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Abstract—The paper proposes a unified model for multimedia 

data retrieval which includes data representatives, content 
representatives, index structure, and search algorithms.  The 
multimedia data are defined as k-dimensional signals indexed in a 
multidimensional k-tree structure. The benefits of using the k-tree 
unified model were demonstrated by running the data retrieval 
application on a six networked nodes test bed cluster. The tests were 
performed with two retrieval algorithms, one that allows parallel 
searching using a single feature, the second that performs a weighted 
cascade search for multiple features querying. The experiments show 
a significant reduction of retrieval time while maintaining the quality 
of results. 
 

Keywords—balancing strategies, multimedia databases, parallel 
processing, retrieval algorithms 

I. INTRODUCTION 
ULTIMEDIA databases are extending the scope of 
traditional databases to handle the complex structure of 

multimedia objects. Models for multimedia information must 
include representations for the structure and content of several 
media in a form that allows flexibility in retrieval. Data 
processing of the different types of multimedia signals 
exhibits the familiar trade-offs; one must decide whether data 
quality, storage requirement, or computation speed plays the 
crucial role. In this paper we have utilized the metadata model 
with three classes of objects (Description Units, Segments and 
Descriptors) introduced in [1]. A description unit (DU) 
defines an object or collection of objects that can be given a 
context in terms of creation and relationship with other 
objects. A segment captures the notion of some part of an 
object that can be independently analyzed in terms of content 
and be used by it, but it has no context of its own, getting it 
from the DU of the object it belongs to. A descriptor is a 
representation of a feature and a descriptor value is its 
instantiation. In terms of structure DU’s, segments and 
descriptors are organized as part-of hierarchies. A DU is either 
a root unit or is related to the DU describing the collection of 
units where it belongs, which has its own DU. Each 
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multimedia data type can be viewed as k-dimensional (k-d) 
data in spatial-temporal domain [2].  

Each dimension of the data is separated into small blocks 
and then formed into a multidimensional tree structure, called 
a k-tree. Using the k-tree structure, the retrieval time improves 
while the retrieval accuracy remains relatively constant. 
Moreover, since we can realize all types of multimedia data 
using the same k-tree data structure, the data indexing and 
retrieval algorithms are uniform [3]. 

II.  A MODEL FOR MULTIMEDIA METADATABASES 
In the data model, an instance of DU is linked to an 

instance of a higher-level DU, in a many-to-one relationship. 
Metadata concerning object content is centered in the Segment 
and Descriptor classes. A segment may be linked to some DU 
providing its context. Several segments may be attached to the 
same DU, accounting for different parts of its content. A 
segment may instead be attached to another segment, 
providing a specialized description of one of its parts. 
Segments are further specialized for text, image and video and 
are linked to descriptors specific to each media. The metadata 
model has been translated to an operational database system 
where tables and attributes closely follow the proposed model. 
This relational prototype has been populated with 4 sets of 
data (referred later as multidimensional signals): descriptions 
of text documents, a collection of photos (still images), video 
sets and audio sets.  

Metadata are data about data. Broadly speaking, metadata 
can refer to any data that are used to describe the content, 
quality, condition and other aspects of data for humans or 
machines to locate, access and understand the data. An  image 
itself tells nothing more than the plain fact that it is a specific 
picture. Without reading the associated metadata, it is 
impossible for a user to know the properties of the image such 
as who took the picture, when and where was the picture 
taken, what is the resolution of the picture etc, all of which are 
important information that helps to determine the suitability of 
the image for a particular application before the user takes a 
look at the actual data. Metadata plays far more important role 
in managing multimedia data than does the management of 
traditional structured data. Some of the reasons are : 

 
1)  Different Query Paradigm The exact-match paradigm 

for querying is no longer suitable or adequate for querying or 
retrieving various types of digital data. 
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2)  Inadequate Processing Technique Content-based 
processing techniques are too hard to analyze and very large 
data-sets are often limited or inadequate. 

3)  Lacking efficiency When a content-based search is 
possible, it cannot be used very frequently (e.g. for every 
query) due to performance reasons and because of varying 
application. 

4)  Semantics of multimedia data Derive and Interpreted 
data( which may be considered a part of metadata) as well as 
context and semantics (which may be easier to base on 
metadata rather than raw data) are of greater value when 
dealing with multimedia data. 

