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Abstract—We introduce and study the class of weak almost
Dunford-Pettis operators. As an application, we characterize Banach
lattices with the weak Dunford-Pettis property. Also, we establish
some sufficient conditions for which each weak almost Dunford-Pettis
operator is weak Dunford-Pettis. Finally, we derive some interesting
results.
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I. INTRODUCTION AND NOTATION

As many Banach spaces do not have the Dunford-Pettis
property, a weak notion is introduced, called the weak
Dunford-Pettis property. A Banach space (respectively, Banach
lattice) E has the Dunford-Pettis (respectively, weak Dunford-
Pettis) property if every weakly compact operator defined
on E (and taking their values in a Banach space F) is
Dunford-Pettis (respectively, almost Dunford-Pettis, that is, the
sequence (||7" (x,)||) converges to O for every weakly null
sequence (z,,) consisting of pairwise disjoint elements in F
[5]). It is obvious that if E has the Dunford-Pettis property,
then it has the weak Dunford-Pettis property.

On the other hand, whenever Aliprantis-Burkinshaw [1] and
Kalton-Saab [4] studied the domination property of Dunford-
Pettis operators, they used the class of weak Dunford-Pettis
operators which satisfies the domination property [4]. Let us
recall from [2] that an operator 7' from a Banach space X
into another Y is called weak Dunford-Pettis if the sequence
(fn(T(zy))) converges to 0 whenever (x,,) converges weakly
to 0 in X and (f,) converges weakly to 0 in Y. Alternatively,
T is weak Dunford-Pettis if 7" maps relatively weakly compact
sets of X into Dunford-Pettis sets of Y (see Theorem 5.99
of [2]). A norm bounded subset A of a Banach lattice F is
said to be Dunford-Pettis set if every weakly null sequence
(fn) of E’" converges uniformly to zero on the set A, that is,
sup,ca | fn(x)| = 0 (see Theorem 5.98 of [2]).

In [3], we introduced a new class of sets we call almost
Dunford-Pettis set. A norm bounded subset A of a Banach
lattice F is said to be almost Dunford-Pettis set if every
disjoint weakly null sequence (f,,) of E’ converges uniformly
to zero on the set A, that is, sup,¢ca |fn(z)| — 0.

As weak Dunford-Pettis operators, we introduce a new
class of operators that we call weak almost Dunford-Pettis
operator. An operator 7" from a Banach space X into a Banach
lattice F' is said to be weak almost Dunford-Pettis if T' maps
relatively weakly compact sets of X into almost Dunford-
Pettis sets of F. The latter class of operators differs from
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that of weak Dunford-Pettis operators. In fact, the first one
is defined between Banach spaces while the second one is
defined from a Banach space into a Banach lattice.

On the other hand, since each Dunford-Pettis set in a
Banach lattice is almost Dunford-Pettis, then the class of weak
almost Dunford-Pettis operators contains strictly that of weak
Dunford-Pettis operators, that is, every weak Dunford-Pettis
operator is weak almost Dunford-Pettis. But a weak almost
Dunford-Pettis operator is not necessary weak Dunford-Pettis.
In fact, for Wnuk (see [5], Example 1, p. 231)), the Lorentz
space A(w, 1) has the weak Dunford-Pettis property but does
not have the Dunford-Pettis property, and then its identity op-
erator is weak almost Dunford-Pettis (because each relatively
weakly compact set in a Banach lattice has the weak Dunford-
Pettis property is an almost Dunford-Pettis set, see Theorem
2.8 of [3]), but it is not weak Dunford-Pettis.

The objective of this paper is to study the class of weak
almost Dunford-Pettis operators. Also, we derive the following
interesting consequences: some characterizations of this class
of operators, some characterizations of the weak Dunford-
Pettis property, the coincidence of this class of operators with
that of weak Dunford-Pettis operators, the domination property
of this class of operators and the duality property.

To state our results, we need to fix some notation and recall
some definitions. A Banach lattice is a Banach space (F, || -
|I) such that F is a vector lattice and its norm satisfies the
following property: for each x,y € E such that |z| < |y,
we have ||z|| < |ly||. Note that if E is a Banach lattice, its
topological dual E’, endowed with the dual norm and the dual
order, is also a Banach lattice. A norm || - || of a Banach lattice
E is order continuous if for each generalized sequence (z,,)
such that z, | 0 in E, (x,) converges to 0 for the norm || - ||
where the notation z, | 0 means that (z,,) is decreasing, its
infimum exists and inf(z,) = 0.

