
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:9, 2010

1295

Abstract—The paper proposes a unified model for multimedia

data retrieval which includes data representatives, content
representatives, index structure, and search algorithms. The
multimedia data are defined as k-dimensional signals indexed in a
multidimensional k-tree structure. The benefits of using the k-tree
unified model were demonstrated by running the data retrieval
application on a six networked nodes test bed cluster. The tests were
performed with two retrieval algorithms, one that allows parallel
searching using a single feature, the second that performs a weighted
cascade search for multiple features querying. The experiments show
a significant reduction of retrieval time while maintaining the quality
of results.

Keywords—balancing strategies, multimedia databases, parallel
processing, retrieval algorithms

I. INTRODUCTION
ULTIMEDIA databases are extending the scope of
traditional databases to handle the complex structure of

multimedia objects. Models for multimedia information must
include representations for the structure and content of several
media in a form that allows flexibility in retrieval. Data
processing of the different types of multimedia signals
exhibits the familiar trade-offs; one must decide whether data
quality, storage requirement, or computation speed plays the
crucial role. In this paper we have utilized the metadata model
with three classes of objects (Description Units, Segments and
Descriptors) introduced in [1]. A description unit (DU)
defines an object or collection of objects that can be given a
context in terms of creation and relationship with other
objects. A segment captures the notion of some part of an
object that can be independently analyzed in terms of content
and be used by it, but it has no context of its own, getting it
from the DU of the object it belongs to. A descriptor is a
representation of a feature and a descriptor value is its
instantiation. In terms of structure DU’s, segments and
descriptors are organized as part-of hierarchies. A DU is either
a root unit or is related to the DU describing the collection of
units where it belongs, which has its own DU. Each

Radu Dobrescu is with the “Politechnica” University of Bucharest in

Romania (e-mail: radud@isis.pub.ro).
Matei Dobrescu is with the “Politechnica” University of Bucharest in

Romania .
Daniela Hossu is with the “Politechnica” University of Bucharest in

Romania

multimedia data type can be viewed as k-dimensional (k-d)
data in spatial-temporal domain [2].

Each dimension of the data is separated into small blocks
and then formed into a multidimensional tree structure, called
a k-tree. Using the k-tree structure, the retrieval time improves
while the retrieval accuracy remains relatively constant.
Moreover, since we can realize all types of multimedia data
using the same k-tree data structure, the data indexing and
retrieval algorithms are uniform [3].

II. A MODEL FOR MULTIMEDIA METADATABASES
In the data model, an instance of DU is linked to an

instance of a higher-level DU, in a many-to-one relationship.
Metadata concerning object content is centered in the Segment
and Descriptor classes. A segment may be linked to some DU
providing its context. Several segments may be attached to the
same DU, accounting for different parts of its content. A
segment may instead be attached to another segment,
providing a specialized description of one of its parts.
Segments are further specialized for text, image and video and
are linked to descriptors specific to each media. The metadata
model has been translated to an operational database system
where tables and attributes closely follow the proposed model.
This relational prototype has been populated with 4 sets of
data (referred later as multidimensional signals): descriptions
of text documents, a collection of photos (still images), video
sets and audio sets.

Metadata are data about data. Broadly speaking, metadata
can refer to any data that are used to describe the content,
quality, condition and other aspects of data for humans or
machines to locate, access and understand the data. An image
itself tells nothing more than the plain fact that it is a specific
picture. Without reading the associated metadata, it is
impossible for a user to know the properties of the image such
as who took the picture, when and where was the picture
taken, what is the resolution of the picture etc, all of which are
important information that helps to determine the suitability of
the image for a particular application before the user takes a
look at the actual data. Metadata plays far more important role
in managing multimedia data than does the management of
traditional structured data. Some of the reasons are :

1) Different Query Paradigm The exact-match paradigm

for querying is no longer suitable or adequate for querying or
retrieving various types of digital data.

Radu Dobrescu, Matei Dobrescu, Daniela Hossu

Balancing Strategies for Parallel Content-based
Data Retrieval Algorithms in a k-tree Structured

Database

M

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:9, 2010

1296

2) Inadequate Processing Technique Content-based
processing techniques are too hard to analyze and very large
data-sets are often limited or inadequate.

3) Lacking efficiency When a content-based search is
possible, it cannot be used very frequently (e.g. for every
query) due to performance reasons and because of varying
application.