One can classify Metadata in various categories, but two 
categories are essential: 

 
i. Based on dependence on content  
One can distinguish content-independent metadata (which 

captures information that does not depend on the content of 
the document with which it is associated, as for example  
location or  date of document) and respectively content-
dependent metadata that depends on the content of the 
document it is associated with. Example of content dependent 
metadata are size of a document, colors, number of rows and 
columns in an image.  

 
ii. Based on hierarchical utilization 
1)  Administrative Metadata used in managing and 

administering information resources. 
2)  Descriptive Metadata used to describe or identify 

information resources. 
3)  Preservation Metadata related to the preservation 

management of information resource 
4)  Technical Metadata related to how a system functions 

or metadata behave 
 
In the case of structured databases, the norm for the 

generation of Metadata is to use schema descriptions and 
associated information (such as database statistics) as 
metadata. In the case of unstructured textual data and 
information retrieval, metadata is generally limited to indexes 
and textual descriptions of data. Metadata in such cases 
provides a suitable basis for building the higher forms of 
information. Metadata is commonly generated via three 
methods: - Analyzing raw data; - Semi-automatic 
augmentation; - Processing with implicit metadata generation. 

The k-tree, conceived to store k-dimensional points data, 
can be used to represent such metadata. Purpose is always to 
hierarchically decompose space into a relatively small number 
of cells such that no cell contains too many input objects. This 
provides a fast way to access any input object by position. We 
traverse down the hierarchy until we find the cell containing 
the object and then scan through the few objects in the cell to 
identify the right one. Typical algorithms construct k-trees by 
partitioning point sets. Each node in the tree is defined by a 
plane through one of the dimensions that partitions the set of 
points into left/right (or up/down) sets, each with half the 

points of the parent node. Partitioning stops after log(n) levels, 
with each point in its own leaf cell. 

Content-based retrieval of multidimensional signals is done 
by comparing features extracted from the input query with 
features extracted from every record in the database. The 
features of a multidimensional signal are subjective 
information. They are characteristics that are used to 
distinguish one signal from others. A 2-dimensional signal, 
such as an image, is characterized by features such as color, 
texture, and intensity. The basic algorithms for the searching 
of data in each of the different domains are quite similar. In 
this paper, a unified retrieval framework based on both 
keyword annotations and visual features is proposed. In this 
framework, a set of statistical models are built based on visual 
features of a small set of manually labeled images to represent 
semantic concepts and used to propagate keywords to other 
unlabeled images. These models are updated periodically; in 
this sense, the keyword models serve the function of 
accumulation and memorization of knowledge learned from 
user-provided relevance feedback. A matching search requires 
that the index key (defining feature) be unique and matched to 
the query. Exactly matched searching requires exhaustive 
comparisons that are inefficient and unsuitable for 
multidimensional signals; similarity searching is more 
appropriate. A similarity-search re-orders the database by 
distance between each record and the query; the result is 
selected from the ranking. In order to improve the retrieval 
procedure,  two sets of effective and efficient similarity 
measures and relevance feedback schemes are proposed for 
query by keyword scenario and query by image example 
scenario, respectively. 

III. DESIGN OF A K-TREE DATABASE MODEL 

A. Basic description of the k-tree concept 
A k-tree [4] is a directed graph; each node has 2k incoming 

edges and one outgoing edge with a balanced structure. A tree 
expresses the hierarchical relationships of data between 
consecutive levels. The k-tree is used to store the k-
dimensional data. For example in case of a quad tree, k=2 and 
the tree can hold a two-dimensional image. For a composite 
data type, the tree is more complex, each node containing 
more than one type of features. For example, a node of a tree 
derived from motion picture data is a composite node, which 
comprises of video and audio features. 

A k-tree has three main benefits. First, the k-tree holds the 
features on the tree structure itself and so it reduces 
computation time to find distance to a comparison between 
two tree nodes. Second, a k-tree can accelerate multi-
resolution processing by calculating small, global information 
first and then large, local information when precise resolution 
is needed. Third, the data of the k-tree is unified since only the 
degree of the tree changes, while the processing algorithm and 
data structure remain invariant. The structure of a k-tree is 
also a basis for parallel processing [5]. The reduction of 
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computation time is a function of how well the global data 
uniquely identifies the target. 