A linear mapping 7' from a vector lattice £ into a vector
lattice F' is called a lattice homomorphism, if 2 Ay = 0 in
E implies T'(z) AT (y) = 0 in F. An operator T : E — F
between two Banach lattices is a bounded linear mapping. It is
positive if 7'(z) > 0 in F whenever x > 0in E. If T : E —
F' is a positive operator between two Banach lattices, then its
adjoint 77 : F/ — E', defined by 17" (f) (z) = f (T (x)) for
each f € F’ and for each x € E, is also positive. We refer the
reader to [2] for unexplained terminologies on Banach lattice
theory and positive operators.

II. MAIN RESULTS

Recall from [5] that an operator from a Banach lattice F
into a Banach space X is said to be almost Dunford-Pettis if
the sequence (|| (z,)||) converges to 0 for every weakly null
sequence (x,,) consisting of pairwise disjoint elements in E.
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The following result gives a characterizations of weak
almost Dunford-Pettis operators from a Banach space into a
Banach lattice in term of weakly compact operators and the
adjoint of almost Dunford-Pettis operators.

Theorem 2.1: For an operator 7' from a Banach space
X into a Banach lattice F, the following statements are
equivalent:

1) T is weak almost Dunford-Pettis operator.

2) If S is a weakly compact operator from an arbitrary
Banach space Z into X, then the adjoint of the operator
product 7" o S is almost Dunford-Pettis.

3) If S is a weakly compact operator from ¢! into X,
then the adjoint of the operator product 7" o S is almost
Dunford-Pettis.

4) For all weakly null sequence (x,)n
disjoint weakly null sequence (f,)n
that f,,(T (z,)) — 0.

Proof: (1) = (2) Let (f,) be a disjoint weakly null
sequence in F”’, we have to prove that ((T'o S) (f,)) con-
verges to 0 for the norm of Z’. If not, then there exist a
sequence (z,) in the closed unit ball By of Z, a subsequence
of (T'oS) (fn)) (which we shall denote by ((T'0S)" (fn))
again), and some ¢ > 0 satisfying |f,, (T'(S (z,)))| > ¢ for
all n. Since S is weakly compact, the set A = {S(z1),
S (z2),...} is relatively weakly compact subset of E, and then
the set 7" (A) is an almost Dunford-Pettis (because 1" carries
weakly relatively compact sets of X to almost Dunford-Pettis
sets of F'). Hence we obtain

|fu (T(S (20)))] < sup |fu(x)] — 0.
z€T(A)

C X, and for all
C F' it follows

Then |f, (T'(S (#,)))] — 0, which is impossible with
|fn (ToS (z,))] > € for all n. Thus, the sequence
((T'08)' (fn)) converges to 0 for the norm of Z’, and so
the adjoint (7" 0 S)’ is almost Dunford-Pettis.

(2 ) (3) Obvious.

(3) = (4) Let (f,) be a disjoint weakly null sequence in

F’, and let (z,) be a weakly null sequence in X. Consider
the operator S : I! — X defined by

S((N)52q) = D02 Niw; for each (A;)52, € 1L

Then S is weakly compact (Theorem 5.26 of [2]), and so by
our hypothesis (70 S)" = S’ oT” is an almost Dunford-Pettis
operator. Thus ||(T o S)(f,)|| — 0 and the desired conclusion
follows from the inequality

[fn(T(xn))] = [fa(T(S(en)))l
sup | fn(T(S((Ai)Z21)))]

(Ni)EB1
(T o8) (fu)ll

for each n, where (e;)%2; is the canonical basis of 1.

(4) = (1) Let W be a relatively weakly compact subset of
X, and let (f,,) be a disjoint weakly null sequence in F”. If
(fr) does not converge uniformly to zero on T'(W), then there
exist a sequence (z,) of W, a subsequence of (f,) (which
we shall denote by (f,) again), and some ¢ > 0 satisfying
| fro (T(25,))| > € for all n.