4) Semantics of multimedia data Derive and Interpreted
data(which may be considered a part of metadata) as well as
context and semantics (which may be easier to base on
metadata rather than raw data) are of greater value when
dealing with multimedia data.

One can classify Metadata in various categories, but two
categories are essential:

i. Based on dependence on content
One can distinguish content-independent metadata (which

captures information that does not depend on the content of
the document with which it is associated, as for example
location or date of document) and respectively content-
dependent metadata that depends on the content of the
document it is associated with. Example of content dependent
metadata are size of a document, colors, number of rows and
columns in an image.

ii. Based on hierarchical utilization
1) Administrative Metadata used in managing and

administering information resources.
2) Descriptive Metadata used to describe or identify

information resources.
3) Preservation Metadata related to the preservation

management of information resource
4) Technical Metadata related to how a system functions

or metadata behave

In the case of structured databases, the norm for the

generation of Metadata is to use schema descriptions and
associated information (such as database statistics) as
metadata. In the case of unstructured textual data and
information retrieval, metadata is generally limited to indexes
and textual descriptions of data. Metadata in such cases
provides a suitable basis for building the higher forms of
information. Metadata is commonly generated via three
methods: - Analyzing raw data; - Semi-automatic
augmentation; - Processing with implicit metadata generation.

The k-tree, conceived to store k-dimensional points data,
can be used to represent such metadata. Purpose is always to
hierarchically decompose space into a relatively small number
of cells such that no cell contains too many input objects. This
provides a fast way to access any input object by position. We
traverse down the hierarchy until we find the cell containing
the object and then scan through the few objects in the cell to
identify the right one. Typical algorithms construct k-trees by
partitioning point sets. Each node in the tree is defined by a
plane through one of the dimensions that partitions the set of
points into left/right (or up/down) sets, each with half the

points of the parent node. Partitioning stops after log(n) levels,
with each point in its own leaf cell.

Content-based retrieval of multidimensional signals is done
by comparing features extracted from the input query with
features extracted from every record in the database. The
features of a multidimensional signal are subjective
information. They are characteristics that are used to
distinguish one signal from others. A 2-dimensional signal,
such as an image, is characterized by features such as color,
texture, and intensity. The basic algorithms for the searching
of data in each of the different domains are quite similar. In
this paper, a unified retrieval framework based on both
keyword annotations and visual features is proposed. In this
framework, a set of statistical models are built based on visual
features of a small set of manually labeled images to represent
semantic concepts and used to propagate keywords to other
unlabeled images. These models are updated periodically; in
this sense, the keyword models serve the function of
accumulation and memorization of knowledge learned from
user-provided relevance feedback. A matching search requires
that the index key (defining feature) be unique and matched to
the query. Exactly matched searching requires exhaustive
comparisons that are inefficient and unsuitable for
multidimensional signals; similarity searching is more
appropriate. A similarity-search re-orders the database by
distance between each record and the query; the result is
selected from the ranking. In order to improve the retrieval
procedure, two sets of effective and efficient similarity
measures and relevance feedback schemes are proposed for
query by keyword scenario and query by image example
scenario, respectively.

III. DESIGN OF A K-TREE DATABASE MODEL

A. Basic description of the k-tree concept
A k-tree [4] is a directed graph; each node has 2k incoming

edges and one outgoing edge with a balanced structure. A tree
expresses the hierarchical relationships of data between
consecutive levels. The k-tree is used to store the k-
dimensional data. For example in case of a quad tree, k=2 and
the tree can hold a two-dimensional image. For a composite
data type, the tree is more complex, each node containing
more than one type of features. For example, a node of a tree
derived from motion picture data is a composite node, which
comprises of video and audio features.

A k-tree has three main benefits. First, the k-tree holds the
features on the tree structure itself and so it reduces
computation time to find distance to a comparison between
two tree nodes. Second, a k-tree can accelerate multi-
resolution processing by calculating small, global information
first and then large, local information when precise resolution
is needed. Third, the data of the k-tree is unified since only the
degree of the tree changes, while the processing algorithm and
data structure remain invariant. The structure of a k-tree is
also a basis for parallel processing [5]. The reduction of

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:9, 2010

1297

computation time is a function of how well the global data
uniquely identifies the target.

