
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:7, 2009

1785

Balancing Neural Trees to Improve Classification
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Abstract—In this paper, a neural tree (NT) classifier having a
simple perceptron at each node is considered. A new concept for
making a balanced tree is applied in the learning algorithm of the
tree. At each node, if the perceptron classification is not accurate and
unbalanced, then it is replaced by a new perceptron. This separates
the training set in such a way that almost the equal number of patterns
fall into each of the classes. Moreover, each perceptron is trained only
for the classes which are present at respective node and ignore other
classes. Splitting nodes are employed into the neural tree architecture
to divide the training set when the current perceptron node repeats
the same classification of the parent node. A new error function based
on the depth of the tree is introduced to reduce the computational
time for the training of a perceptron. Experiments are performed to
check the efficiency and encouraging results are obtained in terms of
accuracy and computational costs.

Keywords—Neural Tree, Pattern Classification, Perceptron, Split-
ting Nodes.

I. INTRODUCTION

Decision tree and neural networks are two powerful tools for
pattern classification. Several researches have been conducted
using these two tools in an alternative manner. A performance
comparison based study of these two approaches is given by
Atlas et al. [1] for the purpose of classification of various real
life applications such as load forecasting, power security and
vowel recognition. They have found that both tools have their
own advantages as well as drawbacks. Most of the existing
top-down decision tree design methods make use of single
feature splits at successive stages of the tree design. While
computationally attractive, single feature splits generally lead
to large trees and inferior performance. On the other hand,
one cannot decide an ideal architecture of a neural network
(number of hidden layers and number of nodes in each hidden
layer) for a particular set of training data. In this way, an
hybridization of these two methodologies called neural tree
[2], [16], [14] came in existence to solve tough problems.

Some approaches proposed in this area were motivated by
the lack of a reliable procedure for determining the appropriate
size of feedforward neural networks in practical applications.
These approaches used decision trees to help to determine
the topology of neural networks in order to facilitate learning
and/or improve generalization by controlling the number of
nodes and connections [2], [14], [7], [6]. Some approaches
were motivated by the lack of a powerful procedure for
determining the appropriate splits or tests of decision trees.
These approaches used neural networks to refine the splits or
even directly embedded neural networks functioning as splits
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in decision trees in order to improve generalization [17], [18],
[15], [12], [16].

Apart from these approaches, several other efforts have been
made to hybrid decision tree and neural network into one
structure. A new concept called split node has been introduced
in simple perceptron based NT [5] for splitting the training
set in two parts when the current perceptron node repeats the
same classification of the parent node. This strategy has been
provided a guaranteed convergence in any case of the tree
building process and to reduce misclassification. In [19] Zhou
and Chen have presented a hybrid decision tree (HDT) for the
simulation of human reasoning by using symbolic learning
to do qualitative analysis and by neural processing to do
subsequent quantitative analysis. In [4] Foresti and Micheloni
have proposed a generalized neural tree (GNT) model by
normalizing the activation values of each node so that these
can be interpreted as a probability. The main novelty of the
GNT consists in the definition of a new training rule that
performs an overall optimization of the tree. Each time the tree
is increased by a new level, the whole tree is re-evaluated. An
adaptive high-order neural tree (AHNT) [3] has been proposed
by composing high order perceptron (HOP) instead of simple
perceptron in neural tree model. First-order nodes divide the
input space with hyperplanes, while HOPs divide the input
space arbitrarily, but at the expense of increased complexity.

Recently, a new neural tree classifier called NNTree [9] has
been proposed for designing tree-structured pattern classifier.
Instead of using information gain ratio as splitting criterion, a
new criterion has been introduced for NNTree design. It has
been shown that the new criterion captures well the intuitive
goal of reducing the rate of misclassification. The performance
of NNTree has been evaluated through its applications in letter
recognition, satellite image classification, splice-junction and
protein coding region identification. Experimental comparison
has been made with other related algorithms in terms of
better or comparable classification accuracy with significantly
smaller trees and fast classification times.

In this paper, we propose a new NT architecture attempting
to reduce the size of the tree and improving the classification.
Behaviour of a perceptron is noticed at each node and if the
classification done by this is not good enough and unbalanced
then it is replaced by such a perceptron that separates the
training set in such a way that almost equal number of patterns
fall into each of the classes. Moreover, a perceptron learns
only for the classes which are present at respective node and
ignore other classes. Splitting nodes are employed into the
neural tree architecture only to divide the training set when
the current perceptron node repeats the same classification
of the parent node. A new error function based on depth of
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tree is introduced to reduce the computational time in learning
of a perceptron. Experiments are performed for classification
of synthetic as well as real data sets. Results are compared
with other classical and well established methods in terms of
classification accuracy.