Since W is weakly compact, we can assume that z,, — =
weakly in X. Then T'(z,) — T(z) weakly in F' and so,

IN

by our hypothesis, we have 0 < e < |f, (T(xn))] <
[fo (T(zn, — 2))| + |fn (T(z))] — 0, which is impossible.
Thus, (f,) converges uniformly to zero on T (W), and this
shows that T'(WW) is an almost Dunford-Pettis set. This ends
the proof of the Theorem. |

Let us recall that, an operator 7' from a Banach lattice F
into a Banach lattice F' is said to be order bounded if for
each z € ET, the set T'([—z, 2]) is order bounded set in F.
An operator 7" from a Banach lattice E into a Banach lattice
F' is said to be regular if it can be written as a difference
of two positive operators. Note that, every regular operator is
order bounded but an order bounded operator is not necessary
regular (see [2], Example 1.16, p. 13).

Remark 2.2: Each order interval [—z, z] of a Banach lattice
E is an almost Dunford-Pettis set for each z € E™. In fact, if
(f») be a disjoint weakly null sequence in E’, then by Remark
1 of Wnuk [5], (| f»]) is a disjoint weakly null sequence in E’.
Hence sup,¢(_. . | fn(2)| = |fn| (2) — O for each 2 € E.
As a consequence, if T': £ — F'is an order bounded operator
from a Banach lattice F into another F', then T'([—z,z]) is
an almost Dunford-Pettis set in F, and then |f, oT|(z) =
SUDPye([—2,2]) [fn(y)] — O for each z € E*.

We will need the following characterizations, which are just
Theorem 2.4 of [3].

Theorem 2.3: [3] Let T' : E — I be an order bounded
operator from a Banach lattice E into another Banach lattice
F, and let A be a norm bounded solid subset of E. The
following statements are equivalent:

1) T(A) is an almost Dunford-Pettis set.

2) {T(zy), n € N} is an almost Dunford-Pettis set for

each disjoint sequence (z,,) in At = ANET.

3) fu(T(xy)) — O for each disjoint sequence (x,,) in AT

and for every disjoint weakly null sequence (f,,) of E’.
Proof: (1) = (2) Obvious.

(2) = (3) Obvious.

(3) = (1) To prove that T'(A4) is an almost Dunford-Pettis
set, it suffice to show that sup ¢ |fn (T'(z))] — 0 for every
disjoint weakly null sequence (f,,) of F’. Otherwise, there
exists a sequence (f,) C E’ satisfying sup ¢ |fn (T'(2))] >
¢ for some € > 0 and all n. For every n there exists z, in
AT such that [T (f,)| (zn) > €. Since |17 (f,)| (z) — 0 for
every z € ET (see Remark 2.2), then by an easy inductive
argument shows that there exist a subsequence (y,) of (z,)
and a subsequence (g, ) of (f,) such that

n

17" (gn41)| (ns1) > & and [ T" ()| (47 Y i) < —
=1

for all n > 1. Put z = Y0027 and z, = (Yn41 —
473" Ly — 27"x)T. By Lemma 4.35 of [2] the sequence
(24,) is disjoint. Since 0 < x,, < Y41 for every n, and (yn+1)
in A% then (z,) C AT.

From the inequalities

IT" (gni1)] (Yn1 — 4" Z yi —27"x)
i=1

1 —n
€= g -2 |T/ (_(]n+1)‘ (1’)

7" (gn+1)| (2n)

Y

\Y]
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we see that |T”(gn41)|(2,) > § must hold for all n
sufficiently large (because 27" |T” (gn+1)| () — 0).

In view of [T" (g,41)| (¢n) = sup{|gas1 (T(2))] : |2
%y}, for each n sufficiently large there exists some |z,| <
xp with [gn41 (T(2,))] > §. Since (z;}7) and (z;,) are both
norm bounded disjoint sequence in AT, it follows from our
hypothesis that

5 <191 (TE)] < [gnss (T(D) |+ |9 ()] -0

IA

which is impossible. This proves that T'(A) is an almost
Dunford-Pettis set. ]

For order bounded operators between two Banach lattices,
we give a characterization of weak almost Dunford-Pettis
operators.

Theorem 2.4: Let T be an order bounded operator from a
Banach lattice F into another F'. Then the following assertions
are equivalent:

1) T is weak almost Dunford-Pettis operator.

2) fn(T(z,)) — 0 for all weakly null sequence ()
in E consisting of pairwise disjoint terms, and for all
weakly null sequence (f,,) in E’ consisting of pairwise
disjoint terms.

Proof: (1) = (2) Obvious.

(2) = (1) Let (x,,) be a weakly null sequence in F, and
let (f,,) be a disjoint weakly null sequence in F’. We have to
prove that f,,(T(z,)) — 0.