B. Representation of k-tree features
To generate the features from data, a normalization

technique is used. The domain of a feature is reduced to a set
of selected values from the set of potential values. An
identification number of each element in the reduced set is
used. When data is inserted into the system, it is converted to
the selected domain. The feature is represented by a
histogram. To generate a feature k-tree, the salient features of
the multimedia data are extracted to create the leaves of the k-
tree. The features are summarized to create the next level of
information; the most global information is stored at the root
of the tree. For example, figure 1 shows the feature extraction
of 2-dimensional data array into a quad-tree structure. Data is
separated into blocked data and transformed into features,
which are stored in the leaves of the tree. Information stored
in the leaves is summarized in the next higher levels.

Fig. 1 Feature extraction of 2-dimensional k-tree

C. Mathematical definition of a k-tree structure
Let T denote the tree network under consideration, V denote

the vertex set and E denote the edge set of T, respectively. Let
n = |V|. The n vertices in V are labeled with 1, 2, and n,
respectively. Denote label(v) as the label of a vertex v∈V.
The tree network is undirected. Each edge e∈E has an
arbitrary positive length w(e). A leaf of T is a vertex with
degree one. Let m be the number of leaves of T. For any two
vertices u and v in V, the distance between u and v, denoted by
d(u, v), is the length of the unique path connecting u and v.
The distance from a vertex to a subtree is defined as the
shortest distance from the vertex to any vertex in the subtree.
We denote d(v, X) as the distance from a vertex v to a subtree
X of T. The distance-sum of a subtree X of T, denoted by
Sum(X), is the total distance from X to the vertices of T. The
eccentricity of a subtree X of T, denoted by Eccen(X), is the
distance from X to the farthest vertex of T. The center of T is
any point of T whose eccentricity is minimum. A k-tree core
of T is a minimum distance-sum subtree of T with exactly k
leaves. A k-tree center of T is a minimum eccentricity subtree
of T with exactly k leaves. Clearly, as a consequence of the
minimum distance-sum criterion, a leaf of k-tree core shall be

a leaf of T, but for a leaf of a k-tree center it is not necessary
to be a leaf of T.

IV. RETRIEVAL ALGORITHMS ON K-TREES

A. Algorithm for finding the k-tree core of a tree T(V, E)
Let r be an endpoint of a two-tree core of T. We assume

that T is rooted at r. For each vertex v in T, denote p(v),
depth(v), Tv, and size(v) as the parent of v, the depth of v, the
subtree rooted at v, and the number of vertices contained in
the subtree rooted at v, respectively. Let Pv,l be the path from a
vertex v to a leaf l of Tv. The distance saving SV of this path is
defined as),(),()(,, ∑∑

∈∈

−=
Vu

lv
Vu

lv PudvudPSV and the

maximum distance saving MSV as

)](max[)(,lvPSVvMSV = . Let v be a vertex of T. Let l1

and l2 be two leaves of the subtree Tv. We say that l1 beats l2 at
the vertex v if and only if:)()(

2,1, lvlv PSVPSV ≤

We say that a leaf l of Tv dominates Tv if and only if no leaf
in Tv beats l at v. Denote DL (v) as the leaf dominating Tv. By
definition, SV(Pv,DL (v)) = MSV(v).

Let l be a leaf in T and the path Pr,l be given as (u1, u2, ...,
ut), where u1 = r and ut = l. There exists a vertex uq, 1 ≤ q ≤ t,
such that the subtrees

quT ,
1+quT ,…,

tuT are dominated by l

but the other subtrees
1uT ,

2uT ,…,
1−quT are not. Denote DE(l)

as the vertex uq. DP(l) as the dominated path of l, which is the
path from DE(l) to l. Note that for any two leaves l1 and l2 in
T, DP(l1) ∩ DP(l2) = Φ .

As an illustrative example, let us consider the tree network
depicted in Fig. 2. In the figure, each edge of the tree network
has a length 1 and the vertex u1 is the root, which is an
endpoint of a two-tree core of the network. The dominated
paths of the leaves of the network are depicted with dashed
lines. For each vertex ui in the network, the values of size(ui),
MSV(ui), DL(ui), and DE(ui) are listed in Table 1.