The paper is structured as follows: Section II contains a
description of a perceptron based neural tree. The proposed
learning and classification algorithms are given in section III.
Experimental results and comparison study are presented in
IV. Finally, section V contains the concluding remarks.

II. STANDARD NEURAL TREE

A neural tree (NT) is a decision tree with each
intermediate/non-terminal node being a simple perceptron.
It is constructed by partitioning the training set consisting
of feature vectors and their corresponding class labels for
generating the tree in a recursive manner. This procedure
involves three steps: splitting nodes, determining which nodes
are terminal nodes, and assigning class labels to terminal
nodes. In NT, a leaf/terminal node covers the set/subset of
elements of only one class. By contrast, an intermediate node
covers the set/subset of elements belonging to more than one
class. Thus, NT are class discriminators which recursively
partition the training set to get nodes belonging to a single
class. When a node contains all patterns of the same class, it
is labelled as a leaf node.

At each node a perceptron takes N patterns as input and
generates M output called activation values corresponding to
each class presented at that particular node. Each perceptron
is characterized by a sigmoidal activation function σi(net) =
(1+ e−net)−1. Thus the activation value ok

i of the ith neuron
generated by the kth pattern is given by

ok
i =

1

(1 + e
−

∑N

j=1
(Wijxk

j
))

where wij are the ijth element of the weight matrix W . The
NT structure contains several levels l ∈ [1, L] called depth of
the tree.

III. LEARNING AND CLASSIFICATION ALGORITHM

A. Learning Algorithm

The aim of the training procedure is to build the NT. In other
words, training a neural tree takes a training set S as input and
returns the neural tree with optimal weights on each node on
the output. The proposed learning algorithm is summarized by
the following steps:

1) Create a single perceptron without hidden layers and
initialize its weight matrix in such a way that the
hyperplane generated by these weights passes through
the centre of mass of the training set. Set S = Sroot.

2) Start training the perceptron by updating the weight
matrix in order to minimize the classification error by
optimizing a cost function. Note that the perceptron is
forced to consider only the classes which are actually
presented at that node instead of all.

3) If the uniformity factor (βi) [8], which indicates the
strength of the class i at a node after classification, is

more than a defined threshold ε then this node is made
a leaf node labelled with the dominating class. If βi > ε
for all i, the current perceptron ends with M leaf nodes,
one for each class. We will explain β in more details
later. Go to step 8.

4) Otherwise, if training set is divided into m ≤ M
groups,(S1, . . . Sm), a new level of m child nodes are
created and each subset Si is assigned to the correspond-
ing child node for the training process. A pattern is
assigned to a class based on its highest activation value.

5) For each child node, repeat step 1 on the corresponding
local training set Si.

6) If the classification done by a perceptron at any node is
not accurate and unbalanced, its weights are replaced by
the initial weights which divide the training set with the
hyperplane passing through the centre of mass. Such a
solution allows a balanced distribution of patterns among
all classes.

7) If the S can not be further divided in any group, that
is the perceptron repeats the classification done by the
parent node then S is divided into two groups Sl and Sr

using the splitting rule [5] producing two child nodes.
Go to step 2.

8) If all current nodes are leafs, the algorithm ends. Oth-
erwise, go to step 2 to train the remaining perceptrons.

Let δ be the error defined as the mean error computed on all
output neurons and patterns,

δ =
1

KM

K∑
k=1

M∑
i=1

δk
i

where K is the total number of patterns at current node
and the error δ is the difference of output ok

i and the target
T k

i computed as

δk
i = tki − ok

i , i = 1, ..., M

where

tki =
{

1, i = ik

0, otherwise

is the target vector. Each perceptron is trained with the patterns
of the training set until either the error δ becomes less than
1

ml where m is the number of classes present at the current
node and l is the current depth of the tree or there is no more
reduction in the error for a given number Wait of epochs .

Three different types of splitting are used in the proposed al-
gorithm. The first is the splitting done by a trained perceptron,
the second is the splitting done by an untrained perceptron and
the third is the splitting done by using a split node.