B.  Representation of k-tree features 
To generate the features from data, a normalization 

technique is used. The domain of a feature is reduced to a set 
of selected values from the set of potential values. An 
identification number of each element in the reduced set is 
used. When data is inserted into the system, it is converted to 
the selected domain. The feature is represented by a 
histogram. To generate a feature k-tree, the salient features of 
the multimedia data are extracted to create the leaves of the k-
tree. The features are summarized to create the next level of 
information; the most global information is stored at the root 
of the tree. For example, figure 1 shows the feature extraction 
of 2-dimensional data array into a quad-tree structure. Data is 
separated into blocked data and transformed into features, 
which are stored in the leaves of the tree. Information stored 
in the leaves is summarized in the next higher levels. 

 
Fig. 1 Feature extraction of 2-dimensional k-tree 

C.  Mathematical definition of a k-tree structure 
Let T denote the tree network under consideration, V denote 

the vertex set and E denote the edge set of T, respectively. Let 
n = |V|. The n vertices in V are labeled with 1, 2, and n, 
respectively. Denote label(v) as the label of a vertex v∈V. 
The tree network is undirected. Each edge e∈E has an 
arbitrary positive length w(e). A leaf of T is a vertex with 
degree one. Let m be the number of leaves of T. For any two 
vertices u and v in V, the distance between u and v, denoted by 
d(u, v), is the length of the unique path connecting u and v. 
The distance from a vertex to a subtree is defined as the 
shortest distance from the vertex to any vertex in the subtree. 
We denote d(v, X) as the distance from a vertex v to a subtree 
X of T. The distance-sum of a subtree X of T, denoted by 
Sum(X), is the total distance from X to the vertices of T. The 
eccentricity of a subtree X of T, denoted by Eccen(X), is the 
distance from X to the farthest vertex of T. The center of T is 
any point of T whose eccentricity is minimum. A k-tree core 
of T is a minimum distance-sum subtree of T with exactly k 
leaves. A k-tree center of T is a minimum eccentricity subtree 
of T with exactly k leaves. Clearly, as a consequence of the 
minimum distance-sum criterion, a leaf of k-tree core shall be 

a leaf of T, but for a leaf of a k-tree center it is not necessary 
to be a leaf of T. 

IV. RETRIEVAL ALGORITHMS ON K-TREES 

A. Algorithm for finding the k-tree core of a tree T(V, E) 
Let r be an endpoint of a two-tree core of T. We assume 

that T is rooted at r. For each vertex v in T, denote p(v), 
depth(v), Tv, and size(v) as the parent of v, the depth of v, the 
subtree rooted at v, and the number of vertices contained in 
the subtree rooted at v, respectively. Let Pv,l be the path from a 
vertex v to a leaf l of Tv. The distance saving SV of this path is 
defined as ),(),()( ,, ∑∑

∈∈

−=
Vu

lv
Vu

lv PudvudPSV  and the 

maximum distance saving MSV as 

)](max[)( ,lvPSVvMSV = . Let v be a vertex of T. Let l1 

and l2 be two leaves of the subtree Tv. We say that l1 beats l2 at 
the vertex v if and only if: )()(

2,1, lvlv PSVPSV ≤  

We say that a leaf l of Tv dominates Tv if and only if no leaf 
in Tv beats l at v. Denote DL (v) as the leaf dominating Tv. By 
definition, SV(Pv,DL (v)) = MSV(v).  

Let  l be a leaf in T and the path Pr,l be given as (u1, u2, ..., 
ut), where u1 = r and ut = l. There exists a vertex uq, 1 ≤ q ≤ t, 
such that the subtrees 

quT ,
1+quT ,…, 

tuT are dominated by l 

but the other subtrees 
1uT ,

2uT ,…, 
1−quT are not. Denote DE(l) 

as the vertex uq. DP(l) as the dominated path of l, which is the 
path from DE(l) to l. Note that for any two leaves l1 and l2 in 
T, DP(l1) ∩ DP(l2) = Φ . 

As an illustrative example, let us consider the tree network 
depicted in Fig. 2. In the figure, each edge of the tree network 
has a length 1 and the vertex u1 is the root, which is an 
endpoint of a two-tree core of the network. The dominated 
paths of the leaves of the network are depicted with dashed 
lines. For each vertex ui in the network, the values of size(ui), 
MSV(ui), DL(ui), and DE(ui) are listed in Table 1.  