Fig. 2 The dominated paths in a k-tree core

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:9, 2010

1298

TABLE I CHARACTERISTICS OF THE K-TREE CORE

ui size(
ui)

MSV(
ui)

DL(
ui)

DE(
ui)

u1 16 65 u11 -
u2 15 50 u11 -
u3 14 36 u11 -
u4 13 23 u11 -
u5 2 2 u6 -
u6 1 1 u6 u5
u7 10 13 u11 -
u8 5 8 u11 -
u9 4 4 u11 -
u1

0
3 1 u11 -

u1

1
1 0 u11 u1

u1

2
1 0 u12 u12

u1

3
4 3 u16 -

u1

4
1 0 u14 u14

u1

5
2 1 u16 -

u1

6
1 0 u16 u13

 The algorithm to find the k-tree core has the following

steps:
Step 1: Identify an endpoint r of a two-tree core of T, then

orient T into a rooted tree with root r.
Step 2: For each vertex v in T, compute size(v) and

depth(v).
Step 3: For each vertex v in T, compute MSV(v) and DL(v).
Step 4: For each leaf l in T, determine R(l) and:
a. for each internal vertex v in T, broadcast DL(v) to its

children.
b. for each vertex v in T, if v = r, set R(l) = MSV(v);

otherwise, if v ≠ r and DL(v) ≠ DL(p(v)), set R(l) = w((p(v),
v)) × size(v) + MSV(v)

Step 5: Find the leaf x in T with rank(x) = k - 1.
Step 6: Compute Gk-1, which is a k-tree core of T
a. for each vertex v in T, compute A(v) as the largest

number contained in the leaves of Tv.
b. for each vertex v, if A(v) = 0 remove v and the edge (v,

p(v)).
c. Obtain Gk-1 from T as follows: For each vertex v, if A(v) = 0

remove v and the edge (v,p(v)).

Step 7: Compute Sum(Gk-1) as ∑∑
−∈∈

−
1

)()(
kGlVv

lRvdepth

The parallel running time of the algorithm is discussed as

follows: i) Steps 1 and 2 take O(log n) time using O(n) work.
Since MSV(v)=max{w((v, u))xsize(u)+ MSV (u)}, where u is a
child of v, the computation of MSV(v)s is similar to that of the
height of the subtree Tv, denoted height(v). Thus, using tree

contraction, MSV(v)s can be computed in O(log n) time using
O(n) work. ii) Clearly, during the computation of MSV(v)s, we
can maintain some information to produce the values of
DL(v)s in Step 3. Therefore, this step can be done in O(log n)
time using O(n) work. iii) The broadcasting performed in
Substep 4a can be done in O(logn) time using O(n) work.
After the broadcasting, each vertex v≠ r has the values of
DL(v) and DL(p(v)). Thus, Substep 4.b can be performed in
O(1) time using O(n) work. iv) Step 5 is the most critical step,
but one can consider that the (k-1)th element of a set of m - 1
elements can be determined in O(log m log* m) time using
O(m) work. v) Substeps 6a and 6c can be done in O(log n)
time using O(n) work. By tree contraction, Substep 6b can be
easily done in O(log n) time using O(n) work. vi) Step 7 can
be done in O(log n) time using O(n) work.

As a conclusion, except Step 5, all steps in the algorithm k-
Tree_core can be implemented in O(log n) time using a total
of O(n) work.

B. Retrieval algorithm on k-tree based on similarity search
The basis of this algorithm is a function that measures the

distance between the target and each of the multimedia objects
and the reports the best matching, which are the data that have
minimal distance between itself and the query. Figure 3 shows
a block diagram of a similarity search, where N processing
units (P0, …, PN) work on N partitions (D0, …, DN) of the
database D.

The main problems of similarity search are the long
computation requirement and the efficiency of index. First,
because the similarity search bases on finding the minimal
distances among all records, the larger is the database, the
longer computation time is. Second, retrieval from a
multimedia database is based upon similarity searches of the
index space. A multimedia index entry should contain the
salient features, which have been extracted from the raw data
and the spatial-temporal relationships as a single entry. The
usefulness of an index entry is a function of the computation
time used to extract the features that define the entry, the
space required to store the entry, and the ease with which the
entity identifies the data.

Fig. 3 The distance computation between query and records

Data comparison is made upon the distance of two objects.

