwise disjoint elements, and let (fn) be
a weakly null sequence in F ′, consisting of pairwise dis-
joint elements, it follows from Remark 1 of Wnuk [5] that
|xn| −→ 0 in σ (E,E′), and |fn| −→ 0 in σ (F ′, F ′′). Hence
by (11), |fn| (T (|xn|)) −→ 0. Now, from |fn (T (xn))| ≤
|fn| (T (|xn|)) for each n, we derive that fn (T (xn)) −→ 0.
(12) ⇒ (8) Obvious.
(5) ⇒ (12) The proof is similar of the proof (7) ⇒ (8).
An application of Theorem 2.5, gives other characterizations

of Banach lattices with the weak Dunford-Pettis property.
Corollary 2.6: For a Banach lattice E the following state-

ments are equivalent:
1) E has the weak Dunford-Pettis property.
2) The identity operator IdE : E → E is weak almost

Dunford-Pettis, that is, every relatively weakly compact
set of E is almost Dunford-Pettis set.

3) Every weakly compact operator T from an arbitrary
Banach space X to E has an adjoint T ′ : E′ → X ′

which is almost Dunford-Pettis.
4) Every weakly compact operator T : �1 → E has an

adjoint T ′ which is almost Dunford-Pettis.
5) For all weakly null sequence (xn)n ⊂ E, and for all

disjoint weakly null sequence (fn)n ⊂ E′ it follows
that fn(xn) → 0.

6) fn (xn) −→ 0 for every weakly null sequence (xn)n in
E+ and for all disjoint weakly null sequence (fn)n in
E′.

7) For all disjoint weakly null sequences (fn)n ⊂ E′,
(xn)n ⊂ E it follows that fn (xn) −→ 0.

8) For all disjoint weakly null sequences (fn)n ⊂ (E′)+,
(xn)n ⊂ E+ it follows that fn (xn) −→ 0.

9) fn(xn) −→ 0 for every disjoint weakly null sequence
(xn) in E+ and for all weakly null sequence (fn) in
E′.

10) fn (xn) −→ 0 for every disjoint weakly null sequence
(xn) in E+ and for all weakly null sequence (fn) in
(E′)+.

11) fn (xn) −→ 0 for every weakly null sequence (xn) in
E and for all weakly null sequence (fn) in (E′)+.

12) fn (xn) −→ 0 for every weakly null sequence (xn)n in
E+ and for all weakly null sequence (fn) in (E′)+.

13) fn (xn) −→ 0 for every weakly null sequence (xn) in
E+ and for all weakly null sequence (fn) in E′.

Proof: (1) ⇔ (8) Follows from Proposition 1 of Wnuk
[5].

(2) ⇔ (3) ⇔ ...⇔ (13) Follows from Theorem 2.5.
The following consequence of Theorem 2.5 gives a suffi-

cient conditions under which the class of positive weak almost
Dunford-Pettis operators coincide with that of positive weak
Dunford-Pettis operators.

Corollary 2.7: Let E and F be two Banach lattices. Then
each positive weak almost Dunford-Pettis operator from E into
F is weak Dunford-Pettis if one of the following assertions is
valid:

1) The lattice operation of E are weak sequentially contin-
uous;

2) The lattice operation of F ′ are weak sequentially con-
tinuous.

Proof: (1) Assume that T : E → F is a positive weak
almost Dunford-Pettis operator. Let (xn) be a weakly null
sequence in E, and let (fn) be a weakly null sequence in
F ′. We have to prove that fn(T (xn)) → 0.

Since the lattice operation of E are weak sequentially con-
tinuous, then the positive sequences (x+n ) and (x−n ) converge
weakly to zero. Thus, Theorem 2.5 (12) imply that

fn
(
T (x+n )

)
−→ 0 and fn

(
T (x−n )

)
−→ 0.

Finally, from fn (T (xn)) = fn (T (x
+
n )) − fn (T (x

−
n )) for

each n, we conclude that fn (T (xn)) −→ 0. This shows that
T is weak Dunford-Pettis.

(2) Assume that T : E → F is a positive weak almost
Dunford-Pettis operator. Let (xn) be a weakly null sequence
in E, and let (fn) be a weakly null sequence in F ′. We have
to prove that fn(T (xn)) → 0.

Since the lattice operation of F ′ are weak sequentially
continuous, then the positive sequences (f+n ) and (f−n ) con-
verge weakly to zero. Thus, Theorem 2.5 (10) imply that
f+n (T (xn)) −→ 0 and f−n (T (xn)) −→ 0. Finally, from
fn (T (xn)) = f+n (T (xn)) − f−n (T (xn)) for each n, we
conclude that fn (T (xn)) −→ 0. This shows that T is weak
Dunford-Pettis.

The preceding Corollary, gives a sufficient conditions under
which the weak Dunford-Pettis property and the Dunford-
Pettis property coincide.

Corollary 2.8: Let E be a Banach lattice. Then E has the
Dunford-Pettis property if and only if it has the weak Dunford-
Pettis property, if one of the following assertions is valid:
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1) The lattice operation of E are weak sequentially contin-
uous;

2) The lattice operation of E′ are weak sequentially con-
tinuous.

Our consequence of Theorem 2.5 we obtain the domination
property for weak almost Dunford-Pettis operators.

Corollary 2.9: Let E and F be two Banach lattices. If S
and T are two positive operators from E into F such that
0 ≤ S ≤ T and T is weak almost Dunford-Pettis operator,
then S is also weak almost Dunford-Pettis operator.

Proof: Let (xn)n be a weakly null sequence in E+ and
(fn) be a weakly null sequence in (F ′)+. According to (11)
of Theorem 2.5, it suffices to show that fn (S(xn)) −→ 0.
Since T is weak almost Dunford-Pettis, then Theorem 2.5
implies that fn (T (xn)) −→ 0. Now, by using the inequalities
0 ≤ fn (S(xn)) ≤ fn (T (xn)) for each n, we see that
fn (S(xn)) −→ 0.

Now, we look at the duality property of the class of positive
weak almost Dunford-Pettis operators.

Theorem 2.10: Let E and F be two Banach lattices and let
T be a positive operator from E into F . If the adjoint T ′ is
weak almost Dunford-Pettis from F ′ into E′, then T itself is
weak almost Dunford-Pettis.

Proof: Let (xn) be a weakly null sequence in E+, and let
(fn) be a weakly null sequence in (F ′)

+. We have to prove
that fn(T (xn)) −→ 0.

Let τ : E −→ E′′ be the canonical injection of E into
its topological bidual E′′. Since τ is a lattice homomorphism,
the sequence (τ(xn)) is weakly null in (E′′)

+. And as the
adjoint T ′ is weak almost Dunford-Pettis from F ′ into E′,
we deduce by Theorem 2.1 that τ(xn)(T ′(fn)) −→ 0. But
τ(xn)(T

′(fn)) = T ′(fn)(xn) = fn(T (xn)) for each n. Hence
fn(T (xn)) −→ 0 and this ends the proof.

We end this paper by a consequence of Theorem 2.10, we
obtain Proposition 2 of Wnuk [5].

Corollary 2.11: Let E be a Banach lattice. If E′ has the
weak Dunford-Pettis property, then E itself has the weak
Dunford-Pettis.
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