Let A be the solid hull of the weak relatively compact subset
{Zn, n € N} of E, by Theorem 4.34 of [2], (z,) — O
weakly for each disjoint sequence (z,) in AT and so, by
our hypothesis, we have ¢,,(7'(z,)) — 0 for each disjoint
weakly null sequence (g,,) in F’ and for each disjoint sequence
() in AT, then Theorem 2.3, implies that T'(A) is an
almost Dunford-Pettis set, and hence sup, (4 | fn(y)| — 0.
Therefore,

[fn(T(xn))] < sup [fn((T(2)] < sup [[fuly)] =0
z€A yET(A)

holds and the proof is finished. ]

Now for positive operators between two Banach lattices,
we give other characterizations of weak almost Dunford-Pettis
operators.

Theorem 2.5: Let E and I be two Banach lattices. For
every positive operator 7' from E into F, the following
assertions are equivalent:

1) T is weak almost Dunford-Pettis.

2) If S is a weakly compact operator from an arbitrary
Banach space Z into F, then the adjoint of the operator
product 7" o S is almost Dunford-Pettis.

3) If S is a weakly compact operator from ¢! into FE,
then the adjoint of the operator product 7' o S is almost
Dunford-Pettis.

4) For all weakly null sequence (Zy)n
disjoint weakly null sequence (f,)n
that f,,(T (z,)) — 0.

5) fu (T(zy)) — 0 for every weakly null sequence (z,,)
in E* and for all disjoint weakly null sequence (f,,) in
F'.

C FE, and for all
C F' it follows

6) fn(T(zn)) — 0 for all weakly null sequence ()
in F consisting of pairwise disjoint terms, and for all
weakly null sequence (f,,) in F’ consisting of pairwise
disjoint terms.

7) For all disjoint weakly null sequences (z,), C ET,
(fu)n C (F')T it follows that f, (T(z,)) — 0.

8) fn (T(x,)) — 0 for every disjoint weakly null se-
quence (z,) in ET and for all weakly null sequence
(fn) in F'.

9 fo(T(z,)) — 0 for every disjoint weakly null se-
quence (z,,) in ET and for all weakly null sequence
(fu) in (F)*.

10) fn (T'(zy)) — 0 for every weakly null sequence (z,,)
in E and for all weakly null sequence (f,,) in (F’)7.
11) fn (T(zy,)) — 0 for every weakly null sequence (z,,)
in E* and for all weakly null sequence (f,,) in (F”)7.
12) fn (T(z5)) — 0 for every weakly null sequence (z,,)
in ET and for all weakly null sequence (f,) in F'.
Proof: (1) & (2) & (3) & (4) Follows from Theo-
rem 2.1.

(6) < (4) Follows from Theorem 2.4.

(4) = (5) Obvious.

(5) = (6) Let (z,) be a weakly null sequence in E
consisting of pairwise disjoint elements, and let (f,) be a
weakly null sequence in F”, consisting of pairwise disjoint
elements, it follows from Remark 1 of Wnuk [5] that ;7 — 0
and ¥, — 0 weakly in E*. Hence by (5), fo(T(x,)) =
FalT(5)) — FulT () — 0.

(6) = (7) Obvious.

(7) = (8) Assume by way of contradiction that there exists
a disjoint weakly null sequence (z,,) C E* and a weakly null
sequence (f,,) C F' such that f,, (T'(x,,)) - 0. The inequality
|f (T(@n))| < [ful (T(2r)) implies | fy| (T(2r)) - 0. Then
there exists some £ > 0 and a subsequence of |f,| (T (x,))
(which we shall denote by |f,|(T(x,)) again) satisfying
[ ful (T(2)) > € Vn.

On the other hand, since (z,) — 0 weakly in E, then
T(xz,) — 0 weakly in F. Now an easy inductive argument
shows that there exist a subsequence (z,) of (z,) and a
subsequence (g,,) of (f,) such that Vn > 1

|gn| (T'(2n)) > € and (4" 2;1 19:[) (T (zn+1)) < %

Puth =372 27" |gn| and hy = (|gn1| = 4" 327, |gil —
27"Rh)T. By Lemma 4.35 of [2] the sequence (h,,) is disjoint.
Since 0 < hy, < |gn41]| for all n > 1 and (g,) — 0 weakly in
F’ then it follows from Theorem 4.34 of [2] that (h,) — 0
weakly in F”.