Let consider, in the general case that A=a1,a2,…,an is the

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:9, 2010

1299

feature list that defines an entity in a multimedia database;
Q=q1,q2,…,qn is the list of features defining a query; di(ai,qi) is
the distance between the ith feature of A and Q; wi is the

weight of the distance di(ai,qi) where 1
1

=∑
=

n

i
iw . The total

distance is given by),(),(
1

iii

n

i
i qadwQAd ∑

=

= .

Regular weighted comparison can be done by calculating
distances of all features and then combining the weighted
distances for final distance.

We can obtain a faster algorithm which can be processed in
parallel if we proceed to a cascade weighted comparison,
which is based on the concept that each feature is compared in
sequence and that each feature has a relative importance. The
ranking created by one feature determines the input for the
next feature comparison. A weighting function is used to
reflect the importance of the features. The features are
processed in the order of their weights. The features with a
lower weight use a subset of the total database determined by
the higher weight features. The subset is the portion of the
database that has the shortest distances to the query as
determined by the higher weighted features. We generalize the
distance as follows: suppose d(A,Q)=D1…k(A,Q) is a
combined distance among all features from 1 to k.

The cascade distance is defined by D1…n

(A,Q)=wnd(an,qn)+D1…(n-1)(A,Q).

C. A generalized algorithm for virtual-node comparison
This algorithm allows to calculate the feature distances

between the root of the query tree and the roots of all data
trees in the database, and to select those data types for which
the distances are below a threshold value. These candidates
will be searched at a higher-resolution level in the next step.
We can consider three situations:

Case a) the query’s tree aligns within the k-tree structure of
data.

1) Find the feature distances between feature in root of
query tree and nodes of data at level Li-1 (nodes with solid-line
link in Fig. 4) of the stored data. If the distance to a child node
is equal to that between the query and its parent (Li), the query
may be found within that child node.

2) Repeat Case a) recursively on this child node. If there
is no distance at level Li-1 close to the distance to the parent,
the query is “not aligned”

Case b) the query data falls in between two or more nodes
1) If no node in k-tree (darker nodes in Fig. 4) can be a

candidate, virtual nodes between two nodes have to be
generated from the parts of their child nodes.

2) Repeat the whole algorithm into a new tree
Case c) the height of query is equal to a node height.
1) Search by Thumbnail (search data that is similar with

disregarding to the scale of the query) with histogram
quadratic distance to calculate the distance and then

2) Return the distance.

 .

Fig. 4 Virtual-node structure for k=1

V. EXPERIMENTAL PROCEDURES

A. Algorithms for parallel processing
The first implemented algorithm allows parallel searching

using a single feature. Prior to the search the database is
distributed among the processors. Each processor performs the
comparison between the query and its partition of the
database. The results are sorted in parallel creating the final
ranking. The second algorithm performs a weighted cascade
search for multiple features querying. In this situation all
distance computation blocks are replaced with the parallel
model from a single feature query.

The software architecture necessary to perform parallel
processing has three main components. The first component
contains routines for database partitioning, in order to indicate
which data parts should be processed by each processing unit.
 The second component contains a large set of sequential
operations typically used in content-based retrieval. Each
operation that maps onto the functionality as provided by a
generic algorithm is implemented by instantiating the generic
algorithm with the proper parameters, including the function
to be applied to the individual data elements. Parallel
implementations of generic algorithms are obtained by
inserting communication operations in the concatenation of
sequential library routines.

 The last component of the software architecture is the
scheduling component that is applied to find an optimal
solution for a given application. The requests for scheduling
results are performed to determine which parallelization
strategy is required. The aim of scheduling is to provide
specified shares of the total system capacity to groups of jobs
[6].

B. The cluster test-bed
In order to create a parallel/distributed environment we

have built a cluster using commodity hardware and running
Linux as operating system [7]. The cluster can run
applications using a parallelization environment [8]. We have
tested writing and running applications using PVM (Parallel
Virtual Machine) which is a framework consisting of a
number of software packages that accomplish the task of
creating a single machine that spans across multiple CPU's, by
using the network inter-connection and a specific library.
Applications must be compiled using this specific library in
order to permit communication. Another framework that can
be used to run applications in a distributed manner is MPI

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:9, 2010

1300

(Message Passing Interface). MPI specifies a library for
communication between tasks [9].