 
 

 
Fig. 2 The dominated paths in a k-tree core 
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TABLE I CHARACTERISTICS OF THE K-TREE CORE 

ui size(
ui) 

MSV(
ui) 

DL(
ui) 

DE(
ui) 

u1 16 65 u11 - 
u2 15 50 u11 - 
u3 14 36 u11 - 
u4 13 23 u11 - 
u5 2 2 u6 - 
u6 1 1 u6 u5 
u7 10 13 u11 - 
u8 5 8 u11 - 
u9 4 4 u11 - 
u1

0 
3 1 u11 - 

u1

1 
1 0 u11 u1 

u1

2 
1 0 u12 u12 

u1

3 
4 3 u16 - 

u1

4 
1 0 u14 u14 

u1

5 
2 1 u16 - 

u1

6 
1 0 u16 u13 

 
 The algorithm to find the k-tree core has the following 

steps: 
Step 1: Identify an endpoint r of a two-tree core of T, then 

orient T into a rooted tree with root r. 
Step 2: For each vertex v in T, compute size(v) and 

depth(v). 
Step 3: For each vertex v in T, compute MSV(v) and DL(v). 
Step 4: For each leaf l in T, determine R(l) and: 
a. for each internal vertex v in T, broadcast DL(v) to its 

children. 
b. for each vertex v in T, if v = r, set R(l) = MSV(v); 

otherwise, if v ≠ r and DL(v) ≠ DL(p(v)), set R(l) = w((p(v), 
v)) × size(v) + MSV(v) 

Step 5: Find the leaf x in T with rank(x) = k - 1. 
Step 6: Compute Gk-1, which is a k-tree core of T 
a. for each vertex v in T, compute A(v) as the largest 

number contained in the leaves of Tv. 
b. for each vertex v, if A(v) = 0 remove v and the edge (v, 

p(v)). 
c. Obtain Gk-1 from T as follows: For each vertex v, if A(v) = 0 

remove v and the edge (v,p(v)). 

Step 7: Compute Sum(Gk-1) as ∑∑
−∈∈

−
1

)()(
kGlVv

lRvdepth  

 
The parallel running time of the algorithm is discussed as 

follows: i) Steps 1 and 2 take O(log n) time using O(n) work. 
Since MSV(v)=max{w((v, u))xsize(u)+ MSV (u)}, where u is a 
child of v, the computation of MSV(v)s is similar to that of the 
height of the subtree Tv, denoted height(v). Thus, using tree 

contraction, MSV(v)s can be computed in O(log n) time using 
O(n) work. ii) Clearly, during the computation of MSV(v)s, we 
can maintain some information to produce the values of 
DL(v)s in Step 3. Therefore, this step can be done in O(log n) 
time using O(n) work. iii) The broadcasting performed in 
Substep 4a can be done in O(logn) time using O(n) work. 
After the broadcasting, each vertex v≠ r has the values of 
DL(v) and DL(p(v)). Thus, Substep 4.b can be performed in 
O(1) time using O(n) work. iv) Step 5 is the most critical step, 
but one can consider that the (k-1)th element of a set of m - 1 
elements can be determined in O(log m log* m) time using 
O(m) work. v) Substeps 6a and 6c can be done in O(log n) 
time using O(n) work. By tree contraction, Substep 6b can be 
easily done in O(log n) time using O(n) work. vi) Step 7 can 
be done in O(log n) time using O(n) work.  

As a conclusion, except Step 5, all steps in the algorithm k-
Tree_core can be implemented in O(log n) time using a total 
of O(n) work. 

B.  Retrieval algorithm on k-tree based on similarity search 
The basis of this algorithm is a function that measures the 

distance between the target and each of the multimedia objects 
and the reports the best matching, which are the data that have 
minimal distance between itself and the query. Figure 3 shows 
a block diagram of a similarity search, where N processing 
units (P0, …, PN) work on N partitions (D0, …, DN) of the 
database D. 

The main problems of similarity search are the long 
computation requirement and the efficiency of index. First, 
because the similarity search bases on finding the minimal 
distances among all records, the larger is the database, the 
longer computation time is. Second, retrieval from a 
multimedia database is based upon similarity searches of the 
index space. A multimedia index entry should contain the 
salient features, which have been extracted from the raw data 
and the spatial-temporal relationships as a single entry. The 
usefulness of an index entry is a function of the computation 
time used to extract the features that define the entry, the 
space required to store the entry, and the ease with which the 
entity identifies the data. 

 
Fig. 3 The distance computation between query and records  

 
Data comparison is made upon the distance of two objects. 