From the inequalities

BT (ns1)) 2 (lgnoa] = 4" 300 loil = 27" B)(T(zns))
1

> e———=2""h(T(2n+1))
n
we see that A, (T'(2n41)) > 5 must hold for all n sufficiently
large (because 2~ "h(T(zp4+1)) — 0), which contradicts with
our hypothesis (7).
(8) = (9) Obvious.
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(9) = (10) Assume by way of contradiction that there
exists a weakly null sequence (z,,) C E and a weakly null
sequence (f,) C (F')* such that f, (T'(xz,)) - 0. The in-
equality |f, (T'(25))| < fu (T(|lzn|)) implies fy, (T(|zn])) -
0. Then there exists some ¢ > 0 and a subsequence of
frn (T(|zy])) (which we shall denote by f, (T'(|z,|)) again)
satisfying f,, (T(|z,])) > € for all n.

On the other hand, since (f,) — 0 weakly in F’, then
T’ (fn) — 0 weakly in E’. Now an easy inductive argument
shows that there exist a subsequence (z,) of (|z,|) and a
subsequence (g,,) of (f,) such that Vn > 1

Zi) < —

T'(g) (zn) > & and T (guy1) (4" ) -

Put 2 = > 07 27", and yp, = (Znt1 — 47> 5y 2i —
27"2)*. By Lemma 4.35 of [2] the sequence (y,,) is disjoint.
Since 0 < y,, < zp41 for all n > 1 and (z,) — 0 weakly in
E, then it follows from Theorem 4.34 of [2] that (y,) — 0
weakly in E.

From the inequalities

n 1

/ ' [ W
T (gn+1) (Yn) = T (gn+1) (2nt1 — 4 Zi:l Zi 2n)

1
> - 0o 27T (gny1) (2)

we see that g1 (T () = " (gas1) (ya) > § must hold
for all n sufficiently large (because 27 "T" (gn+1) (2)) — 0),
which contradicts with our hypothesis (9).

(10) = (11) Obvious.

(11) = (6) Let (z,,) be a weakly null sequence in E
consisting of pairwise disjoint elements, and let (f,) be
a weakly null sequence in F’, consisting of pairwise dis-
joint elements, it follows from Remark 1 of Wnuk [5] that
|zn| — 0 in o (E, E’), and |f,,| — 0 in o (F’, F""). Hence
by (1), |ful (T(|zn])) — 0. Now, from |, (T(zn))| <
| ful (T(|2])) for each n, we derive that f,, (T'(z,)) — 0.

(12) = (8) Obvious.

(5) = (12) The proof is similar of the proof (7) = (8). W

An application of Theorem 2.5, gives other characterizations
of Banach lattices with the weak Dunford-Pettis property.

Corollary 2.6: For a Banach lattice E the following state-
ments are equivalent:

1) E has the weak Dunford-Pettis property.

2) The identity operator Idg : E — E is weak almost
Dunford-Pettis, that is, every relatively weakly compact
set of E is almost Dunford-Pettis set.

3) Every weakly compact operator I from an arbitrary
Banach space X to F has an adjoint 77 : E/ — X'
which is almost Dunford-Pettis.

4) Every weakly compact operator T : ¢! — E has an
adjoint 7" which is almost Dunford-Pettis.

5) For all weakly null sequence (z,), C E, and for all
disjoint weakly null sequence (f,), C FE’ it follows
that f,,(x,) — 0.

6) fn(z,) — 0 for every weakly null sequence (z,,), in
E* and for all disjoint weakly null sequence (f,), in
E'.

7) For all disjoint weakly null sequences (fy)n
(zn)n C E it follows that f,, (z,) — 0.

c F,

8) For all disjoint weakly null sequences (f,), C (E')T,
(Tn)n C ET it follows that f,, (z,,) — 0.

9) fa(z,) — 0 for every disjoint weakly null sequence
(z,) in ET and for all weakly null sequence (f,) in
E'.

10) fn (zn) — 0O for every disjoint weakly null sequence
(z,) in ET and for all weakly null sequence (f,) in
().

11) fn (zn) — 0 for every weakly null sequence () in
E and for all weakly null sequence (f,,) in (E')™".

12) fy (zn) — O for every weakly null sequence (), in
E* and for all weakly null sequence (f,) in (E')".

13) f, (zn) — 0O for every weakly null sequence (z,) in
E* and for all weakly null sequence (f,,) in E’.

Proof: (1) < (8) Follows from Proposition 1 of Wnuk
[5].