Our cluster consists of a “head” machine and a number of
six cluster nodes. The “head” provides all services for the
cluster nodes – IP allocation, booting services, File System
(NFS) for storage of data, facilities for updating, managing
and controlling the images used by the cluster nodes as well as
access to the cluster. The “head” computer provides an image
for the operating system that is loaded by each of the cluster
nodes since the cluster nodes do not have their own storage
media. As this image resides in the memory of each cluster
node, we took special steps to reduce the size of this image
and to make most of the memory available to the running
processes. We were able to reduce this image to 16 megabytes
by moving different parts of a running Debian Linux system
over network file systems, leaving on the image only those
components needed for booting and controlling the cluster
nodes.

The application partition is mounted read-only while the
partition where data is stored is mounted read-write and
accessible to the users on all machines in a similar manner
providing transparent access to user data. In order to access
the cluster, users must connect to a virtual server located on a
head machine. This virtual server can also act as a node in the
cluster when extra computation power is needed for the single
streams.

C. Criteria to choose a load balancing strategy
Load balancing is defined as the allocation of the work of a

single application to processors at run-time so that the
execution time of the application is minimized. Since the
speed at which a parallel application can be completed
depends on the computation time of the slowest workstation,
efficient load balancing can clearly provide major
performance benefits. The two major categories for load-
balancing algorithms are static and dynamic.

Static Load Balancing. Static load balancing algorithms
allocate the tasks of a parallel program to workstations based
on either the load at the time nodes are allocated to some task,
or based on an average load of our workstation cluster. The
advantage in this sort of algorithm is the simplicity in terms of
both implementation as well as overhead, since there is no
need to constantly monitor the workstations for performance
statistics. However, static algorithms only work well when
there is not much variation in the load on the workstations.

Dynamic Load Balancing. Dynamic load balancing
algorithms make changes to the distribution of work among
workstations at run-time; they use current or recent load
information when making distribution decisions. As a result,
dynamic load balancing algorithms can provide a significant
improvement in performance over static algorithms. However,
this comes at the additional cost of collecting and maintaining
load information, so it is important to keep these overheads
within reasonable limits.

Load Balancing Algorithm. While many different load
balancing algorithms have been proposed, there are four basic
steps that nearly all algorithms have in common:

1) Monitoring workstation performance (load
monitoring)

2) Exchanging this information between workstations
(synchronization)

3) Calculating new distributions (rebalancing criteria)
4) Actual data movement (job migration)
Balancing Strategies. There are three major parameters

which usually define the strategy a specific load balancing
algorithm will employ. These three parameters answer three
important questions: i) who makes the load balancing
decision, ii) what information is used to make the load
balancing decision, and iii) where the load balancing decision
is made. Global or local policies answer the question of what
information will be used to make a load balancing decision. In
global policies, the load balancer uses the performance
profiles of all available workstations. In local policies
workstations are partitioned into different groups. The benefit
in a local scheme is that performance profile information is
only exchanged within the group. The choice of a global or
local policy depends on the behaviour an application will
exhibit. For global schemes, balanced load convergence is
faster compared to a local scheme since all workstations are
considered at the same time. However, this requires additional
communication and synchronization between the various
workstations; the local schemes minimize this extra overhead.
But the reduced synchronization between workstations is also
a downfall of the local schemes if the various groups exhibit
major differences in performance.

Centralized vs. Distributed Strategies. A load balancer is
categorized as either centralized or distributed, both of which
define where load balancing decisions are made. In a
centralized scheme, the load balancer is located on one master
workstation node and all decisions are made there. In a
distributed scheme, the load balancer is replicated on all
workstations. Once again, there are tradeoffs associated with
choosing one location scheme over the other. For centralized
schemes, the reliance on one central point of balancing control
could limit future scalability. Additionally, the central scheme
also requires an “all-to-one” exchange of profile information
from workstations to the balancer as well as a “one-to-all”
exchange of distribution instructions from the balancer to the
workstations.

The implemented load balancer. We have implemented a
Single Program Multiple Data (SPMD) computation
algorithm, which implies that all the workstations run the
same code, but operate on different sets of data. Each task is
divided into operations. Workstations execute the same
operation asynchronously, using data available in the
workstation’s own local memory. This is followed by a data
exchange phase where information can be exchanged between
workstations (if required), after which all workstations wait
for synchronization. Thus each lock-step of an SPMD
program contains 3 phases: i) calculation phase (each task will

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:9, 2010

1301

do the required computation; there is no communication
between workstations at this point); ii) data distribution phase
(each task will distribute the relevant data to other tasks that
need it for the next lock-step); iii) synchronization phase (this
phase ensures that all tasks have completed the same lock-
step).