Let consider, in the general case that A=a1,a2,…,an is the 
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feature list that defines an entity in a multimedia database; 
Q=q1,q2,…,qn is the list of features defining a query; di(ai,qi) is 
the distance between the ith feature of A and Q; wi is the 

weight of the distance di(ai,qi) where 1
1

=∑
=

n

i
iw  . The total 

distance is given by ),(),(
1

iii

n

i
i qadwQAd ∑

=

= . 

Regular weighted comparison can be done by calculating 
distances of all features and then combining the weighted 
distances for final distance. 

We can obtain a faster algorithm which can be processed in 
parallel if we proceed to a cascade weighted comparison, 
which is based on the concept that each feature is compared in 
sequence and that each feature has a relative importance. The 
ranking created by one feature determines the input for the 
next feature comparison. A weighting function is used to 
reflect the importance of the features. The features are 
processed in the order of their weights. The features with a 
lower weight use a subset of the total database determined by 
the higher weight features. The subset is the portion of the 
database that has the shortest distances to the query as 
determined by the higher weighted features. We generalize the 
distance as follows: suppose d(A,Q)=D1…k(A,Q) is a 
combined distance among all features from 1 to k.  

The cascade distance is defined by D1…n 

(A,Q)=wnd(an,qn)+D1…(n-1)(A,Q). 

C.  A generalized algorithm for virtual-node comparison 
This algorithm allows to calculate the feature distances 

between the root of the query tree and the roots of all data 
trees in the database, and to select those data types for which 
the distances are below a threshold value. These candidates 
will be searched at a higher-resolution level in the next step. 
We can consider three situations: 

Case a) the query’s tree aligns within the k-tree structure of 
data. 

1)  Find the feature distances between feature in root of 
query tree and nodes of data at level Li-1 (nodes with solid-line 
link in Fig. 4) of the stored data. If the distance to a child node 
is equal to that between the query and its parent (Li), the query 
may be found within that child node. 

2)  Repeat Case a) recursively on this child node. If there 
is no distance at level Li-1 close to the distance to the parent, 
the query is “not aligned” 

Case b) the query data falls in between two or more nodes 
1)  If no node in k-tree (darker nodes in Fig. 4) can be a 

candidate, virtual nodes between two nodes have to be 
generated from the parts of their child nodes. 

2)  Repeat the whole algorithm into a new tree  
Case c) the height of query is equal to a node height. 
1)  Search by Thumbnail (search data that is similar with 

disregarding to the scale of the query) with histogram 
quadratic distance to calculate the distance and then 

2)  Return the distance. 

 . 

 
Fig. 4 Virtual-node structure for k=1 

V. EXPERIMENTAL PROCEDURES 

A.  Algorithms for parallel processing 
The first implemented algorithm allows parallel searching 

using a single feature. Prior to the search the database is 
distributed among the processors. Each processor performs the 
comparison between the query and its partition of the 
database.  The results are sorted in parallel creating the final 
ranking. The second algorithm performs a weighted cascade 
search for multiple features querying. In this situation all 
distance computation blocks are replaced with the parallel 
model from a single feature query.  

The software architecture necessary to perform parallel 
processing has three main components. The first component 
contains routines for database partitioning, in order to indicate 
which data parts should be processed by each processing unit.  
 The second component contains a large set of sequential 
operations typically used in content-based retrieval. Each 
operation that maps onto the functionality as provided by a 
generic algorithm is implemented by instantiating the generic 
algorithm with the proper parameters, including the function 
to be applied to the individual data elements. Parallel 
implementations of generic algorithms are obtained by 
inserting communication operations in the concatenation of 
sequential library routines. 

 The last component of the software architecture is the 
scheduling component that is applied to find an optimal 
solution for a given application. The requests for scheduling 
results are performed to determine which parallelization 
strategy is required. The aim of scheduling is to provide 
specified shares of the total system capacity to groups of jobs 
[6]. 

B. The cluster test-bed 
In order to create a parallel/distributed environment we 

have built a cluster using commodity hardware and running 
Linux as operating system [7]. The cluster can run 
applications using a parallelization environment [8]. We have 
tested writing and running applications using PVM (Parallel 
Virtual Machine) which is a framework consisting of a 
number of software packages that accomplish the task of 
creating a single machine that spans across multiple CPU's, by 
using the network inter-connection and a specific library.  
Applications must be compiled using this specific library in 
order to permit communication. Another framework that can 
be used to run applications in a distributed manner is MPI 
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(Message Passing Interface). MPI specifies a library for 
communication between tasks [9].  