(2) & (3) & ... & (13) Follows from Theorem 2.5. |

The following consequence of Theorem 2.5 gives a suffi-
cient conditions under which the class of positive weak almost
Dunford-Pettis operators coincide with that of positive weak
Dunford-Pettis operators.

Corollary 2.7: Let E and F be two Banach lattices. Then
each positive weak almost Dunford-Pettis operator from E into
F' is weak Dunford-Pettis if one of the following assertions is
valid:

1) The lattice operation of E are weak sequentially contin-

uous;

2) The lattice operation of F’ are weak sequentially con-

tinuous.

Proof: (1) Assume that T : E — F is a positive weak
almost Dunford-Pettis operator. Let (x,) be a weakly null
sequence in F, and let (f,) be a weakly null sequence in
F’. We have to prove that f,(T(z,)) — 0.

Since the lattice operation of I/ are weak sequentially con-
tinuous, then the positive sequences () and (z,, ) converge
weakly to zero. Thus, Theorem 2.5 (12) imply that

fn (T(xj,')) —0 and f, (T(I;)) — 0.

Finally, from £, (T(2,)) = fu (T(x7)) = fu (T(2;,)) for
each n, we conclude that f,, (T'(x,,)) — 0. This shows that
T is weak Dunford-Pettis.

(2) Assume that 7' : E — F' is a positive weak almost
Dunford-Pettis operator. Let (z,,) be a weakly null sequence
in E, and let (f,,) be a weakly null sequence in F’. We have
to prove that f,(T(z,)) — 0.

Since the lattice operation of F’ are weak sequentially
continuous, then the positive sequences (f;}) and (/f,;) con-
verge weakly to zero. Thus, Theorem 2.5 (10) imply that
i (T(z,)) — 0 and f, (T'(xz,)) —> 0. Finally, from
Fa(T(@a)) = £ (T(@n)) = fy (T(2a)) for cach n, we
conclude that f, (T'(z,)) — 0. This shows that T' is weak
Dunford-Pettis. ]

The preceding Corollary, gives a sufficient conditions under
which the weak Dunford-Pettis property and the Dunford-
Pettis property coincide.

Corollary 2.8: Let E be a Banach lattice. Then E has the
Dunford-Pettis property if and only if it has the weak Dunford-
Pettis property, if one of the following assertions is valid:
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1) The lattice operation of E are weak sequentially contin-
uous;

2) The lattice operation of E’ are weak sequentially con-
tinuous.

Our consequence of Theorem 2.5 we obtain the domination
property for weak almost Dunford-Pettis operators.

Corollary 2.9: Let E and F be two Banach lattices. If S
and T are two positive operators from F into F' such that
0 < S < T and T is weak almost Dunford-Pettis operator,
then S is also weak almost Dunford-Pettis operator.

Proof: Let (), be a weakly null sequence in E+ and
(fn) be a weakly null sequence in (F’)™. According to (11)
of Theorem 2.5, it suffices to show that f,, (S(z,)) — 0.
Since T' is weak almost Dunford-Pettis, then Theorem 2.5
implies that f,, (T'(z,)) — 0. Now, by using the inequalities
0 < fu(S(zn)) < fn(T(x,)) for each n, we see that
fn (S(zn)) — 0. [ |

Now, we look at the duality property of the class of positive
weak almost Dunford-Pettis operators.

Theorem 2.10: Let E and F' be two Banach lattices and let
T be a positive operator from E into F. If the adjoint 7" is
weak almost Dunford-Pettis from F" into E’, then T itself is
weak almost Dunford-Pettis.

Proof: Let (z,,) be a weakly null sequence in E™, and let
(f») be a weakly null sequence in (F”)". We have to prove
that f,(T(x,)) — 0.

Let 7 : E — E” be the canonical injection of F into
its topological bidual E”. Since 7 is a lattice homomorphism,
the sequence (7(z,,)) is weakly null in (E”)*. And as the
adjoint 7" is weak almost Dunford-Pettis from F’ into F’,
we deduce by Theorem 2.1 that 7(z,)(T"(f,)) — 0. But
T(x) (T (fn)) =T (fu)(xn) = fu(T(x,)) for each n. Hence
fu(T(zy,)) — 0 and this ends the proof. |

We end this paper by a consequence of Theorem 2.10, we
obtain Proposition 2 of Wnuk [5].

Corollary 2.11: Let E be a Banach lattice. If E’ has the
weak Dunford-Pettis property, then E itself has the weak
Dunford-Pettis.
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