Before explaining the adopted strategy, to make the process
clear a brief notation needs to be introduced. The local error
in total classification as well as for each class is calculated at
the respective node. Local error is the correctness measure of
the classification and it is defined as

Et = 1 − Kc

Kt

where Kc is the number of correctly classified patterns and
Kt is the total number of patterns present at the current node.
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The respective local error for each class is defined as

Ei = 1 − Kci

Kti

where Kci
is the number of correctly classified patterns of

class i, and Kti is the total number of patterns classified as
class i.

The studied strategy bases its decision about which splitting
criteria must be adopted on the basis of the classification
errors. In particular,it has been noticed that if the total error
is relevant and at the same time the difference between the
lowest and highest errors among the classes is considerable,
then the degree of correctness in classification is low and
the resulting tree will be unbalanced. Such a situation does
not allow to reach a good trade-off between error and depth
of the tree. Thus, such a perceptron is not acceptable. To
avoid this situation, the proposed solution replaces such a
perceptron with the initial untrained perceptron which ensure
the uniform distribution of patterns among all the classes
present at that node. The resulting NT is therefore more
balances. Summarizing, the criterion to judge whether the
perceptron classification is accurate or not is the following

Et >
Einit

M
and (Emax − Emin) > Et

where Emax = maxi {Ei}, Emin = mini {Ei} and Einit

is the initial error when the perceptron is not trained. For
example, in Figure 1 the training results obtained with a
standard NT and the proposed NT are shown. At root node
the perceptron is able to separate only a few number of
patterns which yields to a high total error Et = 0.3593 and
relevant difference in the errors among the two classes, i.e
E1 = 0 and E2 = 0.4181. Using the standard NT training
procedure, thus keeping such a perceptron, yields to get a
deeper NT. On the other hand, adopting the proposed strategy,
the root perceptron is replaced with a perceptron whose
weights define an hyperplanes passing through the centre of
mass of the training set. Such a node divides better the training
set allowing to define a more balanced NT thus a NT with a
lower depth.

In the case a perceptron is not able to separate the training
set in more than one class the third type of splitting is adopted.
For such a purpose a splitting rule [5] is considered to divide
the data in two groups with almost equal cardinality.

Now let us to better explain the third step of the proposed
algorithm. A node is considered as a leaf node if all the pat-
terns falling in its local training set belongs to the same class.
To avoid over-fitting, a pre-pruning strategy is applied [9]. Let
Cij represents the number of elements of class j covered by i-
th child node, where i = 1, 2, ..., m and j = 1, 2, ..., m; and βi

represents the uniformity of the distribution of class elements
in i− th child node [9]. The value of βi at ith node is given
by

βi =
A

B
(1)

where A = maxj {Cij} and B =
m∑

j=1

Cij .
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Fig. 1. Tree formation with 2D dataset using(a) Standard NT, (b) Proposed
NT

To decide whether to keep training the NT by adding a new
child perceptron or introducing a leaf node, the βi value is
measured and compared with a threshold ε ∈ (.97, 1).

1) If βi < ε, then current node needs to be processed
further by a perceptron.

2) If βi > ε then the i − th node is made a leaf node of
class j for which Cij is maximum. The further class
elements falling into the current node are classified to
the most probable class of current node that is the class
that has maximum number of training patterns in the
current node.

B. Classification Algorithm

For the classification task, unknown patterns are presented
to the root node. The class is obtained by traversing the tree
top to down. Starting from the root, the activation values of
the current node gives the next node to consider, until reaching
a leaf node, which gives the class of the input pattern. Each
node applies the winner-takes-all rule so that

x ∈ class i ⇔ σ(wj .x) ≤ σ(wi.x) for all j 	= i (2)

where σ is the sigmoidal activation function,wi is the vector of
weights of the connections from inputs to i− th output, and x
is the input pattern. This rule determines the classes associated
with the leaf nodes as well as the paths of the internal nodes.
Since during the training process some nodes have been trained
on a subset of all classes, during classifications the missing
classes are still not considered on such a nodes by setting
their activation values to zero.

IV. EXPERIMENTAL RESULTS

Several experiments have been performed to evaluate the
performance of the proposed neural tree algorithm. Exper-
imental results have been obtained on synthetic as well as
real data. The results have been compared with several other
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Fig. 2. Classification of the four-class chessboard dataset using (a) Standard
NT [5], (b) the proposed NT

Fig. 3. Classification of the two-class spiral dataset using(a) Standard NT
[5], (b) the proposed NT

existing methods. The performance of the proposed neural
tree algorithm is compared with standard NT model [5]
for synthetic data set. The comparison has been made with
different classification algorithms like C4.5 [13], MLP [8],
NNTree [9] and CA [10] for real data.