Our cluster consists of a “head” machine and a number of 
six cluster nodes. The “head” provides all services for the 
cluster nodes – IP allocation, booting services, File System 
(NFS) for storage of data, facilities for updating, managing 
and controlling the images used by the cluster nodes as well as 
access to the cluster. The “head” computer provides an image 
for the operating system that is loaded by each of the cluster 
nodes since the cluster nodes do not have their own storage 
media. As this image resides in the memory of each cluster 
node, we took special steps to reduce the size of this image 
and to make most of the memory available to the running 
processes. We were able to reduce this image to 16 megabytes 
by moving different parts of a running Debian Linux system 
over network file systems, leaving on the image only those 
components needed for booting and controlling the cluster 
nodes.  

The application partition is mounted read-only while the 
partition where data is stored is mounted read-write and 
accessible to the users on all machines in a similar manner 
providing transparent access to user data. In order to access 
the cluster, users must connect to a virtual server located on a 
head machine. This virtual server can also act as a node in the 
cluster when extra computation power is needed for the single 
streams. 

C. Criteria to choose a load balancing strategy 
Load balancing is defined as the allocation of the work of a 

single application to processors at run-time so that the 
execution time of the application is minimized. Since the 
speed at which a parallel application can be completed 
depends on the computation time of the slowest workstation, 
efficient load balancing can clearly provide major 
performance benefits. The two major categories for load-
balancing algorithms are static and dynamic. 

Static Load Balancing. Static load balancing algorithms 
allocate the tasks of a parallel program to workstations based 
on either the load at the time nodes are allocated to some task, 
or based on an average load of our workstation cluster. The 
advantage in this sort of algorithm is the simplicity in terms of 
both implementation as well as overhead, since there is no 
need to constantly monitor the workstations for performance 
statistics. However, static algorithms only work well when 
there is not much variation in the load on the workstations.  

Dynamic Load Balancing. Dynamic load balancing 
algorithms make changes to the distribution of work among 
workstations at run-time; they use current or recent load 
information when making distribution decisions. As a result, 
dynamic load balancing algorithms can provide a significant 
improvement in performance over static algorithms. However, 
this comes at the additional cost of collecting and maintaining 
load information, so it is important to keep these overheads 
within reasonable limits.  

Load Balancing Algorithm. While many different load 
balancing algorithms have been proposed, there are four basic 
steps that nearly all algorithms have in common: 

1)  Monitoring workstation performance (load 
monitoring) 

2)  Exchanging this information between workstations 
(synchronization) 

3)  Calculating new distributions (rebalancing criteria) 
4)  Actual data movement (job migration) 
Balancing Strategies. There are three major parameters 

which usually define the strategy a specific load balancing 
algorithm will employ. These three parameters answer three 
important questions: i) who makes the load balancing 
decision, ii) what information is used to make the load 
balancing decision, and iii) where the load balancing decision 
is made. Global or local policies answer the question of what 
information will be used to make a load balancing decision. In 
global policies, the load balancer uses the performance 
profiles of all available workstations. In local policies 
workstations are partitioned into different groups. The benefit 
in a local scheme is that performance profile information is 
only exchanged within the group. The choice of a global or 
local policy depends on the behaviour an application will 
exhibit. For global schemes, balanced load convergence is 
faster compared to a local scheme since all workstations are 
considered at the same time. However, this requires additional 
communication and synchronization between the various 
workstations; the local schemes minimize this extra overhead. 
But the reduced synchronization between workstations is also 
a downfall of the local schemes if the various groups exhibit 
major differences in performance. 

Centralized vs. Distributed Strategies. A load balancer is 
categorized as either centralized or distributed, both of which 
define where load balancing decisions are made. In a 
centralized scheme, the load balancer is located on one master 
workstation node and all decisions are made there. In a 
distributed scheme, the load balancer is replicated on all 
workstations. Once again, there are tradeoffs associated with 
choosing one location scheme over the other. For centralized 
schemes, the reliance on one central point of balancing control 
could limit future scalability. Additionally, the central scheme 
also requires an “all-to-one” exchange of profile information 
from workstations to the balancer as well as a “one-to-all” 
exchange of distribution instructions from the balancer to the 
workstations.  