 The algorithm uses the following parameters:
Tcomp-i – the interval between the time at which the first task

on workstation i starts execution and the time at which the last
task on the same workstation completes the computation and
waits for the synchronization.

Ttask-i – the average computation time for each task on a
workstation, defined as:

Ttaski = Tcomp-i / ni (equ. 1)
Thigh – the maximum of Tcomp over all workstations
Tlow – the minimum of Tcomp over all workstations
In the SPMD algorithm Ttask can be used to update Tcomp.

Thus if m tasks are moved to
workstation i, we can solve equ.1 to give us an estimation

of Tcomp-i: Ttask-i x (ni + m).

D. Tests and results
The data parallel search algorithm illustrated in Figure 3

were ran on the test-bed cluster, for a single feature (k=1) and
for two features (k=2). In both cases two computing schemes
were tested: the regular computing scheme and the cascade
weighted computing scheme. In these tests, data in each
storage Di are parts of feature index, so prior to use the
database is distributed to the processors in the cluster. At the
first stage (T1), each processing unit performs a feature based
comparison between the query and the data in its assigned
records. The output from each processor is a list of distances.
At the second stage (T2), the results are sorted in parallel to
create the overall ranking of the database records. The results
of one feature using the parallel search algorithm are the input
of the next feature. Each processor works on different portion
of the database. Then, the sorted results are combined to the
final results. Table 2 presents the time (in seconds) for each
algorithm and for a different number of processing unit. For
rapid comparison, the same results are displayed in fig. 5.

TABLE II PROCESSING TIME FOR RETRIEVAL TESTS

Proc

.
units

K=1 K=2
regul

ar
cascad

e
regular cascad

e
1 420 268 585 410
2 282 221 352 269
4 196 143 220 185
6 132 116 198 161
8 112 104 170 144

In all experiments was used the distance between pairs of

results from consecutive levels of a k-tree. For different types
of data there was identified the limit kl-level that does not

improve the result, but requires a significantly longer
processing time. Once this level was identified, the
unnecessary levels were eliminated of the k-tree and so the
processing time storage was reduced.

Performance evaluation

0

1,000
2,000

3,000

4,000

5,000
6,000

7,000

1 2 4 6 8

number of processing units

Ti
m

e
[s

ec
on

ds
x1

00
]

k=1, regular
k=1, cascade
k=2, regular
k=2, cascade

Fig. 5 Retrieval times versus number of processing units

Anyway, the computation time decreases significantly as

the number of processors used to perform the computation
increases. The achieved speedups are super-linear because
each processor has more system resources available at the run-
time; the smaller number of processors, the more frequent
trashing occurred.

VI. CONCLUSIONS
W e have introduced a parallel model for multimedia data

retrieval by content with a multidimensional k-tree structure.
The objective was to select the optimal level of a k–tree: the
level furthest from the leaves that can distinguish the data
structure. To achieve this goal the experimental research was
concerned primarily to improve the efficiency of the search
and consequently to reduce the response times of the
algorithms. By exploiting the hierarchical nature of the trees,
the search was improved by the use of multi-resolution
algorithms using a weighted cascade. The experimental results
show that multi-resolution processing can reduce retrieval
time, maintain the accuracy, and exploit parallelism.

The model allows the extension of the system for the new
types of data, new techniques, and new types of interest
contents with less effort. In this aim we have proposed an
algorithm to extract the k-tree core from a general features
tree and to apply it in modeling a distributed database system.

Further work includes the validation of the proposed
metadata model in a large database, the development of new
criteria for searching on multimedia content and the use of the
information gathered in the database. We intend to extend the
parallelism into heterogeneous systems environments by using
information on both task and machine characteristics in order
to decide which processor a task should be allocated to.

ACKNOWLEDGEMENT
 This work was partially supported by the Romanian
Ministry of Education and Research under Grant ID_1039,
No. 121/2007.