A. Results for Synthetic data

In the first experiment, a training set composed by 1600
patterns belonging to four classes uniformly distributed on
a chess-board has been considered. The results obtained by
standard [5] and proposed NT with learning rate η = 0.19,
Wait = 103 and uniformity parameter β = 0.99 are shown
in Figure 2. The main difference between a standard and
the proposed algorithms is regarding the size of the tree: the
proposed NT is composed by 42 nodes (including 1 split)
with depth L=6, while the standard NT is composed by 66
nodes (including 20 split) with depth L=11. The classification
accuracy is 98.80% using the proposed NT and it is 97.61%
for the standard NT.

The second experiment has been conducted on a more
complex data set often used to test the performance of NT
algorithms. This training set is composed by 1997 patterns
distributed along two interleaved spirals. The parameters of
NT used for this training set were: learning rate η = 0.70,
Wait = 103 and uniformity parameter β = 0.99. Figure 3
shows the classification results for spiral data using a standard

Algorithms Classification accuracy (%)

Proposed NT 83.90

Standard NT not converged

NNTree 82.9

MLP 67.2

C4.5 86.6

TABLE I
CLASSIFICATION ACCURACY OF DIFFERENT ALGORITHMS FOR LETTER

DATABASE

and the proposed NT respectively. The tree obtained using the
proposed algorithm contains 284 nodes (including 20 split)
with depth L=14, while the standard NT is composed with 435
nodes (including 89 split) with depth L=15. The classification
accuracy is 88.81% using the proposed NT and 87.41% using
standard NT. It is clear from the presented results that the
concept of making a balanced tree in proposed algorithm not
only increases the classification accuracy but also reduce the
depth of tree (i.e., computational cost).

B. Results for Real Data

The performance of the proposed NT is tested on two
different real data sets used for letter recognition and satellite
image classification. The NT parameters are considered as
learning rate η = 0.90, Wait = 103 and uniformity parameter
β = 0.97 for letter database and learning rate η = 0.57,
Wait = 103 and uniformity parameter β = 0.97 for landsat
image database.

1) Letter recognition: The dataset used here is constructed
by David J. Slate, Odesta Corporation, Evanston, IL 60201.
The objective is to classify each of a large number of black
and white rectangular pixel displays as one of the 26 capital
letters of the English alphabet. One-shot train and test is used
for the classification. The character images produced are based
on 20 different fonts and each letter within these fonts is
randomly distorted to produce a file of 20, 000 unique images.
For each image, 16 numerical attributes are calculated using
edge counts and measures of statistical moments which are
scaled and discretized into a range of integer values from 0 to
15.

The results obtained for this dataset is given in Table I. The
proposed NT performs better than the NNTree [9], MLP [8].
However, the classification accuracy is less when compared
to the C4.5 [13] algorithm. The reason behind that is the use
of simple perceptron in the proposed NT. On the other hand,
there is no need to decide many parameters like number of
hidden layers, number of nodes in each hidden node, etc. (in
case of multi-layer perceptron) in the proposed NT model.

2) Satellite image classification: The original Landsat data
for this database is generated from data purchased from NASA
by the Australian Center for Remote Sensing, and used for
research at the University of New South Wales. The sample
database is generated taking a small section (82 rows and 100
columns) from the original data [11]. The data are divided
into train and test set with 4435 examples in training set and
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Algorithms Classification accuracy (%)

Proposed NT 85.25

Standard NT not converged

NNTree 87.1

CA 77.5

C4.5 85.2

TABLE II
CLASSIFICATION ACCURACY OF DIFFERENT ALGORITHMS FOR SATELLITE

IMAGE DATABASE

2000 in testing set. The results on this database are presented
in Table II in terms of classification accuracy.

V. CONCLUSIONS

In this paper, a new strategy to build a neural tree classifier
based on simple perceptrons has been presented. A new
concept of making a balanced tree in each node is implemented
to increase the accuracy and reduce the depth of the proposed
NT. A modified criterion based on classification error has been
used for detecting the irregular behaviour of perceptrons at
each node. The final weights of the perceptron which behaves
irregularly, are replaced by initial weights in such a way that
the hyperplane crosses the centre of mass of the training
set. The efficiency of the proposed NT in classification has
been shown by experimental results on synthetic as well as
on real data sets. It is concluded that the proposed NT is
computationally efficient and also able to classify complex
data sets with good accuracy.
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