The implemented load balancer. We have implemented a 
Single Program Multiple Data (SPMD) computation 
algorithm,  which implies that all the workstations run the 
same code, but operate on different sets of data. Each task is 
divided into operations. Workstations execute the same 
operation asynchronously, using data available in the 
workstation’s own local memory. This is followed by a data 
exchange phase where information can be exchanged between 
workstations (if required), after which all workstations wait 
for synchronization. Thus each lock-step of an SPMD 
program contains 3 phases: i) calculation phase (each task will 
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do the required computation; there is no communication 
between workstations at this point); ii)  data distribution phase 
(each task will distribute the relevant data to other tasks that 
need it for the next lock-step); iii) synchronization phase (this 
phase ensures that all tasks have completed the same lock-
step).  

 The algorithm uses the following parameters:  
Tcomp-i – the interval between the time at which the first task 

on workstation i starts execution and the time at which the last 
task on the same workstation completes the computation and 
waits for the synchronization.  

Ttask-i – the average computation time for each task on a 
workstation, defined as: 

Ttaski = Tcomp-i / ni (equ. 1) 
Thigh – the maximum of Tcomp over all workstations 
Tlow – the minimum of Tcomp over all workstations 
In the SPMD algorithm Ttask can be used to update Tcomp. 

Thus if m tasks are moved to 
workstation i, we can solve equ.1 to give us an estimation 

of Tcomp-i: Ttask-i x (ni + m).  
 

D. Tests and results 
The data parallel search algorithm illustrated in Figure 3 

were ran on the test-bed cluster, for a single feature (k=1) and 
for two features (k=2). In both cases two computing schemes 
were tested: the regular computing scheme and the cascade 
weighted computing scheme. In these tests, data in each 
storage Di are parts of feature index, so  prior to use the 
database is distributed to the processors in the cluster. At the 
first stage (T1), each processing unit performs a feature based 
comparison between the query and the data in its assigned 
records. The output from each processor is a list of distances. 
At the second stage (T2), the results are sorted in parallel to 
create the overall ranking of the database records. The results 
of one feature using the parallel search algorithm are the input 
of the next feature. Each processor works on different portion 
of the database. Then, the sorted results are combined to the 
final results. Table 2 presents the time (in seconds) for each 
algorithm and for a different number of processing unit. For 
rapid comparison, the same results are displayed in fig. 5. 

 
TABLE II PROCESSING TIME FOR RETRIEVAL TESTS 

 
Proc

. 
units 

K=1 K=2 
regul

ar 
cascad

e 
regular cascad

e 
1 420 268 585 410 
2 282 221 352 269 
4 196 143 220 185 
6 132 116 198 161 
8 112 104 170 144 

 
In all experiments was used the distance between pairs of 

results from consecutive levels of a k-tree. For different types 
of data there was identified the limit kl-level that does not 

improve the result, but requires a significantly longer 
processing time.  Once this level was identified, the 
unnecessary levels were eliminated of the k-tree and so the 
processing time storage was reduced.  
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Fig. 5 Retrieval times versus number of processing units 

 
Anyway, the computation time decreases significantly as 

the number of processors used to perform the computation 
increases. The achieved speedups are super-linear because 
each processor has more system resources available at the run-
time; the smaller number of processors, the more frequent 
trashing occurred. 

VI. CONCLUSIONS 
W e have introduced a parallel model for multimedia data 

retrieval by content with a multidimensional k-tree structure. 
The objective was to select the optimal level of a k–tree: the 
level furthest from the leaves that can distinguish the data 
structure. To achieve this goal the experimental research was 
concerned primarily to improve the efficiency of the search 
and consequently to reduce the response times of the 
algorithms. By exploiting the hierarchical nature of the trees, 
the search was improved by the use of multi-resolution 
algorithms using a weighted cascade. The experimental results 
show that multi-resolution processing can reduce retrieval 
time, maintain the accuracy, and exploit parallelism.  

The model allows the extension of the system for the new 
types of data, new techniques, and new types of interest 
contents with less effort. In this aim we have proposed an 
algorithm to extract the k-tree core from a general features 
tree and to apply it in modeling a distributed database system. 

Further work includes the validation of the proposed 
metadata model in a large database, the development of new 
criteria for searching on multimedia content and the use of the 
information gathered in the database. We intend to extend the 
parallelism into heterogeneous systems environments by using 
information on both task and machine characteristics in order 
to decide which processor a task should be allocated to.  
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