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:9, 2010

1302

REFERENCES

Radu N. Dobrescu (M’90–SM’03) Born in 11.01.1946, in Braila, Romania.
Dipl.Eng. degree in Automatic Control from the Faculty of Control and
Computers of the Polytehnical Institute of Bucharest, in 1968. Ph.D. degree in
Electrical Engineering from the Polytehnical Institute of Bucharest, Romania,
in 1976.
He is currently Professor in the Department of Automation and Industrial
Informatics of the Faculty of Control and Computers, “Politehnica” University
of Bucharest, head of the laboratory on Data Transmission and Industrial
Communication. From 1992 Ph.D. adviser in the field of Control Systems
Engineering. Several scientific works in three main domains: Data acquisition,
processing and transmission; Local area networks and industrial
communication, Complexity and chaos theory
 Prof. Dobrescu is a pioneer in fractal theory applications for medical image
processing and biological systems modeling and simulation. Organizer of four
International Symposiums on Interdisciplinary Approaches in Fractal
Applications (IAFA 2003, IAFA 2005, IAFA 2007 and IAFA 2009).

Matei R.N. Dobrescu. (M’00) Born in 27.11.1976 in Bucharest, Romania.
Dipl.Eng. degree in Automatic Control from the Faculty of Control and
Computers of the “Politehnica” University of Bucharest, in 2000. Ph.D.
degree in Systems Engineering from the “Politehnica” University of
Bucharest, in 2004.
 Currently Researcher in the Department of Automation and Industrial
Informatics of the Faculty of Control and Computers, “Politehnica” University
of Bucharest, engaged in a post-doctoral research stage. Several scientific
works, especially multimedia applications with parallel and distributed
processing:
 Dr. Dobrescu has received in 2005 the Excellence Award Werner von
Siemens for the best doctoral thesis of the year in the field of IT&C.

Daniela Gh. Hossu. (M’98) Born in 04.09.1971 in Craiova, Romania.
Dipl.Eng. degree in Industrial Informatics from the Faculty of Power
Engineering of the “Politehnica” University of Bucharest, in 2000. Ph.D.
degree in Systems Engineering from the “Politehnica” University of
Bucharest, in 2002.
 She is currently Professor in the Department of Automation and Industrial
Informatics of the Faculty of Control and Computers, POLITEHNICA
University of Bucharest, head of the laboratory on Data Compression. She
has several contributions in the non-standard control of power systems based
on hybrid or neuro-fuzzy structures and in the field of image processing and
compression.
 Prof. Hossu was the director of three main projects in the field of
Industrial Informatics granted by the Romanian Ministry of Research.

[9] Riley, G. , Ammar, M..Fujimoto, R., Park, A., Perumalla, K.,
Xu, D. (2004): A Federated Approach to Distributed Network
Simulation. ACM Trans. on Modeling and Computer Simulation
(TOMACS), Vol. 14(2)

[8] Dobrescu, R., Dobrescu, M., Hossu, D. (2008): Fractal Analysis of
Internet Traffic using a Parallel Processing Network Simulator,
Proceedings of the Sixth Int. Symp. Comm. Systems, Networks and
Digital Signal Processing, p. 622-625,

[7] Dobrescu, M., Mocanu, S. (2004): Resource management for real
time parallel processing in a distributed system”, WSEAS
Transactions on Computers, Issue 3, vol.2, p.732-737

[6] Dobrescu, M. (2005): Distributed Image Processing
Techniques for Multimedia Applications. Ph.D. Thesis. Politehnica Univ.
 of Bucharest

[5] Kiranyaz, S., Ferreira, M., Gabbouj, M. (2006): Automatic
 Object Extraction over Multi-Scale Edge Field for Multimedia
Retrieval", IEEE Transactions on Image Processing, p.3759-3772

[4] Wang, B-F. (1998): Finding a k-Tree Core and a k-Tree Center of a
Tree Network in Parallel. IEEE Transactions on Parallel and
Distributed Systems, Vol. 9, Issue 2. p.186-191

[3] R. Zhao and W. I. Grosky. (2002): Narrowing the
semantic gap— improved textbased web document retrieval using
visual features. IEEE Transactions on MultiMedia, vol. 4, no. 2
p.189–200

[2] Bradshaw, B. (2000): Semantic Based Image Retrieval: A
Probabilistic Approach.Proc. of ACM. Multimedia,.23(6), p. 676—689

[1]Ribeiro, C., David, G., Calistru, C. (2004): A multimedia
 database workbench for content and context retrieval. IEEE
 6th Workshop on Multimedia Signal Processing p.430-433

